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During the past decade, lots of progress has been made in biomedical image processing 

with the help of modern computers. These technological advances allow the use of large-

scale computational algorithms and techniques of which the implementation was almost 

impossible just few years ago. 

This dissertation is about biomedical imaging processing. More precisely, it is about the 

incorporation of the level set method, computational anatomy and other related fields in 

biomedical imaging processing.  

A general framework of level set based object matching technique is developed in this 

dissertation. In order to apply the level set method, it has to be re-formulated in the semi-

Lagrangian reference formulation rather than the Eulerian reference in the original level 

set method. The level set based object matching techniques is then incorporated to the 

framework of diffeomorphisms generated by infinite dimensional group actions in 

 xi



computational anatomy. With this formulation, a metric can be rigorously defined by 

quantifying the underlying grid deformation based on ideas borrowed from continuum 

mechanics. Moreover, a geodesic flow can be defined and computed that links one object 

to the other. A unifying approach for matching objects of different types including 

shapes, open curves, and landmarks in both two-dimensional and three-dimensional space 

will be presented.  

Formulations for taking into account the equivalence of objects under the action of 

translation, scaling and rotation will also be discussed. Furthermore, we show that the 

method of level set based object matching is closely related to minimizing the Hausdorff 

metric between objects, a classic result in geometric measure theory. This provides a 

sound and rigorous foundation for the level set based object matching. 

 xii



Preface 

An Introduction 

Abstract-This dissertation is about the level set method and its application 

to biomedical image processing in the field of computational anatomy and 

some other closely related fields. In this section, we will briefly describe the 

scope of this dissertation, the problems we wish to solve, and the goals we 

wish to achieve. 
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During the past decade we have seen some of the most amazing progress in 

computational techniques due to the rapid technological advances in modern computers. 

Due to this progress, People have started to simulate the phenomenon seen in real world 

using highly complicated computational algorithms and resulted in tremendous success.  

In biomedical sciences, we have seen the most promising future in the study of genetic 

codes (resulted from the large amount of data obtained through gene sequencing) and in 

the field of biomedical image processing due to the help of modern computers and 

computational techniques. 

This dissertation is about biomedical imaging processing. More precisely, it is about the 

incorporation of the level set method to computational anatomy and other related fields in 

biomedical imaging processing.  

The level set method is a powerful tool for interface tracking. The interface is being 

implicitly represented as the zero level set of the corresponding level set function of one 

higher dimension. With this implicit representation, tracking of the interface becomes 

updating the values of the level set function on the grid points. Because of the Eulerian 

reference nature, the main advantage of the level set method is that it treats topological 

changes naturally. The other advantage of the level set method is, due to the implicit 

representation, it provides an elegantly and efficient mathematical and computational 

technique of representing and evolving interfaces. 

However, the main advantage of allowing topological changes of the level set method 

becomes the main drawback if one wishes to apply it to computational anatomy. In 

computational anatomy, anatomical structures are considered embedded in the underlying 
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image and thus is not Eulerian in nature. In order to incorporate the level set method into 

the framework of computational anatomy, the level set method has to be re-interpreted in 

a new manner, namely, in the semi-Lagrangian reference formulation. 

A general framework of level set based object matching technique based on the semi-

Lagrangian implementation is developed in this dissertation. This new framework is then 

tied to the framework of comparing images through diffeomorphisms generated by 

infinite dimensional group actions in computational anatomy. A unifying approach for 

matching objects of different types will be presented with generalization to 3D object 

comparison. Formulations for taking into account the equivalence of images under the 

action of translation, scaling and rotation will also be discussed along with a theoretical 

connection with the classic result of the Hausdorff metric (defined between two sets of 

points) in geometric measure theory. Numerical results on the matching of 2D objects 

including shapes, open curves, and landmarks will be presented. 

We will start with reviewing the fundamental techniques of image processing using 

modern techniques borrowed from calculus of variations, partial differential equations, 

and the level set method in chapter 1, 2 and 3. In chapter 4, an overview of computational 

anatomy will be discussed, followed by a detailed discussion of level set based object 

matching. Numerical examples will be presented in chapter 10 while a summary and 

some future directions are outlined in the final chapter of this dissertation.   
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Chapter 1 

Partial Differential Equations, the Level Set 

Method, and Image Processing 

Abstract-Traditionally, image processing in the engineering society involves 

tasks including, for example, image segmentation, edge detection and 

denoising with a wide variety of filters. Since the past decade, the use of 

partial differential equations, statistics, and wavelet theory in image 

processing is rapidly growing and expanding. In the first chapter, we will 

briefly review the use of partial differential equations-especially the level set 

method-in modern image processing. 
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1. Introduction 

The level set method, first proposed by Osher and Sethian in [1], allows an interface Γ (a 

curve in 2D or a surface in 3D) to be represented implicitly by the zero level set of a 

function Φ (the level-set funtion) of one higher dimension 

}0)(|{ =Φ=Γ xx                                                (1) 

With this representation, an image is divided into two regions by the level set function: 

 and . In the original level set formulation, negative values were assigned to 

the area inside the interface Γ. In this dissertation, we will adopt a different approach 

from the original level set formulation by assigning positive values inside the interface 

instead.   

0Φ > 0Φ <

2. Fundamental Formulations of the Level Set Method 

In this section we will follow closely the discussion in [2].  

Formulation in the form of initial value problem 

Let us now derive the fundamental formulation for the level set method. We will derive 

the formulation for evolving curve in 2D though 3D is treated similarly and results in the 

same formulation.  
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Let the interface be x(t), a closed curve in 2D that is parameterized by a parameter t and 

recall the definition of the level set function 

0)),(( =Φ ttx .                                                               (2) 

 Now let us differentiate the above equation with respect to t 

0)(' =⋅Φ∇+Φ txt                                                         (3) 

Assuming that the interface is moving according to a speed function F(x, t), we have 

.0
),('
=⋅Φ∇+Φ

=
F
txF

t

                                                             (4) 

If F has only the component pointing in the outward normal direction without the 

tangential component, then the above equation is the same as 

0F
t

∂Φ
+ ∇Φ =

∂
.                                                      (5) 

These two equations are the fundamental formulation of the level set method. It is an 

initial value problem with the initial value given by 

 0 ( 0t )Φ = Φ =                                                            (6) 

with the initial interface Γ  being the zero level set of 0Φ . One way (possibly the best 

way) to initialize  is to use the signed distance function of 0Φ Γ  as described in the next 

section. 

Equation 5 falls into a general category of the so-called Hamilton-Jacobi equations. 

Schemes borrowed from hyperbolic conservation law have been shown to successfully 
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solve these problems numerically. For a review on these schemes please refer to [3] and 

the references therein. 

In this chapter, let us describe the simplest first order upwind scheme in 2D for a convex 

speed function F  

1
, , , ,[max( ,0) min( ,0) ]n n

i j i j i j i jt F F+ +Φ = Φ −∆ ∇ + ∇−

2 1/ 2

2 1/ 2

                     (7) 

2 2 2
, , , ,[max( ,0) min( ,0) max( ,0) min( ,0) ]x x y y

i j i j i j i jD D D D+ − + − +∇ = Φ + Φ + Φ + Φ          (8) 

2 2 2
, , , ,[max( ,0) min( ,0) max( ,0) min( ,0) ]x x y y

i j i j i j i jD D D D− + − + −∇ = Φ + Φ + Φ + Φ          (9) 

      

A slightly different first order upwind scheme, as suggested in [4], is the building block 

for solving Eikonal equation (described in the next section) 

2/12
,,

2
,, ])0,,max()0,,[max( y

ji
y
ji

x
ji

x
ji DDDD +−+−+ −+−=∇ ,                 (10) 

2/12
,,

2
,, ])0,,max()0,,[max( y

ji
y
ji

x
ji

x
ji DDDD +−+−− −+−=∇ .                  (11) 

Formulation in the form of boundary value problem-the Eikonal 

Equation 

Level set method has also a boundary value problem formulation in the case when each 

point is crossed by the interface at most once. It can be considered as computing the 

�arrival time� T(x) of the interface at each point. The equation that the arrival time 

satisfies is the following Eikonal type boundary value problem 
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1=∇TF                                                                  (12) 

The boundary value is given by 

0|)( =ΓxT                                                                  (13) 

here  is the initial interface at time zero. Γ

If we use the scheme in equation (10) for numerical discretization, solving the Eikonal 

equation becomes solving the following starting from the initial interface 

ji

y
ji

y
ji

x
ji

x
ji F

TDTDTDTD
,

2/12
,,

2
,,

1])0,,max()0,,[max( =−+− +−+−                 (14) 

The above equation could be solved efficiently using the fast marching method [5-7], 

which involves a heap sorting structure in implementation. In [8], the fast marching 

method is generalized to deal with triangulations and generating geodesics on a manifold.  

Approaches for solving the equations of the Eikonal type other than the fast marching 

method are also being actively investigated. For example, a different technique-the 

�sweeping� technique-is proposed and studied in [9]. 

A numerical example 

When the speed function is one in the Eikonal equation, the arrival time reduces to the 

distance function at each grid point to the initial front. It can also be applied to optimal 

path planning by assigning different speeds in different regions and zero for impenetrable 

obstacles. Figure 1 shows the distance function to the point (40,60) with three 

impenetrable blocks. 
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Fig. 1: The Eikonal equation computed on a 128 by 128 grid in which the speed function 

is one with initial front at point x=40 and y=60 and three impenetrable blocks. The result 

can be interpreted as the shortest distance to the point. 

The advantage of the level set method 

Tracking the front with the level set method has several advantages over the traditional 

method of putting particles on the front and tracking the particles.  The main advantages 

are 

 9



1.  Topological changes in the evolving interface are easily handled 

2. Direct generalization to interface evolution in higher dimensions 

3. Efficient numerical schemes are available that guarantees correct 

weak solutions satisfying the entropy condition 

3. The Level Set Dictionary 

In this section, we will describe how common quantities in image processing can be 

calculated in the level set framework.  

The unit normal vector to the interface 

The unit normal vector to the interface is simply 

Φ∇
Φ∇

=n                                                             (15) 

In the case when the level set function takes positive values inside the interface, this 

normal vector points �inward�. 

The area enclosed by the interface 

 The area (A) enclosed by the interface could be recovered by integrating one in the 

region where the corresponding level set function takes positive values 
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( ( , ))A H x y dxdy
Ω

= Φ∫                                                      (16) 

Here H is the Heaviside funtion as defined in the following way 









≥
<

=
0,1
0,0

)(
x
x

xH                                                         (17) 

The length of the interface 

The length of the interface could be obtained by the length of the zero level set of the 

corresponding level set funtionΦ  

( ) | ( , ) |L x yδ= Φ ∇Φ dxdy∫                                           (18) 

Here δ is the delta dirac function, the derivative of the Heaviside function in the sense of 

distributions. 

The curvature of the front at any point 

The curvature k of the level curve of the level set function passed through each point is 

the divergence of the unit normal vector at that point 

(
| |

k div )∇Φ
=

∇Φ
  .                                                       (19) 

In image processing, the curvature term occurs naturally in the Euler-Lagrange equation 

of various energy minimization problems. For example, motion under curvature arises in 
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length shortening of a curve (minimizing equation 18 with respect to the level set funtion 

Φ)  












Φ∇
Φ∇

Φ∇=
∂
Φ∂ div
t

                                                     (20) 

Due to the hyperbolic nature of equation 20, central differencing should be used for 

discretization instead of the upwind scheme introduced in previous sections. Moreover, 

motion under curvature plays an important role in many applications as it smoothes out 

the boundaries due to its non-linear heat equation property. It is shown in [10-12] that, all 

simple closed curves shrink to a point under motion of curvature regardless of their initial 

shapes.  

Numerical approximations for Heaviside and Delta function 

Numerically, approximations are used to calculate Heaviside and Delta function. 

Different choices are available depending on the smoothness of the approximating 

functions. For example, the following approximations are used extensively 

























>

≤++

=
otherwise

axif

axifaxax

xH a

0
1

||))sin(/1(
2
1

)(

π

                                (21) 











 ≤+

=
otherwise

axifax
axa

0

||))cos(1(
2
1

)(
π

δ                                  (22) 
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A second choice that allows more smoothness is the following C∞ approximation of the 

Heaviside function 

))tanh(21(
2
1

a
xH a π

+=                                                   (23) 

The approximation of the delta function in this case is then obtained by differentiating the 

equation (23)  

)( 22 xa
a

a +
=
π

δ                                                        (24) 

Extension of the Speed Function 

A subtle point of the level set formulation is that the velocity is only available on the 

interface, or the zero level set of the level set function. However, we need to provide 

speed function for level sets other than the zero level set in order to evolve the whole 

level set function. There is no �correct� way of extending the speed function; yet it would 

be desirable if the extended speed function preserves the signed distance property of the 

level set function. As discussed in [2, 13], this is equivalent to requiring that the extended 

speed function satisfies the following relation 

0=Φ∇⋅∇ extendedF                                                       (25) 

An alternative is to �re-initialize� the level set function to be the signed distance function 

of its zero level set by the following iteration as first proposed in [14, 15]. 
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( ( ))(1 | |)
(0, ) ( , )

sign t
t

τϕ ϕ
ϕ

= Φ − ∇
= Φi i

                                             (26) 

In image processing, often times we only concern about the zero level set. In these cases, 

it might be helpful to look at the alternative form of the level set formulation  

( ) 0F
t

δ∂Φ
+ Φ =

∂
                                                        (27) 

The above equation only changes the level set function values nearby the interface, and 

thus is similar to the idea of narrow banding as studied extensively in [16]. 
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Chapter 2 

Examples of Image Processing Techniques 

based on the Level Set Method 

Abstract-In this chapter, we will briefly describe some of the latest and most 

important image processing techniques based on the level set method. For 

image segmentation, the geodesic active contours and active contours 

without edges will be discussed. For image denoising, the anisotropic 

diffusion proposed by Perona and Malik and the method based on the total 

variation will also be presented. Furthermore, we derive a modified 

anisotropic diffusion as proposed by Perona and Malik and apply it to 

dynamic PET FDG brain imaging. We examine the effectiveness of 

removing noise especially in the first few minutes of the dynamic scan in 

which the images are very noisy. 
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1. Image Segmentation based on the Level Set Method 

Active contours without edges by Chan and Vese 

In [17, 18], Chan and Vese proposed the following variational model for segmentation of 

a bimodal image u 

1 2

2 2
1 1 2 2, ,

0 0

min ( ) ( ) ( 0)
c c

E u c u c lengthλ λ µ
Φ

Φ> Φ<

= − + − + × Φ =∫ ∫                 (1) 

The idea is to segment the image into two regions: inside and outside of the zero level set, 

with each region represented by a constant intensity value (c1 and c2). A penalty (tuned 

by the weight µ) on the length of the zero level set is added to ensure proper 

segmentation.   

This formulation leads to the following gradient descent PDE 

2
1 1 2 2( )[ ( ) ( ) ( ) ]

| |
div u c u c

t
δ µ λ λ∂Φ ∇Φ

= Φ − − + −
∂ ∇Φ

2                     (2) 

This approach can be easily extended to images that can be segmented into 2n regions by 

adding more level set functions and using the intersections of the level set functions to 

represent different regions. 
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Geodesic active contour 

Geodesic Active Contour model was first proposed in [19, 20]. In this model, they try to 

find a curve C that detects objects in an image u by minimizing �weighted� length of the 

curve 

min ( ) (| ( ( )) |)E C g u C s ds= ∇∫ .                                            (3) 

Here s is the arc length and g is often called an �edge detector function�, which is a 

positive and decreasing function of its argument such that it stops the curve evolution 

while edges are detected. The level set formulation of this problem by imbedding C as the 

zero level set of Φ  is shown to be 

| | ( ( )
| |

div g u
t

∂Φ ∇Φ
= ∇Φ )

∂ ∇Φ
                                                  (4) 

Notice that the speed function resembles the curvature term introduced in equation 19 of 

chapter 1. It is common to expand the divergence term in equation (4) and obtain the 

following alternative form 

Φ∇∇+










Φ∇
Φ∇

Φ∇=
∂
Φ∂ ,)( gdivug
t

                                  (5) 

It is also noticed that by modifying equation 5 in the following way, the detection of non-

convex objects could be made easier 

Φ∇∇+











+










Φ∇
Φ∇

Φ∇=
∂
Φ∂ ,)( gdivug
t

α                             (6) 
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The discretization of the above equation includes a mixture of hyperbolic and parabolic 

terms, and thus requires separate treatment of those terms. Please refer to [19-21] for 

more detailed discussion.  

2. Image De-noising Techniques based on PDE’s and the Level 

Set Method 

The anisotroic diffusion by Perona and Malik 

Anisotropic diffusion is a nonlinear smoothing technique, as opposed to the isotropic 

diffusion, which is exactly the heat equation applied to an image. In [22], Perona and 

Malik proposed one of the first anisotropic diffusion algorithm for de-noising an image u 

by evolving u according to the following PDE 

( ( ) )u div c u u
t
∂

= ∇ ∇
∂

                                                  (7) 

Here c is the diffusion coefficient. This PDE can be obtained by minimizing the 

following cost function 

min ( ) ( )E u f u d
Ω

= ∇∫ Ω                                               (8) 

The diffusion coefficient c can be written as a function of f: 
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'( )
( )

f u
c u

u
∇

∇ =
∇

                                                  (9) 

Image denoising cast in the form of energy minimization problem  

Let R be a linear operator and u  be a noisy image that we wish to recover. The 

recovered image u can be written in the form 

0

0u Ru η= +                                                       (10) 

Here η  is random noise with mean 0. A class of approaches for recovering u is looking at 

the following minimization problem by adding a penalty on the size of the gradient of the 

image 

∫ ∫ ∇+− dxuPdxRuu
u

)()(
2
1min 2

0 α                              (11) 

Here α is the weight of the penalty, and P is the penalty function. One of the earliest 

attempts to recover images with this variational formulation is in [23] where the penalty 

function is simply chosen to be the identity and the corresponding technique is called the 

total variation noise removal. The most interesting thing of this approach is that it results 

in an Euler-Lagrange equation that could be interpreted as motions under curvature for all 

level curves in the images.  
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3. A Modified Anisotropic Diffusion Applied to Dynamic PET 

FDG Brain Images 

As in the original anisotropic diffusion proposed by Perona and Malik [22], the 

formulation could be written in this form: 

          ( ) 









∇

∇

∇
=∇∇=

∂
∂ u

u
uf

divuucdiv
t
u )('

)(                                       (12) 

This only involves one image. In PET dynamic images, there are a series of images. For 

example, in FDG PET dynamic images, there are about a series of 20 time frames and 

each time frame is a 3D image of a brain acquired during that time period. The 3D image 

of a brain at any time frame has about 64 planes and each plane is an image of size 128 

by 128 or 256 by 256). Thus, in order to smooth PET dynamic images, the modified 

anisotropic diffusion should have the following features: 

It is able to smooth while preserving edges 

It has a variable smoothing property. We want it to smooth more in certain 

time frames where the images are noisy and less in the other frames. 

This is closely related to anisotropic diffusion in vector-valued image, yet we notice that 

there are some inherent differences. Firstly, different frames in the PET images do not 

carry the same amount of information. For instance, images obtained in the first few 

minutes in FDG PET contain mostly noise while the images obtained in the last few are 
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always much clearer. As a result, in PET dynamic images we hope to achieve an 

inhomogeneous smoothing across frames.  

The modified anisotropic smoothing model we will use comes from a heuristic extension 

of the original Perona-Malik model by replacing the gradient with the average gradient 

( ( ) )i
i

u div c u u
t

∂
= ∇ ∇

∂
                                                    (13) 

Here the subscript i refers to the i-th time frame, and u∇  is a properly defined average 

gradient of the image. This formulation has a variational form when the average gradient 

is defined in the following way  

1
1

1 1

1
1

m
m

m
m

n n

uuw w
x x

u
uuw w

x x

∂∂ 
 ∂ ∂ 
∇ ≡
 ∂∂ 
 ∂ ∂ 

"

# # #

"

                                                (14) 

Here w�s are the weights. In equation (14), we simply use the Frobenius norm for the 

average gradient. Under this choice the PDE equation (13) could be viewed as the 

gradient decent of the following variational problem 

1min ( ,..., ) (| |)mE u u f u d
Ω

= ∇∫ Ω                                           (15) 

This formulation leads to a modified anisotropic diffusion except for that now the weight 

appears in front of the divergence operator. We then notice that in order to get smoother 

images in the first few images, we have to smooth the images in different time scales. 
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Since the t in the proposed anisotropic diffusion is an artificial time, we then can absorb 

the weight into t and use different scales for different frames in implementation.  

In generating the results, we further replace the gradient defined above with simple 

weighted average as we could capture more of the edge information by simple weighted 

average. The reasoning is based on the observation that by using simple weighted average 

noise tends to cancel out when calculating the average gradient.   

The PDE can be implemented similarly as in the original scheme proposed by Perona and 

Malik 

1
, , , , , , ,( ) /n n n n n n n

i j i j N N i j S S i j E E i j W W i j U U i j D D i ju u t c u c u c u c u c u c u+ − ∆ = ∇ + ∇ + ∇ + ∇ + ∇ + ∇ ,
n

,
n

      (16) 

Here N, S, E, W, U, D stand for north, south, east, west, up, and down respectively and  

,

, 1,

(| |)n
N N i j

n n
N i j i j i j

C f u

u u u−

= ∇

∇ = −
  .                                                    (17) 

Similarly, we define the coefficients along the other five directions. As already 

mentioned in Perona and Malik�s original paper, this discretization is not exact for the 

original equation yet our experimentation shows that it performs well and compares to 

other less crude schemes. Another point is that this scheme also preserves the sum of 

image intensities of all pixels within each time frame and satisfies the maximum 

principle. 

We applied this algorithm to PET images of injured brains (n=8). After the images were 

processed, regions of interest (ROIs) ranging from 9 to 13 pixels were drawn in the 

hemisphere contralateral to the lesion. Both the mean and the percent standard deviation 
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(percent SD) were computed within the ROIs for all time frames, before and after 

application of the algorithm. Percent SD of pixel values within ROI was calculated. Table 

1 shows that the mean value within the ROIs remained the same while the Percent SD 

decreased significantly. These findings were consistent in all eight studies. The algorithm 

produced images that yielded smoother time activity curves and lower Percent SD at all 

time frames.  

    

Table 1 Comparison of % SD of Original and New Images at Various Times 

 45 sec 7 min 37.5 min 

Original image 17.6 ± 11.5 7.3 ± 4.0 5.2 ± 1.2 

Smoothed image 4.7 ± 2.9 3.2 ± 1.9 4.0 ± 1.4 

 

In figure 1 and 2, we show the results in a particular plane of a control subject. We 

compare the images of different time frames of that specific plane before and after 

applying the modified anisotropic diffusion. It is clear from the figures that the first few 

frames now have much clearer pictures than before. 

The original image format is in CTI version 6 and all images are from subjects in the 

UCLA Brain Trauma Project. All results are computed in 3D and implemented using 

C++ on Sun Solaris Unix system. 
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Fig. 1: A dynamic brain FDG PET imaging before applying the (modified) anisotropic 

diffusion proposed by Perona and Malik. 
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Fig. 2: The same dynamic brain FDG PET imaging as in figure 1 processed by the 

(modified) anisotropic diffusion proposed by Perona and Malik. 
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Chapter 3 

Image Blending with Contrast Invariance 

Abstract�This chapter presents a new method for image blending. The 

proposed model is based on matching the gradient fields of two images. We 

first define equivalent classes of images in which images are considered 

equivalent under similarity group actions. The advantage of the approach is 

that images are identified by their relative contrasts and thus is scale free. 

By modifying the group actions, we examine different models under 

different choices of equivalent classes. The corresponding Euler-Lagrange 

equations associated to these models are derived. Fast and efficient solvers 

employing the Additive Operator Splitting (AOS) scheme will be reviewed. 

The proposed models are tested on several test images as well as real brain 

MRI and PET images from normal control subjects.  
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1. Introduction 

The mathematical formulation and theories of objects, shapes and images have been 

studied extensively for a long time in computer vision, statistics, geology, biomedical 

science and image processing literature. In this chapter, we examine the issue of image 

blending and propose a new method for achieving image blending different from simple 

linear interpolation, or cross dissolving.  

The technique of linear interpolation (cross dissolving) for image blending between two 

images f and g on a spatial domain Ω in R2 could be viewed as minimizing a common 

choice of cost function-the sum of squared difference-between two images 

∫
Ω

−= dxgfgfCost 2)(),( .                                                  (1) 

Minimizing this energy with respect to f simply gives us a linear interpolation between 

images f and g. 

Although this cost function is the most direct and commonly used one, it is definitely not 

the best and the only choice. First, it is not scale invariant. If we rescale one of the images 

then we obtain a different cost function. Moreover, two images that only differ in scaling 

are considered different under this cost function. In this chapter, we will propose different 

cost functions from equation (1) that take into account the equivalence of images. 
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2. Description of the Model 

A natural way of defining “equivalent” images 

We want to define differences between images in a way that the difference is defined in 

terms of equivalent classes of images. Difference between two images will only be 

nonzero when they do not belong to the same class. But how do we define equivalence? 

Human perception of an image depends mostly on the contrast of the image. Areas with 

high contrast are perceived as boundaries of objects while areas with more homogeneous 

intensities are often viewed as inside an object. So our goal is to construct cost functions 

that only take into account the relative change in the intensity values of images.  

Let us first look at the following definition of equivalence. We consider two images 1I  

and 2I  to be equivalent if and only if there exist real numbers  and  such that the 

following holds 

1 0k > 2k

1 1 2 2( ) ( ) , .I x k I x k x= + ∀ ∈Ω                                         (2) 

So the similarity should include translation (k2) and rescaling (k1) of the intensities. We 

could argue then that we would generalize the definition in equation 2 by relaxing our 

previous restrictions on . By allowing negativity of , we arrive at a second definition 

of equivalence.  

1k 1k

Now we need to endow these new definitions with a proper cost function such that it is 

always non-negative and is zero only between images in the same class. Let two images f 
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and g be in Ω, and we consider the following inequality that is based on Cauchy-Schwarz 

inequality 

2 2 ( )f dx g dx f g dx 0∇ ∇ − ∇ ∇ ≥∫ ∫ ∫ i                                 (3) 

It is easy to see that the equality holds only when these two images are equivalent in the 

sense of equation (2). The reason of looking at this inequality is that it does not depend 

on the scale of the image, which is exactly what we wish for. In order to apply this 

equality to our space, we need to restrict our images to the Sobolev space 1( )H Ω . From 

now on, all images are assumed to be in the space 1( )H Ω . Moreover, constant images are 

excluded and the reason will become evident later.  

A scale-free cost function between two images  

 We notice that the inequality (3) is closely related to the following minimization problem 

and a metric can be defined in the sense of equation 2 (allowing negative k1). 

Given two images f and g, find c such that the following energy E is 

minimized 

2min ( ) | |
c

E c f c g dx= ∇ − ∇∫  .                                           (4)  

By expanding the integral it is easy to show that the energy is minimized when 

 
2

( )

| |

f g dx

g dx

∇ ∇
=

∇
∫
∫
i

c                                                       (5) 
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and the minimum is just: 

2
2 2 2 2

2

[ ( ) ]
{ [ ( ) ] }

f g dx 2f dx f dx g dx f g dx g dx
g dx

∇ ∇
∇ − = ∇ ∇ − ∇ ∇ ∇

∇
∫∫ ∫ ∫ ∫
∫
i

i ∫

2

. (6) 

Before moving on, we need the following lemma that is again just a restatement of 

Cauchy-Schwarz inequality (or Minkowski inequality): 

Lemma:  

2 1/ 2 2 1/ 2 2 1/( | | ) ( | | ) ( | | )f dx g dx f g dx∇ + ∇ ≥ ∇ +∇∫ ∫ ∫ .                   (7) 

We now are ready to propose a cost function to quantify the distance dist(f, g) between 

two images f and g by normalizing the energy defined above (equation 4) such that the 

difference does not depend on the scale of f  

2 1/ 2 2
1/ 2

2 1/ 2 2 2

( | | ) [ ( ) ]
( , ) min (1 )

( | | ) | | | |c

f c g dx f g dx
dist f g

f dx f dx g dx

∇ − ∇ ∇ ∇
= −

∇ ∇
∫ ∫
∫ ∫ ∫

i
$

∇
         (8) 

Furthermore, we can show that this distance function is a metric in the sense of equation 

2 allowing negativity of k1. 

Proof 

Notice that the distance is symmetric with respect to f and g. Moreover, it is always non-

negative and is zero if and only if f and g are equivalent image classes. Thus we only 

need to show the triangular inequality to finish our proof. That is, we have to prove the 

following inequality for each pair of f and g: 

 30



( , ) ( , ) ( , )dist f g dist g h dist f h+ ≥                                   (9) 

Let  

2
1 min | |

c
c f c g= ∇ − ∇∫ dx

h dx

h dx

h

,                                                 (10) 

2
2 min | |

c
c g c= ∇ − ∇∫ ,                                                 (11)  

2
3 min | |

c
c f c= ∇ − ∇∫ .                                                 (12)  

and k be such that 

 2k g c∇ =∇ − ∇ .                                                  (13) 

We have 

2 1/ 2 2 1/ 2 2 1/
3

2 2

( | | ) min( | | ) min( | ) | )
c c

c c 2f c h dx f c h dx f g k dx
c c

∇ − ∇ = ∇ − ∇ = ∇ − ∇ + ∇∫ ∫ ∫  

(14) 

Now take c c  and recall that 2 1c= 1 2

( )

| |

f g dx

g dx

∇ ∇
=

∇
∫
∫
i

c .  We obtain 

2 1/ 2 2 1/ 2 2 1/ 2 2 1/
3 1 1 1 1

2 1/ 2
2 1/ 2 2 1/ 2

1 22 2 1/ 2 2 1/ 2

2
2 1/ 2

1

( | | ) ( | ) | ) ( | | ) ( | | )

( | | )
( | | ) ( | | )

( | | | | ) ( | | )

( | |
( | | )

f c h dx f c g c k dx f c g dx c k dx

f g dx f dx
f c g dx g c h dx

f dx g dx g dx

f dx
f c g dx

∇ − ∇ ≤ ∇ − ∇ + ∇ ≤ ∇ − ∇ + ∇

∇ ∇ ∇
= ∇ − ∇ + ∇ − ∇

∇ ∇ ∇

∇
≤ ∇ − ∇ +

∫ ∫ ∫ ∫

∫ ∫∫ ∫∫ ∫ ∫

∫∫

i

2

1/ 2
2 1/ 2

22 1/ 2

)
( | | ) .

( | | )
g c h dx

g dx
∇ − ∇

∇ ∫∫
(15) 
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 Now divide both sides by 2 1/( | | ) 2f dx∇∫  and we get the desired inequality.  

From the metric to our models 

Now we could state the following models corresponding to the distance function defined 

above. We are going to propose three different models. The difference between the first 

two models is whether we allow the negativity of k1 in equation (2). The third of them 

will be a further generalization of the first two. Each one of them has slightly different 

properties and leads to its own partial differential equation. These equations are very 

interesting in their own rights and are closely related to the heat equation.    

For two images f and g in Ω, we look at the following minimization problems to match 

the gradient field of f to the gradient field of g: 

Model A 

2 2min ( ) ( )
f

E f f dx g dx f g dx= ∇ ∇ − ∇ ∇∫ ∫ ∫ i .                  (16) 

It is easy to see that this model transforms f to another image equivalent to g in the sense 

of equation (2). 

Model B 

2 2min ( ) | | | | ( )
f

E f f dx g dx f g dx= ∇ ∇ − ∇ ∇∫ ∫ ∫ i 2 .            (17) 

This model is different from model A in that we allow negative values of k1 in equation 

(2) in the definition of equivalent images.  
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Model C 

We propose a third model that is even more nonlinear by applying the absolute function 

to the integrand of the last term on the right hand side of equation (17). It also turns out to 

be the most interesting of the three models. By equivalent class in this space we mean 

that the following cost function between two images is 0: 

2 2min ( ) | | | | ( | | )
f

E f f dx g dx f g dx= ∇ ∇ − ∇ ∇∫ ∫ ∫ i 2 .                 (18) 

It is easy to see that images that are equivalent in the sense of equation (16) and (17) are 

also equivalent in equation 18 but not vice versa. 

3. Euler-Lagrange Equations and the Corresponding Gradient 

Descent Time Dependent Partial Differential Equations 

 The Euler-Lagrange equations associated with these models are presented in the 

following 

Model A:  

2 2| | / | |g dx f dx f g− ∇ ∇ ∆ + ∆ =∫ ∫ 0                                              (19) 

Model B:  

2( | | ) ( ) 0g dx f f g dx g− ∇ ∆ + ∇ ∇ ∆ =∫ ∫ i                                            (20) 
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Model C:  

2( | | ) ( ) (sgn( ) ) 0g dx f f g dx div f g g− ∇ ∆ + ∇ ∇ ∇ ∇ ∇ =∫ ∫ i i                   (21) 

A common way of solving these Euler-Lagrange equations is to introduce an artificial 

time t and let the initial image 0f  be f at t=0 and to employ the gradient descent that 

corresponds to the following time dependent partial differential equations to compute the 

steady state solutions.  

Model A:  

2 2| | / | |f g dx f dx f g
t

∂
= ∇ ∇ ∆ −∆

∂ ∫ ∫ .                                        (22) 

Model B:  

2( | | ) ( )f g dx f f g dx g
t

∂
= ∇ ∆ − ∇ ∇ ∆

∂ ∫ ∫ i .                                     (23) 

Model C:  

2( | | ) ( | | ) (sgn( ) )f g dx f f g dx div f g g
t
∂

= ∇ ∆ − ∇ ∇ ∇ ∇ ∇
∂ ∫ ∫ i i .                 (24) 

The models we propose so far have a major disadvantage. Since they are not properly 

normalized, images are collapsed to constant images when time goes to infinity. In order 

to avoid this problem, we could normalize the energy so that the energy is always 

between 0 and 1 (this is exactly why we exclude constant images). In other words, we 

could also look at the following modified versions of our models.  
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Model A’ 

2 2
min ( ) 1

( | | | | )f

f g dx
E f

f dx g dx

∇ ∇
= −

∇ ∇
∫

∫ ∫
i

1/ 2
.                                    (25) 

The gradient descent PDE is: 

2
2

( ) | |
| |

f g dxf 2| |f g f dx g
t f dx

∇ ∇∂
= ∆ −∆ ∇ ∇

∂ ∇
∫ ∫ ∫∫
i

dx .                    (26) 

Model B’ 

2

2 2

( )
min ( ) 1

| | | |f

f g dx
E f

f dx g dx

∇ ∇
= −

∇ ∇
∫

∫ ∫
i

.                               (27) 

The gradient descent PDE is: 

2
2

2

( )
{ ( ) } | |

| |

f g dxf 2| |f f g dx g f dx g dx
t f dx

∇ ∇∂
= ∆ − ∇ ∇ ∆ ∇

∂ ∇
∫ ∫ ∫ ∫∫
i

i ∇ .        (28) 

Model C’ 

2 2

| |
min ( ) 1

( | | | | )f

f g dx
E f

f dx g dx

∇ ∇
= −

∇ ∇
∫

∫ ∫
i

1/ 2
                                  (29) 

The gradient descent PDE is: 

2 2
2

| |
( sgn( ) ) | | | |

| |

f g dxf f div f g g f dx g dx
t f dx

 ∇ ∇∂  = ∆ − ∇ ∇ ∇ ∇ ∇
∂ ∇  

∫ ∫ ∫∫
i

i .   (30) 
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4. Implementation 

In this section, the Adaptive Operator Splitting (AOS) scheme-a semi-implicit scheme-

will be discussed. . The fully explicit scheme spends a short time in each iteration, but it 

is only conditionally stable and takes many iterations to reach the steady state solution. 

On the other hand, the semi-implicit scheme is unconditionally stable and takes fewer 

iterations to reach the steady state solution. The same scheme is used in later chapters for 

solving image registration problems with the Horn and Schunck regularization. 

The fully explicit scheme can be easily constructed by using central difference scheme 

for terms on the right hand side, which are the spatial derivatives of the equation, and 

forward Euler discretization on the time derivative. Let us write down the scheme for 

implementing model C�. Since the denominator on the right hand side is always positive, 

by ignoring the denominator we still have a gradient descent time evolution PDE. That 

means the PDE we solve looks like 

2

| |
( sgn ( ) )

| |

f g dxf f div f g g
t f dx

∇ ∇∂
= ∆ − ∇ ∇

∂ ∇
∫
∫
i

i ∇ .                       (31) 

 First let us recall the standard notations for finite differences. Let h be the spatial step 

size, and ( , ) ( , )i jx y ih j= h  be the grid points ( 0 , 1i j m≤ ≤ − ). Let , ( , ,n
i j i j )f f n t x y= ∆  

be an approximation of ( , , )f t x y . The usual finite difference operators are then 
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0 1, 1,( )x
i j i j / 2f f f+ −∆ = − h 1, ,( )x

i j i j, /f f f+ +∆ = − h , 1,(x
i j i j, ) /f f f− −∆ = − h .    (32) 

Similar operators are defined for approximating the derivatives with respect to y. The 

Laplacian of f at point ( , )i jx y  then could be approximated by 

,

x x y y

i j
f f ff

h h
+ − + − f∆ −∆ ∆ −∆

∆ = + .                                   (33) 

Using these notations, we calculate the following coefficients at time step n by imposing 

the Neumann boundary conditions 

0 , 0 , 0 , 0 ,
,

| | |n x n x y n
i j i j i j i j

i j

|yf g dx f g f g∇ ∇ = ∆ ∆ + ∆ ∆∑∫ i i i

y n

,                 (34) 

2
0 , 0 , 0 , 0 ,

,

| | |n x n x n y n
i j i j i j i j

i j

|f dx f f f f∇ = ∆ ∆ + ∆ ∆∑∫ i i .                     (35) 

Then the fully explicit scheme computes the solution 1
,
n

i jf +  at next time level by  

, , 0 , 0 , 0 , 02

| |
sgn ( )

| |

n
t n n x n x y n y

i j i j i j i j i j i j i jn

f g dx
, ,f f f g f g

f dx+

∇ ∇
∆ = ∆ − ∆ ∆ + ∆ ∆ ∆

∇
∫
∫

i
i i g .   (36) 

Notice there is a natural CFL type restriction on the step size in the form that 2

t
h
∆  should 

be bounded by a constant which depends on the dimensionality of the problem. 

Semi-implicit scheme 

The AOS scheme was used in image processing by Weickert for efficiently solving non-

linear diffusion filtering problem [19-21, 24-29]. The main idea is to replace the 
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Laplacian operator on the right hand side at the current time step with the next step that 

results in an implicit scheme. To be more precise, let the 

vector  be a lexicographical ordering of the values at the grid 

points at time step n and  be the usual 3-point finite difference approximation operator 

of the second order derivative along the l-th space coordinate. We denote the finite 

difference approximation of 

0,0 0,1 1, 1( , ,..., )n n n n
m mf f f f − −=

%

lA

2

| |

| |

n

n

f g dx

f dx

∇ ∇

∇

i∫
∫

 described above by nα  and let us also define 

the vector by nF
%

0,0 0,1 1, 1( , ,..., )n n n n
m mF F F F − −=

%
                                                (37) 

where  

, 0 , 0 , 0 , 0 ,sgn ( )n x n x y n y
i j i j i j i j i j i jF f g f g= ∆ ∆ + ∆ ∆ ∆i i , g .                       (38) 

The discretization now reads 

1
1

1

n n d
n n

l
l

f f A f F
t

α
+

+

=

− n= −
∆ ∑

% % % %
 ,                                            (39) 

or  (
1

1

1

d
n n n

l
l

)nf I t A f t Fα
−

+

=

 = − ∆ −∆ 
 

∑
% % %

i i .                                      (40) 

The trick of AOS is to replace the above problem by solving the following instead: 

( ) (11

1

1 d
n n n

l
l

)nf I d t A f t F
d

α
−+

=

= − ∆ −∆∑
% % %

i i i .                                       (41) 
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This smart splitting has the same local truncation error as the original semi-implicit 

scheme and is of order one in time and order two in space. Moreover it is unconditionally 

stable. By splitting the operator into a coordinate-by-coordinate fashion we now only 

need to invert a tri-diagonal matrix along each coordinate and this allows an 

implementation by the Thomas algorithm. From our experience a speed-up of at 

least a magnitude of 10 compared to the fully explicit scheme could be achieved by using 

the AOS scheme presented here. 

2(mΟ )

It should be noted that the AOS scheme could be applied to solve any inhomogeneous 

heat equation with a source term, and thus is used in later chapters to solve problems that 

involves the Horn and Schunck type regularization when computing deformation field in 

image warping. 

5. Results 

Test of the basic models 

We will present our results on Model A, Model B and Model C�. For results presented in 

this section all calculations were performed on a 128 by 128 grid and the spatial step size 

h is 1.    

Model A 

We test this model by blending a circle to an ellipse. The test image pair is generated in 

the following way: 
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 Target image g: 

2 2 2 2( , ) 3( 60.5) ( 60.5) 30 3( 60.5) ( 60.5) 30
( , ) 0 .

g x y x y when x y
g x y else

= − − + − + − + − ≤

=
 

The initial image 0f : 

2 2 2 2
0

0

( , ) ( 80.5) ( 80.5) 30 ( 80.5) ( 80.5) 30
( , ) 0 .

f x y x y when x y
f x y else

= − − + − + − + − ≤

=
 

The image f is shown in Fig. 1(a). And the intermediate images during blending process 

are shown in Fig. 1(b)-(d). We notice that along the blending process the values outside 

the circles also change with time, which does not happen in simple interpolation 

technique. This phenomenon generates a flow-like motion that gives novel visual effects. 

These effects might be closely related to the resemblance of the governing PDE to the 

heat equation. 

 40



 

Fig. 1: An image blending sequence from a circular shape in (a) to an ellipse. (b), (c), and 

(d) are the intermediate images along the sequence.  

Model B 

For this model we chose to use simple distance functions for both target and initial image. 

The target image g is the distance function to the point (30.5, 70.5) while the initial image 

f at t=0 is another distance function to the point (80.5, 20.5). The results are shown in Fig. 

2. The initial image f is Fig. 2(a). The intermediate images are Figs. 2(b)-(d).  Notice that 

the final image Fig. 2(d) is actually the inverse image of g instead of g itself . 
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Fig. 2: An image blending sequence from the initial image (a): the distance function to the 

point x = 80.5, y = 20.5 to the target, the distance function to the point x  = 30.5, y = 70.5. (b), 

(c), and (d) are the intermediate images along the sequence. Notice that the image is actually 

transformed to the reverse of the target image. 

Model C’ 

  For this more complicated model we turn to the following pair of images that has two 

distinct objects in each of the image. The template image g is generated in the following 

way: 
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2 2 2 2

2 2 2 2

( , ) ( 34.5) ( 74.5) 30 ( 34.5) ( 74.5) 30

( , ) ( 80.5) ( 30.5) 20 ( 80.5) ( 30.5) 20
( , ) 0

g x y x y when x y

g x y x y when x y
g x y else

= − − + − + − + − ≤

= − − + − + − + − ≤

=

 

We define the initial image 0f  by: 

2 2
0

2 2 2 2
0

0

( , ) 0 ( 44.5) ( 84.5) 30

( , ) ( 85.5) ( 35.5) 40 ( 85.5) ( 35.5) 20

( , ) 20 .

f x y when x y

f x y x y when x y

f x y else

= −

= − − + − + − + − ≤

=

+ − ≤

 

These test images are such that there are two corresponding objects in the images and we 

would like to see if the initial image could be transformed into an image with the same 

two objects but with different orientation combination from the template image. The 

initial image f is shown in Fig. 3(a). The final result is shown in Fig. 3(d). We again plot 

the intermediate images in Fig. 3(b) and (c). In order to compare the result to the target 

image g, we also plot g in Fig. 4.  

 By comparing the final result Fig. 3(d) to the template image Fig. 4, we notice that one 

of the objects has been flipped along the x-y plane while the relative contrast of these two 

objects remains the same. This is exactly what we expected to see. Interestingly enough, 

if we use a slightly different initial image to f, we could get different final images with 

various orientation combinations of the two objects (results not shown here). 

 This experiment suggested that this model depends heavily on the initial image and thus 

it is hard to predict what final image will be by simply looking at the initial image. At 

first sight this seems to limit the possible application of this model. Yet as shown in the 
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next section, model C� actually provides very promising results when we test it on real 

brain images.  

 

Fig. 3: An image blending sequence from the initial image (a) to the target image (shown 

in the next figure Fig. 4. (b), (c), and (d) are the intermediate images along the sequence. 

Notice that the initial image is transformed such that one of the two objects in the image is 

reverse of the target image (shown in Fig. 4). 
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Fig. 4: The target image in figure 3. 

Extension of the basic models and results from biomedical images 

Simple modification of model C� allows us to combine features of two images and to 

generate a hybrid or fusion image. We consider denoising an image 0f  by solving f in the 

following problem: 

2 2
0

1min ( ) ( ) 1 | | ( | | | | )
2

E f f f dx c f g dx f dx g dx2 1/ 2 = − + − ∇ ∇ ∇ ∇ ∫ ∫ ∫ ∫i .  (42) 

The PDE that governs this minimization problem is: 

2 2
0 2

| |
( ) ( sgn ( ) ) | | | |

| |

f g dxf f f f div f g g f dx g dx
t f dx

 ∇ ∇∂  = − + ∆ − ∇ ∇ ∇ ∇ ∇
∂ ∇  

∫ ∫ ∫∫
i

i  

 (43) 
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The above variational problem could be viewed as a �prior-based� image denoising. The 

idea is that 0f  is a corrupted image that we would like to recover. Furthermore, we know 

that  contains the same information but we do not know exactly how the intensity 

values relate in these two images. By applying the above model we seek to find a 

recovered image that is close to g while constraining the result to be not far away from 

the initial image 

g

0f . 

In order to test this modified model, we turn to biomedical imaging for test images. In 

biomedical imaging, images of different modalities are often obtained for the same 

subject. This is especially true in brain imaging as different images could provide 

different information on brain structures and functions. Common imaging techniques 

available to brain imaging include Possitron Emission Tomography (PET), Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI). We chose to test our model 

on MRI and PET images.  

 6-Fluoro-Deoxy-Glucose (FDG) PET imaging and MRI imaging of the brain were 

obtained from a normal subject in the Brain Trauma Project at UCLA. The available 

sequences in MRI images include SPGR, T2, and T2-star. All MRI images were first co-

registered to PET using mutual information [30, 31] as the similarity measure. The 

mutual information between MRI and PET images were optimized using Powell�s multi-

dimensional search algorithm.   

To investigate the issue, we chose SPGR MRI images as the test images since SPGR 

images had the best spatial resolution and image quality. After MRI-PET co-registration 

was performed, plane 27 of SPGR images (left panel of figure 5) and PET images (right 
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panel of figure 5) were extracted. We then used MRI image as the initial image and the 

corresponding PET image as the template. The fusion image was calculated by 

minimizing the energy proposed in equation 42. The weight c of the regularizer is 

determined empirically. The final c used in this test was . The corresponding PDE 

was solved at t = 2 to get the final fusion image. The result is shown in figure 6. Note that 

the overall contrast of the fusion images is very much like that of the initial SPGR image 

while the shape of the gray and white matters resemble that of the corresponding PET 

image. 

62 10×

 47



 

 

 

Fig. 5: Left panel: the SPGR MRI brain image of a control subject. Right Panel: The 

PET FDG brain image of the same plane from the same subject.  

 

  Fig. 6: The hybrid image of the two brain images in figure 5. 
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Chapter 4 

Computational Anatomy and the Semi-

Lagrangian Level Set Method 

Abstract. In this chapter, we review the latest results of computational 

anatomy. Most recently, object warping in the computational framework is 

being formulated using diffeomorphisms generated through infinite 

dimensional group actions. We will give an overview of this approach. 

Secondly, we will briefly describe the semi-Lagrangian level set method. 

The semi-Lagrangian implementation of the level set method provides a 

theoretical link between the level set method and computational anatomy 

and is the foundation on which we will build our level set based object 

matching.  
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1. Introduction 

Computational anatomy [32, 33] is an emerging new discipline that deals with analyzing 

and making sense of the large collection and database of brain imaging. A fundamental 

problem in computational anatomy is image warping, or dynamically mapping one brain 

dataset to another through diffeomorphic transformation. In this paper, we will focus on 

the matching of anatomically important objects, which could be volumes, shapes, 

surfaces, curves, and points.   

Object warping is a challenging problem not only in computational anatomy but also in 

computer vision, pattern recognition as well as many other scientific fields. In the past 

decade, several strategies of non-rigid warping algorithms have been proposed that could 

be divided into two groups: landmark based and dense matching.  

Landmark matching involves first identifying user-defined landmarks that need to be 

matched.  By interpolating the discrete matching of the landmarks, one tries to obtain a 

dense diffeomorphism for the whole image. Dense matching starts by forming a cost 

function that is minimized when the objects are matched. In order to ensure smooth 

matching, a regularizing term on the deformation field is added.  

In this chapter, we will use the terms template and study to denote the images to be 

matched. Let us denote the template image as T(x) and the study image as S(x) which are 
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images on the spatial domain Ω ⊂ Rn. The problem of image warping is to find a 

displacement field u(x) at each point x such that a properly defined distance measure, 

which will be denoted by D(T,S,u), between the deformed template and the study is 

minimized. The displacement field is a vector field such that given any displacement field 

u the deformed template is given by T(x-u). The term displacement is used because it can 

be viewed as how a point in the template is moved away from its original location. The 

most common way to define the measure between the deformed template and the study 

image is based on the L2 norm 

21
( , , ) | ( ) ( ) |

2
.D T S u T x u S x dx

Ω

= − −∫                                  (1) 

Gradient descent of the corresponding Euler-Lagrange equation is often used to 

minimize this distance measure 

( , ) ( , ( , )), ( , ) [ ( ) ( )] | .x u
u x t f x u x t f x u T x u S x T

t −
∂

= = − −
∂

i∇           (2) 

The function f(x,u) (up to a sign), which is often called the force field or the body 

force, describes the derivative of the distance measure with respect to the displacement 

field u.  

Several models for regularizing the deformation field have been proposed. We will give 

an overview by looking at those with the most theoretical interests 
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2. Small Deformation Matching through Regularizer on the 

Displacement 

Hyper-elastic Matching 

In hyper-elastic matching [34, 35], the authors tried to draw analogy between image 

warping and deforming elastic plates. Under the assumption of linear elasticity, which 

holds for relatively small displacement field only, we arrive at the following equation that 

should hold at equilibrium 

( , ) ( ) ( ( , )) ( , ( , )).u x t u x t f x u x tµ µ λ∆ + + ∇ ∇ =i                             (3) 

Here µ and λ are the Lame constants. Due to this linear elasticity assumption, large-

magnitude displacements are severely penalized and thus hyper-elastic model is not 

suitable for problems in which large and highly nonlinear deformation is needed. 

The Horn and Schunck Functional 

Another big category of regularizers, originally in the optical flow problem, was based on 

the regularizer first proposed by Horn and Schunck in [36, 37]  

2
2

1

1( )
2

|| ||j

d

L
j

R u u
=

= ∇∑                                                             (4) 

This penalty term is well known to smooth isotropically across the discontinuities. Thus, 

it is not suitable to regularize optical flow since discontinuities in the velocity field often 
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exist on the boundary of moving objects. The same regularizing term for image warping 

was proposed in [38] and the term fast diffusion registration was used. 

Several variants of (4) have also been proposed to account for anisotropy. One of the 

earliest effort to account for anisotropy based on the Horn and Schunck functional is due 

to Nagel [39, 40] by smoothing less across image boundaries 

T
ii uIDuuR ∇∇∇= )()(                                                  (5) 

Here D(∇I) is a regularized projection matrix perpendicular to the gradient of the image 

I.  For detailed discussion on other variants of this regularizer, please refer to the review 

paper [41]) 

It should be noted that none of these ensures diffeomorphism although they are easier to 

compute for generating small deformation. 

3. Large Deformation through Diffeomorphisms by Infinite 

Dimensional Group Actions 

Formulations based on continuum mechanics 

As mentioned in the previous section, working on the displacement field itself will not 

gaurantee diffeomorphism.  In the past decade, many researchers have tried to establish 

rigorous theories based on continuum mechanics that ensure diffeomorphic 

transformation by working on the forward and inverse mapping directly (see [32, 33, 42-

56] and the references therein). 
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In summary, Let g-1(x)=x-u which models the deformation field, and G be the group 

which is formed by all the diffeomorphisms that map XΩ∈ to itself.  We now define the 

orbit (or mathematical anatomy) of an anatomical image I under the left action of group 

G  

{ }GggIIG ∈=⋅ :&                                                      (6) 

We need to define a distance between two configurations (denoted by ρ) on the orbit by 

quantifying the diffeomorphism needed to go from one configuration to the other. 

Moreover, we require this distance to be left-invariant with respect to the group action. 

Given the fact that these two configurations could be viewed as being generated from a 

reference element which could be taken to be any element on the orbit, the left invariance 

simply states that this distance is independent of the choice of this reference element. In 

mathematical terms, we require that 

'''' |)','(|),()',( IggIgIgI ggidgdgiddII ⋅⋅=⋅⋅= ⋅⋅==ρ              (7) 

Here g is the diffeomorphism that carries I to I�, and the second equality states the left-

invariance property of this distance. 

Using formulations borrowed from continuum mechanics, we can construct the distance 

by associating a path that links two elements in a mathematical anatomy. A path g in G is 

defined as a diffeomorphic flow in [0,1]  

[ ]( , ) ( ), 0,1t tg x t g x g G for t= ∈ ∀ ∈                                       (8) 

 A path g is linked to its velocity field vt by the following equation 
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( ) ( ( ))t t tg x v g x
t
∂

=
∂

                                                     (9) 

Once the forward path gt is defined, the inverse path is uniquely determined by 

1( ( ))t tg g x x− =                                                           (10) 

Let us first define D, the Jacobian operator, acted on a scalar function f is the row vector 

where the i-th element is the partial derivative of f with respect to the i-th spatial 

derivative 

i
i x

fDf
∂
∂

=)(                                                          (11) 

If f =(f1,  f2,�) is a multi-valued function, then the Jacobian operator acted on f is a 

matrix with the (i, j)-th element defined as 

( )
j

i
ji x

f
Df

∂
∂

=,                                                   (12) 

By differentiating the above equation with respect to t, we get 

).),,(()),,(()),,((

),()),,(()),,((0

1
1

11

ttxgvttxgDg
t

ttxgg

t
txg

x
ttxgg

t
ttxgg

i

i

i

−
−

−−

+
∂

∂
=

∂
∂

∂
∂

+
∂

∂
= ∑

                             (13) 

Thus we derive the relationship between the inverse map and the velocity 

1 1( ) ( ) ( )t tg x Dg x v x
t

− −
t

∂
= −

∂
.                                 (14) 
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As originally proposed by [53, 56], given a path g(x, t) and its associated velocity v(x, t), 

we define the energy of the path by 

∫ ∫ ∫
= = Ω

=
1

0

1

0

2 )(),(
t t

ttLt dxdtxLvxLvdtv                                (15) 

Here L is a differential operator acting on the velocity field. 

Following the discussion in [43], an intuitive way to understand these formulations is to 

start with a discretized path g in t∈[0, 1] (starting from the identity initially) associated 

with the incremental displacement field uk in the form 

)()()( 11 uiduiduidg kkk +⋅⋅⋅++= − &&&                              (16) 

tvu kk ∆=                                                            (17) 

Here vk is the average speed in k-th time interval  

We also associate the path with the following energy 

∑=
i

LivgE 2)(                                                           (18) 

From equation (16), we get 

11 −− =− kkkk gugg &                                                     (19) 

Now let ∆t goes to zero, equation (19) recovers equation (9), and the discretized energy 

(18) becomes the continuous version in equation (15). 
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Building metric on diffeomorphisms 

Furthermore, let us define the momentum p by 

�( , ) ( ) ( )t .tp x t p x L Lv x= =                                        (20) 

Here �L is the adjoint operator of L. It can be shown that diffeomorphisms could be 

ensured under mild restrictions on the operator L (see [57]). We then have the following 

theorem which could be found in [42, 58]. 

Theorem  

Let g0 and g1 be elements in G, the function d defined as 

1
2

0 1
0

1 1
0 0 1 1

1
2

: ,
( , ) inf ( )

L
tt t t t t

t
g Dg v g g g gt

d g g v x dt
=

− −
= =

∂ =− = =∂

 
 =
 
 

∫                        (21) 

is a left-invariant metric on G. Moreover, the geodesic satisfies the Euler-Lagrange 

equation 

( ) ( ) (( ) )( )
i

t
t

t t t t ti i
dp v p div v p v p
dt

+ ∇ + + ∇ =∑i 0.                      (22) 

The left-invariance of this metric comes from the fact that any path that link g0 and g1 

also links g·g0 and g·g1 for any g in G. For a proof and more detailed discussion, please 

refer to [42] and the references therein. 
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The above equation is sometimes called the Template Matching Equation, and could be 

viewed as a generalized Euler equation or momentum equation of the Navier-Stokes 

equations. In the (incompressible) Euler equation for a perfect fluid, the kinetic energy is 

∫ ∫ ∫
Ω

=
T T

ttt dxdtvvdtv
0 0

2 , ,                                               (23) 

or equivalently, we could assume the differential operator L is chosen to be the identity 

and the momentum is proportional to the velocity itself. Under this fluid dynamics set up, 

and consider an incompressible flow with divergence-free velocity field (and thus 

volume-preserving) 

0)( =tvdiv                                                                    (24) 

The relation in the theorem reduces to the ordinary Euler equation encountered in the 

Navier-Stokes equation 

pressurevv
t
v

tt
t ∇=∇⋅+

∂
∂

)(                                             (25) 

To summarize, we introduce the differential operator L and generalize the Euler equation 

in such a way that we relax the volume-preserving constraint while diffeomorphism could 

still be guaranteed by imposing minor restrictions on the operator L. For a complete 

treatment in this direction, please refer to the classic text in mechanics [59] and also [60]. 
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Sufficient conditions for diffeomorphism 

In [57], the author describes the conditions on the differential operator L that ensures a 

diffeomorphism on the flow. To summarize, in 3D the proper space in which the velocity 

field vt should lie to guarantee diffeomorphic flow is the product space [ , 

where the Sobolev space W  is the closure of C  under the norm 

32,3
0 )](ΩW

)(2,3
0 Ω )(2,3

0 Ω

2/1

3

2
)(

||2,3
0 










= ∫∑

Ω ≤
Ω

a

a
W

dxfDf                                     (26) 

Thus, diffeomorphisms could be guaranteed if the L-norm of the velocity field is finite 

and dominates the above norm component-wise.  

Building metric on mathematical anatomy 

With the theorem (21), we now can construct a metric satisfying symmetry and triangular 

inequality between two elements I1 and I2 on mathematical anatomies  

2/1
1

0

2

),(,

21

)(inf

|),(),(

0121
11

21














=

=

∫
=

===−=
∂
∂

⋅=

==
−−

t

t
Lt

idggIIvDgg
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giddII
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                                 (27) 

Choices of the differential operator L 

Different choices of L have been proposed. For example, the viscous fluid matching 

proposed by Christensen [61-63] used the Navier-Stokes formulation, which can be 
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viewed as the linear elastic operator applied to the velocity field. The advantage of this 

method is that it allows large-magnitude deformations since stress constraining the 

deformation relaxes over time. The partial differential equation that describes the 

deformation under this model could be written in the following form 

( , ) ( ) ( ( , )) ( , ( , )).v x t v x t f x u x tµ µ λ •∆ + + ∇ ∇ =                          (28) 

Here v is the velocity field and is related to the displacement field u in a Eulerian 

framework.  

Another closely related choice that is widely used by the Miller�s school [32, 42, 52] is 

( ) ,mL a bI m= − ∆ + ∈' .                                                         (29) 

This category of the operators is self-adjoint, and acts separately on each dimension of 

the velocity field. Furthermore, the inverse of the operator L�L could be viewed as a low-

pass filter, and thus is a smoothing operator. In this dissertation, we follow the idea of 

Miller�s school and numerical examples are also carried out using this choice of operator. 

Numerically, Fourier transform techniques will be employed to inverse this operator, and 

will be described in more details in the next chapter.  

Gradient descent, PDE, and smoothing filter 

The concept of applying regularization could be closely tied to smoothing filter applied to 

the force field as discussed in [43, 48].  
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4. The semi-Lagrangian Level Set Method 

The original level set method for moving an interface is a Eulerian framework. However, 

this Eulerian reference limits the application of the level set method in computational 

anatomy and related fields where the underlying grid deformation is the main interest. In 

order to overcome this difficulty, the semi-Lagrangian level set method as proposed in 

[64-66] should be employed rather than the original level set method.  

The main concept in the semi-Lagrangian approach is backtracking the front instead of 

forward tracking. In other words, for each point on the front at time step n, we look at 

where this point was at time step n-1. Because of this backtracking nature, the semi-

Lagrangian implementation shares the same advantage as the original level set method, 

namely, allowing topological changes.  

The following is an intuitive derivation of the fundamental evolution equation in the 

semi-Lagrangian formulation. For any level set function φ(x), we calculate φn+1(x) at time 

step n+1 by linking it to the level set function in the previous time step φn(x) using the 

backward tracking displacement field un in the following way 

                                                     (30) )()(1 nnn uxx −=+ φφ

For a concrete example, let us consider minimizing the area enclosed by the zero level set 

of the level set function 

       ( )∫
Ω

− dxuxH
u

)(min φ                                                     (31) 

The PDE for u reads 
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( ( )) ( )du x u x
dt

δ φ φ u= − ∇ −                                             (32) 

This relation implies that, with time discretization ∆t, the displacement field un at time 

step n is obtained by the following equation 

( ) nn
n

t
u φφδ ∇=
∆

                                                    (33) 

As in the original level set formulation, we can extend this equation to every point on Ω 

other than the zero level set by the following intuitive way 

        
n

nn

t
u

φ
φ

∇
∇
⋅=

∆
1                                                      (34) 

To explain why this is the right extension, we can re-derive the standard level set 

formulation for minimizing the area enclosed by the zero level set in which the level set 

function undergoes motion with constant speed -1. First, let us expand φn+1(x) up to first 

order by using equation (34)   
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                               (35) 

Now let ∆t goes to zero, equation (35) becomes the standard level set evolution equation 

with constant speed �1! 

0=∇−
∂
∂ φφ

t
                                                        (36) 
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Using similar arguments, every standard level set formulation has now an equivalent 

semi-Lagrangian formulation. In fact, given any speed function F, the corresponding 

evolution equation in the semi-Lagrangian form is simply 

0=
∇
∇

⋅+
φ
φF

dt
du                                               (37) 

If the speed function is available only on the zero level set, then the alternative evolution 

equation is 

( ) 0=∇⋅+ φφδ F
dt
du                                        (38) 

For solving this equation numerically, the standard technique for discretizing Hamilton-

Jacobi equations could be used. For a concrete example, let us outline the first order 

upwind scheme for semi-Lagrangian level set method in the case of constant speed 

motion with speed minus one. In this case, we can use the following first order upwind 

scheme on the x derivative 

max( , , 0)x x xD Dφ φ− += − φ                                               (39) 

 

 63



1 Initialize φ, pick time step ∆t and set Φ0 = φ  

2 At time step n, obtain the backward tracking displacement u by solving 

the following equation  

n

n

dt
du

Φ∇
Φ∇=                                                        (40) 

3 Solve Φn+1 by interpolation 

)()(1 uxx nn −Φ=Φ +                                                   (41) 

Go back to main loop 

Motions under other speed functions could also be implemented in the semi-Lagrangian 

framework. In the following, two numerical examples showing front merging and 

breaking with constant speed 1 or �1 are presented.  

 

 

Fig. 1: Front merging of two circles with constant speed implemented by the semi-

Lagrangian level set method. 
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Fig. 2: Front breaking into two pieces with constant speed implemented by the semi-

Lagrangian level set method.  

The modified semi-Lagrangian implementation 

In order to properly track the underlying grid deformation, the semi-Lagrangain 

implementation should be further modified by tracking the displacement field all the way 

to the initial data. In other words, instead of using the interpolated image at each step to 

calculate the next step, we store and increment the displacement field that allows us to 

track backward, at each time step, the displacement field with respect to the initial image. 

Thus, in computational anatomy, the semi-Lagrangain formulation we should adopt is 

slightly different from equation (37) and (38) in that we now have dependence of the 

displacement of u on the right hand side of the evolution equation  

)( uxf
t
u

−∇⋅=
∂
∂ φ                                                  (42) 

Here f will be called the �body force� or �force field� as this describes the direction along 

which the displacement field should follow. This equation should be interpreted in the 

sense of equation (37) rather than equation (38), due to the fact that the body force only 

acts on the objects being matched that are represented by zero level sets.  
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The extension of the body force outside of the zero level set depends on how the 

underlying displacement filed is being modeled. We will essentially adopt the strategy of 

building diffeomorphisms through infinite dimensional group actions developed in this 

chapter. Starting from the next chapter, we will examine different cost functions that 

result in the corresponding force fields for matching different types of objects in both 2D 

and 3D. We will also examine minimization problems based on these cost functions that 

allow us to extend the body force based on the formulations discussed in this chapter and 

calculate the metric distance between objects.  
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Chapter 5 

Two-Dimensional Object Matching using the 

Level Set Method 

Abstract-In this chapter, we examine the object matching problem in 2D 

using the level set method. Objects to be matched will be represented by 

level set functions and cost functions for matching different types of objects 

will be discussed. Semi-Lagrangian implementationof the level set method 

will be employed. In particular, we will link the level set based object 

matching to diffeomorphisms generated by infinite group actions. The 

modified Beg�s algorithm based on variation with respect to the velocity 

field will be used to solve the corresponding time dependent partial 

differential equations.  

 67



1. Shape Matching 

Let us start with shape matching. A shape could be represented by a level set function 

with the boundary of the shape being the zero level curve of the level set function 

(positive value inside the shape and negative outside). Throughout this paper we will use 

the following notation. The shapes in the template image will be denoted by the level set 

functions ϕ1,ϕ2,�,ϕn and the corresponding shapes in the study image by φ1,φ2,�, φn. 

Here n is the total number of pairs of shapes to be matched. 

One Pair of Overlapping Shapes 

In order to derive a suitable distance measure that is always non-negative and only takes 

the value zero when the two level set functions match, we minimize the symmetric 

difference of the two level set functions (see [67, 68] for similar approaches). 

1 1( , , ) ( ( ))[1 ( ( ))] ( ( ))[1 ( ( ))] .over t tD T S t H x H g dx H g H x dxφ ϕ ϕ φ
Ω Ω

− −= − + −∫ ∫          (1) 

    The force field of this distance measure is 

1( , ) [1 2 ( ( ))] ( ( )) ( ).over t tf x t H x g gφ δ ϕ ϕ 1− −= − ∇                         (2) 

Here H and δ are the Heaviside and the delta function. 
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Fig. 1: (a) Illustration of a general set-up for object matching with the level set based 

method. Objects in the template will be represented by level set functions ϕ’s. The 

corresponding objects in the study by level set functions φ’s. (b): Illustration of four sub-

regions divided by the level set functions, when the shapes in the template and study have 

overlap in space. 
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One Pair of Non-overlapping Shapes   

The above distance measure does not work for non-overlapping shapes. The reason is that 

by minimizing the distance measure, ϕ will simply shrink to a point and the cost function 

will reach a local minimum. To overcome this, we integrate -φ in the area ϕ>0, φ<0, and 

integrate -ϕ in the ϕ<0, φ>0 and we now have to initialize the level set functions to be the 

signed distance function to their zero level sets.  

1 1

1

( , , ) ( ) ( ( ))[1 ( ( ))]

( ) ( ( ))[1 ( ( ))] .

t tnonoverlapping

t

D T S t g H x H g dx

x H g H x dx

ϕ φ ϕ

φ ϕ φ
Ω

Ω

− −

−

= − −

+ − −

∫

∫
                    (3) 

In this case the force field is given by 

1

1 1 1 .

( , ) { ( ( ))[1 ( ( ))

( ) ( ( ))] [1 ( ( ))] ( ) ( ( ))} ( )

tnonoverlapping

t t t t

f Hx t H x g

g g H x x g g

φ ϕ

ϕ δ ϕ φ φ δ ϕ ϕ

−

− − −

= − −

− + − ∇ 1−
                 (4) 

2. Open Curve Matching 

Now we will turn to the more interesting problem of matching open curves by level set 

functions. As before we will focus on only one pair of open curves, as matching multiple 

pairs is just a direct extension. Our task is then to find a deformation field that maps an 

open curve C in the template to another open curve C� in the study.  

     It has been well known that one of the disadvantages of level set approach is one level 

set function can not represent an open curve. Several remedies have been introduced. In 

this paper, we will follow the smart idea in [69] by appending a second level set function. 
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Please refer to figure 2.  In order to find a representation of open curve C, we extend C to 

a closed curve (represented by the zero level set of ϕ1), and we further draw a second 

closed curve (represented by the zero level set of ϕ2), which crosses the zero level set of 

ϕ1 only at the two end points of C.  

 
Figure 2.  Illustration of how to represent an open curve using level set functions. 

 
Then the open curve C could be written in the following way 

                { }1 2| ( ) 0 ( ) 0C x x and xϕ ϕ= = > .                                  (5) 

The open curve C� in the study image could also be represented by two level set functions 

φ1 and φ2. Let us further denote the distance functions of C and C� by DS(x) and DT(x). 

Inspired by the idea of geodesic active contours, we propose the following cost function 

1 1 2

1 1 2

1 1 1

1

( , , ) ( ) ( ( )) ( ) ( ( ))

( ) ( ( )) ( ) ( ( )) .T

scurve t t t

t

D T S t D x g g H g d

D g x x H x dx

δ ϕ ϕ ϕ

δ φ φ φ
Ω

Ω

− − −

−

= ∇

+ ∇

∫

∫

x
               (6) 
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This cost function could be viewed as the sum of two line segment integrals with respect 

to the distance function of the other curve, and thus is nonnegative and zero only when 

the two open curves are equal. Notice that we could not omit either term of them and 

obtain the correct matching. For example, if we omit the second term, then the curve in 

the template will be matched to only a segment of the open curve in the study, and vice 

versa for omitting the first term. This discussion will be important later on when we 

proposed a second strategy for matching open curves in next chapter.  

We will describe in detail how to obtain the Euler-Lagrange equation in this case. Note 

that all the derivations are in the sense of distributions. For the simplicity of derivation, 

we will work on the formulation with respect to the displacement field u instead of the 

path g. Thus we minimize the following cost function with respect to u 

1 1 2

1 1 2

( ) ( ( )) ( ) ( ( ))

( ) ( ( )) ( ) ( ( ))

( , , )

.

S

T

curve

D x x u x u H x u

D x u x x H x dx

D T S u

δ ϕ ϕ ϕ

δ φ φ φ
Ω

Ω

− ∇ − −

− ∇+

= ∫

∫

dx                             (7) 

The force field contributed by the second term of equation is straightforward. We thus 

focus on how to obtain the force field given by the first term, G(u)  

1 1 2( ) ( ) ( ( )) ( ) ( ( )) .sG u D x x u x u H x u dxδ ϕ ϕ ϕ
Ω

= − ∇ − −∫                          (8) 

We want to compute the directional derivative of G along a test function v 

0

( ) (
lim .G u v G u
ε

ε

ε→

+ − )
                                          (9) 
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We first introduce the following notations 

1 1

1( ( ))tgδ δ ϕ −= ,                                                       (10) 

2 2

1( ( ))tH H gϕ −= ,                                                     (11) 

2 2

1( ( ))tgδ δ ϕ −= .                                                      (12) 

    By expanding the numerator in (8) up to first order, we get the following three terms 

 

                ( )( )'
1 2 1 1( ) |sD H x u v dxδ ϕ ε ϕ −

Ω

∇ − − ∇ ⋅∫ x u                                              (13) 

    ( )1 1
1 2

1

( ) |
( )

x u
s

x u v
D H dx

x u
ϕ ε ϕ

δ
ϕ

−

Ω

∇ − ⋅∇ − ∇ ⋅
∇ −∫                                         (14) 

               ( )1 2 1 1( ) |sD x uε δ δ ϕ ϕ −
Ω

− ∇ − ∇ ⋅∫ x u v dx                                               (15) 

Now we apply integration by parts on (14) and assume Neuman boundary conditions, we 

get 

        

( )

( )( )

( )

1
1 2 1

1

'
1 2 1 1

1
1 2 1

1

( )( ) |
( )

( ) |

( )( ) |
( )

s x

s

s x

x udiv D H v dx
x u

D H x u v dx

x udiv D H v dx
x u

.

u

x u

u

ϕδ ε ϕ
ϕ

δ ϕ ε ϕ

ϕδ ε
ϕ

−
Ω

−
Ω

−
Ω

ϕ

∇ −
− − ∇

∇ −

= − ∇ − − ∇ ⋅

∇ −
− − ∇

∇ −

⋅

⋅

∫

∫

∫

                     (16) 

Thus, term (13) is canceled in the numerator of (8) by negative (13) from the expansion 

of (14). Let us further work on the integrand of the remaining term in (16) 
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1
2

1

2 1 2 2 1

1

1
2

1

.

( )
( )

{ , | | , |
( )

( )
( )

s

s x u s x u x u

s

x udiv D H
x u

H D D
x u

x uD H div
x u

ϕ
ϕ

ϕ δ ϕ ϕ
ϕ

ϕ
ϕ

− −

 ∇ −
  ∇ − 

< ∇ ∇ > + < ∇ ∇ >
=

∇ −

 ∇ −
+   ∇ − 

}−                        (17) 

Now we could put everything together and obtain the following force field given by this 

cost function  

1
2 11

1

2 2 1

1
1

1 2 1
1

1
1 2 1 2 1 1 2

1

1

1

1 1 1

1

1 1

( , ) { , ( )
( )

( ) , ( ) } ( )

( )( ) ( )
( )

( ) ( ) ( ) ( ) ( )

s
t

s

t
s

t

s t

curve t

t t t

t

t tT

f x t H D g
g

D g g g

gD H div g
g

D g g H D g .

δ ϕ
ϕ

δ ϕ ϕ ϕ

ϕδ ϕ
ϕ

δ δ ϕ ϕ δ φ φ φ

−

−

−

−

−

− − −

−

− −

< ∇ ∇ >
∇

+ < ∇ ∇ > ∇

∇
− ∇

∇

+ ∇ ∇ ∇ ∇

= −

+

                     (18) 

Matching Multiple Pairs of Shapes, Curves and Landmarks.   

We should make a remark here that by combining different distance measures, we could 

solve matching problems in which multiple objects of different types are to be matched.   
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3. Incorporating the Level Set Method to Diffeomorphisms 

Generated by Infinite Dimensional Group Actions 

Level Set Based Matching through Infinite Dimensional Group Actions 

The level set based object matching could be integrated into the infinite dimensional 

group actions approach. Let us first recall the momentum p introduced in the previous 

chapter 

)()(),( xLvLxptxp tt
+==                                             (19) 

Here vt is the velocity field of the forward path g(x, t). Then we have the following 

theorems that correspond to the inexact image matching problem and the space-time 

growth image matching problem as described in theorem 4.1 and 4.2 of [42]. We will 

refer to the following two matching problems as inexact level set based object matching 

and the space-time growth level set based object matching problem respectively.  

Theorem 2 (Inexact Level Set Based Object Matching) 

The path that minimizes the following inexact matching problem 

1 1
0

2
1

, 0
inf ( ) ( , , 1)

t t t t
Lt

g Dg v g id tt

v x D T S tdt
− −

=
∂ =− = =∂

+ =∫                             (20) 

satisfies the geodesic relation in chapter 4 and the following boundary condition at t=1 

1
1( ,1) ( ,1) 0

TT
tp x f x Dg−= − =                                                (21) 
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Theorem 3 (Space-Time Growth Level Set Based Object Matching) 

The path that minimizes the following inexact matching problem 

2

1 1
0

1

, 0
( )inf ( , , )Lt

t t t tg Dg v g id tt

v x D T S t dt
− −

=
∂ =− = =∂

+∫                               (22) 

satisfies the following Euler-Lagrange equation 

1( ) ( ) (( ) )( ) ( , ) 0
T

T

i
t

t
t t t t t ti i

dp v p div v p v p f x t Dg
dt

− + ∇ + + ∇ + = ∑i .               (23) 

Here D(T,S,t) and f are the distance measure and force field defined in section 3. 

For proof, simply combine the arguments in the previous chapter and [42] (also refer to 

[70]). 

4. The Modified Beg’s Algorithm 

In this section, we will describe how to solve the inexact matching problem in 4.1 (the 

space-time growth problem could be handled similarly). Our algorithm is a modified 

version of the algorithm proposed by Faisal Beg (see [42]) for solving inexact image 

matching via variations with respect to the velocity field. The advantage of this approach 

is that we obtain the forward and inverse transformation and thus it allows us to do 

distance function re-initialization, which will be discussed in the following section (also 

refer to [70]). 

 76



(Modified Beg’s) Algorithm for Inexact Level Set Based Object 

Matching 

Initialize vold=0, choose a small number ε, for all t in [0 1], 

Step1 (fixed point iteration)  

1

1 1

1
1

( ), ( ) ( ) (

( ( )).

new new
t t

new old new new new old
t t t t t t

new new
t

Solve g and g by
d dg v g g x Dg x v
dt dt
Compute g g

−

− −

−

= = −

i

).x  

Step2 (gradient decent) 

� 1 1 1
1

1
1

,

( ) ( )

. 1 .

( ( ( )), 1)

new old
t t

T
old new new T new
t t

old new
t t

new new
ti

i

v v grad

grad v L L Dg g Dg

Set v v Goback to step until convergence

f g g x t

ε

− − −−

= −

 
= −  

 
=

=∑

i

.t  

Here the algorithm is presented in the most general case in which multiple objects are to 

be matched. Thus, the force field has several components (fi ) and each component is 

defined as in section 3 depending on the nature of the object.  Notice that in step 2 the 

gradient descent direction is in the sense of the operator L+L instead of the usual L2 and 

thus could be interpreted as a smoothing step. 
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 5. Distance Function Re-initialization 

In the original level set method, the level set function has to be reinitialized as to prevent 

the slope from being too steep or flat. The same problem occurs in this semi-Lagrangian 

based implementation of the level set function. The signed distance function property of 

the level set functions used to represent the objects in the template is lost as the template 

is being carried by the forward path g. The problem is even worse when the information 

in level set functions are being used to calculate the decent direction that guides the flow 

of the template, as in the case of non-overlapping shapes and open curve matching. Thus, 

it would be desirable that we could re-initialize the level set functions in the template to 

be the signed distance function to their zero level sets. This gives a new interpretation of 

level set function re-initialization different from the definition of re-initialization in the 

original level set method based on Eulerian formulation. However, as in the original level 

set method, we only need to perform re-initialization once in several iterations, and thus 

does not increase the computation load by much.  

Now let us describe how to re-initialize the level set function under the framework of the 

infinite group actions based on the theory of continuum mechanics. The goal is to ensure 

the signed distance function property of the level set functions in the template under the 

current flow. To this end, we re-initialize the level set function to its zero level set under 

the action of the backward path at time 1 (g-1
t=1), and update the level set function itself 

by composing back with the forward path gt=1. To be more precise, we need to add the 

following step in 4.2 in the (modified) Beg�s algorithm. 
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Additional step in the modified Beg’s algorithm for re-initialization of 

the level set functions and distance functions  

* 1
1

*

*
1

( ) ( ( ))

( )

( ( ))

new
i i t

i

new
i i t

Compute x g x

Reinitialize x to its zero level set

Update g x

ϕ ϕ

ϕ

ϕ ϕ

−
=

=←

$
 

6. Results 

In this section, we present two simple numerical examples of matching two arcs and two 

pairs of oval shapes with the Horn and Schunck regularizer. More numerical examples 

based on the theory of continuum mechanics will be presented and discussed in the last 

chapter of this dissertation. 

Figure 3 is a matching problem where (a) being the template and (b) the study. Figure 4 is 

the final deformed template with underlying grid deformation. Figure 5 is the 

transforming process from one pair of oval shapes to another non-overlapping pair, and 

the underlying grid deformation is shown in figure 6 (please refer to [70] for details on 

these two examples).   
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Fig. 3. A matching problem of two arcs in the template (a) and the study (b).  

 

Fig. 4. The deformation field obtained by the propose method for matching figure 3(a) to 

3(b)  
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Fig. 5. The transformation process of the template (a) (one pair of oval shapes) to the 

study (f) (a pair of oval shapes without overlapping with the shapes in the template) 
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Fig. 6. The final deformation field of one pair of oval shapes to another non-overlapping 

pair in figure 5. 
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 Chapter 6 

Length-Shortening Flow of Open Curves in 

Two-Dimensional Space 

Abstract-In this chapter, we will carefully re-examine the length shortening 

flow of open curves in 2D. We will address the issue of how to model the 

end points of an open curve as the intersection of the corresponding level 

set functions. The formulations presented are closely related to the 

representation and evolution of curves using the intersection of two level set 

functions in 3D. Moreover, a second approach for matching open curves 

will be presented.  
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1. Basic Formulations for Length Shortening Flow of Curves in 

2D 

As in the previous chapter, let us use the intersection of two level set functions to 

represent an open curve (the zero level set of φ enclosed inside of the second level set 

function ψ). The Length minimizing flow is then computed in the following way 

∫ ∇ dxH )()(min
,

ψφφδ
ψφ

                                             (1) 

The corresponding Euler-Lagrange equation for φ in this energy minimizing problem is 

0)()( =






















∇
∇

−
φ
φψφδ Hdiv                                       (2) 

And the Euler-Lagrange equation for the level set function ψ is  

0)()( =∇− φφδψδ                                              (3) 

If we expand out the first equation, we get the following form                 

0)()(,)()( =






















∇
∇

+∇∇∇−
φ
φφδψψφφψδφδ divH                    (4) 

We can also replace the delta function by the magnitude of the gradient to obtain the 

standard level set formulation 
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





















∇
∇

∇+∇∇−
φ
φφψψφψδ divH                                  (5) 

Let us examine the two terms in the above expansion. The second term is the usual mean 

curvature flow inside the level set function ψ. The first term only acts at the end points of 

the open curve. It points out the direction along which the length is locally decreased. An 

easy way to see this is the fact that the inner product between ∇φ and ∇ψ becomes zero 

when the two gradients are orthogonal to each other, and thus locally no direction can be 

chosen to decrease the length.  

Notice that the Euler-Lagrange equation in (3) also acts at the end points of the curve, 

and is scaled by the magnitude of the gradient of φ. 

2. How to Move the End Points of an Open Curve using Level 

Set Implicit Formulation 

In this section, we will describe how to formulate and move the end points of an open 

curve in 2D using the level set implicit representation. The same technique allows us to 

do tracking of open curve that is the intersection between two level set functions in 3D.  

Consider the following integral in 2D  

∫ ∇×∇ dxxf ψφφδψδ )()()(                                               (6) 

This integral will show up again in curve evolution in 3D as the (weighted) length of a 

curve (the intersection of two level set functions in 3D is a curve). Thus, we will treat the 
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technical details of how to derive the Euler-Lagrange euqation for equation (6) in chapter 

9 as the derivation is more general in 3D case and still holds in 2D.  

Let us state the main result as follows 

∫ ∑ ==∇×∇
i

iPxfdxxf )()()()( ψφφδψδ                                   (7) 

Thus this integral recovers the sum of all the values of f evaluated at the intersection of 

level set functions φ and ψ. This now gives us a new way to track the position of the 

intersections. Assume f is itself a distance function to a data set of points, then, by 

computing this integral, we now know how far the intersections are away from this set of 

data points.  

3. A Second Strategy for Mapping Open Curves in 2D (When 

the End Points Are Known) 

In the previous chapter, we propose a cost function for matching two open curves in 2D. 

However, this approach requires that we need two closed curves for each open curve in 

the template and study along with the distance function to these two open curves. The 

proposed cost function relies on minimizing the sum of the weighted line integrals along 

the two open curves where the weights are the distance function with respect to the other 

open curve. This cost function can be reduced in the case when the end points on the 

study image are already know. Let us look at the cost function we propose for the open 

curve 
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1 1 2

1 1 2

1 1 1

1

( , , ) ( ) ( ( )) ( ) ( ( ))

( ) ( ( )) ( ) ( ( )) .T

scurve t t t
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D T S t D x g g H g d

D g x x H x dx

δ ϕ ϕ ϕ

δ φ φ φ
Ω

Ω

− − −

−

= ∇

+ ∇

∫

∫

x
          (8) 

Minimizing the first term in the above energy only ensures that the open curve in the 

template is matched to a segment of the open curve in the template (since all segments of 

a curve have line integral equal to zero with respect to this curve�s distance function). 

The perfect matching is provided by the second matching term which requires that the 

open curve in the study will also be a segment of the final warped curve in the template. 

This �cross-validation� makes sure that the warped curve in the template and the curves 

in the study are perfectly matched. 

However, if the end points are already know, then we can replace the second matching 

term by a term that enforces the matching of the end points using the techniques 

developed in the previous section 

∫

∫

Ω

−−−−

Ω

−−−

∇×∇+
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dxgHggDD
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1
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1
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1
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1
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1
1

ϕϕϕδϕδλ

ϕϕϕδ
                   (9) 

Here Dend is the distance function to the two end points of the curve in the study image. 

Notice if we use the above energy for matching curves, we no longer need the distance 

function for the open curve in the template DT nor the two level set functions φ1 and φ2 for 

representing the open curve in the study image!!  
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The body force contributed by the first term in equation (9) is the same as before. We 

thus only have to obtain the body force contributed by the second term. Let us first define 

the orthogonal projector 

2v
vvIPv

⊗
−=                                                          (10) 

With this notation, we now state the body force contributed by the second term enforcing 

end point matching in the cost function. For  
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However, we now have to identify the two end points of the open curve in the study as 

well as tune a parameter λ that adjusts the weight for the end point matching term. 

Automatic initialization of open curves in 2D from data points 

Now if we are given an open curve in the form of some data points in 2D, and we want to 

generate the corresponding two level set functions that describe the open curve. The same 

cost function actually allows us to find these level set functions, since this cost function 

no longer requires the level set functions that describe the curve to be matched (now in 

the form of a collection of data points). 
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To achieve the goal, we can arbitrarily initialize the two level set functions and minimize 

the same cost function. All we need in the cost function is the distance function to these 

data points and identification of the two endpoints.     
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Chapter 7 

Level Set based Landmark Matching 

Abstract-In this chapter, we will describe the formulation for landmark 

matching based on the level set method. The strategy is to represent 

landmarks by the intersection of two level set functions and use the formula 

we developed in the previous chapter to do matching. A simplified model is 

proposed that involves only one level set function for each landmark to be 

matched as compared to the first approach. The simplified model has a 

simpler force field that is easier to code, and numerically good results are 

obtained.  
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1. Landmark Matching-First Approach 

Landmark matching problem could also be formulated in the level set framework. 

Assume DT is the distance function to the landmark in the template and the landmark is 

represented by the intersection of two level set functions ϕ1, and ϕ2. Similarly, we define 

DS, φ1, and φ2 for the landmark in the study. With the formulation developed in the 

previous chapter, we can look at the following cost function for matching landmarks 
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This cost function has the following force field 

)()()(

)())(())(()(
)(

)(

)())(())(()(
)(

)(

1
2121

1
2

1
2

1
1

1
11

2)(

1
2)(

1
1

1
2

1
1

1
21

1)(

1
1)(

1
1

1
1

1
2

1
2

−

−−−−

−
∇

−
∇

−−−−

−
∇

−
∇

∇∇×∇+

∇















∇

∇

∇
−

∇















∇

∇

∇
−

−

−

−

−

tT

tttSt

tg

tg

tttSt

tg

tg

gD

gggDg
gP

gP
div

gggDg
gP

gP
div

t

t

t

t

φφφδφδ

ϕϕδϕδϕ
ϕ

ϕ

ϕϕδϕδϕ
ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

         (2) 

Now we need to pick the level set functions that describe the landmarks to be matched. 

For a landmark at position (x0, y0), computationally the easiest way is to simply use the 

distance functions to the lines: x= x0 and y= y0 as the two level set functions. The 

advantages of this choice are that they are easy to generate and the gradient always has 

magnitude one and orthogonal to each other for the level set functions φ1, and φ2 in the 
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study. With this in mind, we can drop the outer product of φ1, and φ2 in both the cost 

function and the force field.  

The reduction of the above formulation when distance functions on the 

template are re-initialized 

If the forward and backward mappings are both available, as in the case of the approach 

introduced in chapter 4 and 5, then equation (1) and (2) can be further reduced and has an 

intuitive interpretation at t = 1. In this case, at each step we re-initialize the level set 

functions ϕ1 and ϕ2 by  
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Here the functions ϕ1� and ϕ2� are the signed distance functions to the lines: x= gt=1(x0) 

and y= gt=1(y0) respectively (g is the forward path). The force field at t=1 now reads 
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The first two terms are simply a smoothed delta force source located at the current 

position of the landmark ( g(x0), g(y0) ) pointing toward the target landmark; vice versa 

for the second term. Intuitively, equation (2) enforces the matching of the landmarks but 

looking at the current positions of the landmarks and apply forces that point from one 

landmark to the other. 
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2. Landmark Matching-Second Approach 

Numerically, we notice that the first approach can be simplified by using one level set 

function to represent one landmark point. If ϕ is the distance function to the landmark in 

the template, and φ the distance function to the corresponding landmark in the study, then 

we could consider the following energy that recovers the sum of the distance between 

these two landmarks under the action of the forward and inverse mapping 

1 1( ) ( ( )) ( )( , , ) ( ( ))t tlandmarkD T S t g x dx x g dxδ ϕ φ δ φ ϕ− −

Ω Ω

= +∫ ∫           (5) 

 With this energy, the force field is then 

' 1 1( , ) { ( ( )) ( ) ( ( ))} ( ).t tlandmarkF x t g x x gδ ϕ φ δ φ ϕ− −= + ∇            (6) 

This energy function deserves a closer look. At first sight, this function calculates the 

distance between landmarks with respect to two different level set functions. On second 

thought, it does not calculate the right quantity as in equation (1) since we are integrating 

the one dimensional delta function in the two dimensional integral (or three dimensional 

integral in the case of 3D landmark matching). In other words, we lose the proper scaling 

of the integrand. A good example of proper scaling is the equation we use to calculate the 

length of the zero level set 

∫ ∇= .)( dxlength φφδ                                                         (7) 

Here the integrand is the one dimensional delta function (applied to the level set function) 

multiplied by the gradient of the level set function. Here the gradient of the level set 
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function serves as the right scaling, as the length of the zero level set depends neither on 

the scaling of the level set function nor on which level set function is used. 

In the cost function (5) we propose for landmark matching, there is no such scaling. Yet 

numerically it performs well for small deformations.  

If we examine the energy more carefully, the loss of proper scaling is balanced by the 

cross term. Imagine we apply this landmark matching energy to a pair of landmarks 

where the two landmarks are already at the same position (and thus g=identity is a 

stationary solution and the desired solution). Intuitively, by squeezing the grid toward the 

landmark in the template, we can make the first term smaller and smaller, but at the same 

time the second term will become larger, and vice versa if we dilate the grid away from 

the land mark in the template. This is why the energy function in theory is not correct yet 

numerically it works. 

If we reinitialize distance function, then the situation is different. The energy always 

takes the same value no matter we squeeze or dilate the grid around the landmark as we 

always re-initialize ϕ to be the distance function under current grid deformation. Now the 

minimization problem will be governed by the regularization term and any grid 

deformation from the identity will be penalized. Thus, g being the identity remains a 

stationary solution and is the desired solution we are looking for.  

Because of the above argument, we recommend that re-initialization should be carried 

out in the case of level set based landmark matching.   
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3. A numerical Example of Level Set based Landmark 

Matching 

Figure 1 is the result of the level set based landmark matching generated by the second 

approach with distance function re-initialization. The landmarks to be matched are (25, 

30) to (30, 25), and (40, 35) to (35, 40) on a 64 by 64 image. The regularizing operator 

L+L is 0.25(-∆+0.1id)2 and 2000 iterations are used to calculate the final result. Fourier 

method is used to calculate (L+L)-1 by working on the Fourier transform of the force field 

and then applying the inverse transform. In order to examine how good the mapping is, 

we have to examine where the landmarks are carried by the forward path g at t=1. In this 

case, the forward path gt=1 carries the point (25, 30) to (30.0003, 25.0949) and the point 

(40, 35) to (34.9425, 39.9052) and thus is an �almost� exact matching. 

For numerical results on the first approach for landmark matching, please refer to chapter 

10 of this dissertation. 
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Fig. 1. The diffeomorphism given by the level set based landmark matching with distance 

re-initialization. The landmarks to be matched are (25, 30) to (30, 25), and (40, 35) to (35, 

40) on a 64 by 64 image. 
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Chapter 8 

Equivalence of Objects under the Action of 

Translation, Scaling, and Rotation 

Abstract-In this chapter, we will briefly describe how to take into account 

the equivalence objects. In particular, we will focus on how to factor out the 

action of translation, scaling, and rotation. A modification to the cost 

functions will be presented and discussed. Moreover, a connection will be 

established between the modified cost functions and the Hausdorff metric 

between objects. This provides a solid foundation of the level set based 

object matching. 
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1. The Equivalence Classes of Objects 

In the computational anatomy framework, the registration is to be carried out in a 

diffeomorphic way. The goal is to create a 1-to-1, onto, and differentiable map from one 

image back onto itself while at the same time all the important structures in the image are 

aligned. This is essentially a Lagrangian formulation. 

On the other hand, pattern recognition in computer vision is being performed in a 

Eulerian formulation. The best way to understand the difference is to imagine we are to 

search in pictures for certain objects (for example, dogs), and we are given a priori some 

knowledge about the shapes of dogs. With this in mind, we will now match all possible 

shapes in the pictures, regardless of the scaling, position, and orientation to the known 

shapes of dogs. When a shape in a picture is very close to the known shapes of dogs, we 

will then say that this is possibly a dog.  

From the above discussion, it is clear that the main difference between the framework we 

have discussed so far and the problem we consider in this chapter is the following 

1 Matching to an equivalent class of objects instead of the exact objects 

2 Objects are considered to be independent from the underlying grid 

(Eulerian reference) 
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2. The Invariance of Objects Represented by Their Signed 

Distance Functions 

The equivalent class of an object is often defined by the invariance of objects subject to 

certain group actions. Some of the commonly considered group actions include 

translation, rotation, scaling, and stretching. In this chapter, we will focus on the first 

three group actions. 

One of the first approach to register objects using level set method in this framework is in 

[68, 71] , where the authors proposed to match shapes by matching their signed distance 

functions. In order to take into account the invariance of objects under translation, 

rotation, and scaling, one of the distance functions being compared is then replaced by 

the following 

 





 −+−−−+−

=
r

byax
r

byaxrrba θθθθφθφ cos)(sin)(,sin)(cos)(),,,(~      (1) 

Here a and b are the translation parameters, r is the scaling parameter, and θ is the angle 

of rotation. The above function is simply the signed distance function of the shape under 

the same group actions with the same parameters. The cost functional is then minimized 

with respect to the above four parameters and experimental results are promising. 
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Factoring out translation, rotation, and scaling 

The above framework could be used to register objects by replacing the cost functions 

proposed in [68] with the cost functions proposed in the previous chapters. Moreover, it 

can be applied to all the formulations proposed in the previous chapters and allows us to 

factor out group actions under translation, rotation, and scaling.  

We first notice that all the cost functions in previous chapters could be expressed in the 

following form as a function of the level set functions in the template and study and g 

),,(),( gFSTD ii φϕ=                                                    (2) 

We now modify the cost function by inserting the modified level set function on the 

Study  

),~(),( , gFSTD ii φϕ=                                                     (3) 

Thus, the following modified minimization problem is considered for factoring out 

actions under translation, dilation and rotation 

( )grbaF iigrba
),,,,(~,min

,,,,
θφϕ

θ
                                         (4) 

This minimization problem is not easy to solve. However, approximate solution (a*, b*, 

r*, θ*, g*) could be obtained by minimizing with respect to the parameters of the group 

actions 

( )idgrbaFrba ii
rba

==∗∗∗∗ ),,,,(~,minarg),,,(
,,,

θφϕθ
θ

                    (5) 

 100



And then with respect to g 

( )grbaFg ii
g

),,,,(~,minarg ∗∗∗∗∗ = θφϕ                          (6) 

For the derivation of the gradient decent equations for a, b, r, θ, we need the derivative of 

the cost function with respect to the level set functions: 
i

F
φ~∂
∂ , and also the derivatives of 

the level set function with respect to the parameters: 
a∂
∂φ~ , 

b∂
∂φ~ , 

r∂
∂φ~ , and 

θ
φ
∂
∂

~
.  

The formulation has already been given for 
i

F
φ~∂
∂  in each case when the corresponding 

cost function is derived (except that it is derived with respect to the deformation field). 

The formulation for 
a∂
∂φ~ , 

b∂
∂φ~ , 

r∂
∂φ~ , and 

θ
φ
∂
∂

~
 could be found in the paper [68], and thus 

we refer to this paper for more details. 

3. Minimizing the Hausdorff Metric between Objects 

The Hausdorff metric, which will be denoted by H, arises in geometric measure theory as 

a metric between two subsets A, B in Rn defined in the following way 

)),(),,(max(),( ABhBAhBAH = ,                                            (7) 

( )YxdYXh
Xx

,max),(
∈

= .                                                    (8) 
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Here d(x, Y) is the usual Euclidean distance from the point x to its closest point restricted 

on the set Y. Please refer to the classic text in geometric measure theory [72] and also 

[73] for a detailed discussion on Hausdorff metric. In this chapter, let us state the fact that 

the family of all compact subsets of Rn is a complete metric space with respect to the 

Hausdorff metric H. 

In the following, we will show that the Hausdorff metric is closely related to object 

matching using the level set method (This connection was originally suggested by Wei 

Zhu of the Mathematics Department at UCLA). 

Let us use the cost function for open curves when factoring out equivalence classes as an 

example 
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Let us modify the cost function by raising the distance functions to the curves to some 

power p and then take the p-th root  
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Now if p goes to infinity, the limit of the above cost function is exactly the Hausdorff 

metric between the two curves in template and study!  
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In numerical calculation of equation (10), we could use a p much larger than one to 

approximate the L inifinity norm and thus we can numerically find a choice of the 

parameter a, b, r, and θ that minimizes the Hausdorff metric between the two curves. In 

fact, the same modification can also be used in the framework of chapter 4 and 5 to 

achieve non-linear matching through diffeomorphisms generated by infinite dimensional 

group actions.  

We can modify the cost functions we proposed for matching non-overlapping shapes in 

2D, surfaces in 3D, and also open curves in 3D in the same manner and re-interpret the 

cost functions as the Hausdorff metric between the shapes in 2D, surfaces in 3D, or open 

curves in 3D.  

This means, by raising the distance functions to some higher power, a link could be 

established between the frame work of matching objects using the level set method and 

the theoretical results in geometric measure theory. This provides a strong theoretical 

support for the object matching using the level set method.  

Numerical examples will be presented in the last chapter. However, it should be pointed 

out that from numerical experiments, better performance is noted when the cost function 

is modified in this manner.  
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Chapter 9 

Extensions to Three Dimensional Object 

Matching 

Abstract- In this chapter, we will describe how to generalize the 

mathematical formulations developed in previous chapters to three-

dimensional cases. In particular, we will describe how one can achieve 

closed and open curve matching in 3D. This requires new level set 

formulations dealing with the mathematical representation and numerical 

tools that allow us to evolve a 3D curve subject to certain velocity fields by 

numerically evolving its associated level set functions and tracing the 

crossing of the zero level sets. 
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The representation and matching of volumes and open surfaces in 3D is straightforward 

extension of matching shapes and open curves in 2D. Thus in this chapter, we will focus 

on matching of curves in 3D. 

1. Level Set Dictionary for 3 Dimensional Curves 

Let vector valued level set function 1 2( , )φ φ φ=  be the implicit representation of a 

(closed) curve in 3D, then the tangent vector T is.  

 
21

21

φφ
φφ

∇×∇
∇×∇

=T .                                                         (1) 

Let us define the orthogonal projection matrix that projects vectors onto the plane with 

normal vector v 

 2v
vvIPv

⊗
−=                                                            (2) 

The length of the curve then could be calculated in the following way 
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This formulation for length could be found in [74]. An intuitive way to derive this 

expression is the following. Assume now we construct a �thin� tube along the curve with 

square cross section of side length ε (refer to figure 1). We will recover the length of the 

curve by shrinking ε. We first construct this tube by looking at the value of φ1 with 

distance ε away from the curve (intersection of φ1 and φ2) along the outer normal 

direction  
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In order to construct square cross section, we have to look at the value of φ2 with distance 

ε away from the curve along the outer normal direction projected onto the plane 

orthogonal to 1φ∇   
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So the volume contained in this tube which has a cross section of ε2 is 
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The length of the curve is obtained by letting ε goes to zero 
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By switching the order of the two level set functions, we derive the second equality in 

equation 3. The third equality holds as  

2121 1
φφφφ φ ∇×∇=∇∇ ∇P                                                 (8) 

Another intuitive way to understand the equation is by recognizing that the magnitude of 

the outer product of two vectors a and b can be geometrically interpreted as the area of 

the quadrilateral with edge vector a and b.  
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Fig. 1: Illustration of how to represent a curve in 3D and calculate the length of the curve 

using the intersection of two level set functions  

2. Length Shortening Flow of Curves in 3D 

We now will calculate the Euler-Lagrange equations that minimize this energy. In [74], 

the authors used a different approach by looking at the general problem of evolving a 

curve by Wulff flow on a surface. In this chapter, we will derive this Euler-Lagrange 

equation in a direct and intuitive approach.  

The minimization problem we want to solve takes the following form 
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Let us calculate the directional derivative of the above energy by perturbing φ1 in the 

following way 
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We could expand the last term in equation (10) as follows 
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Let us calculate the inner product in the numerator of the above equation 
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The second equality holds because ∇φ1 is being projected onto the plane with normal 

vector ∇φ2, thus  

0, 212
=∇∇∇ φφφP .                                                        (13) 

Now we can re-write the equation in the following way 
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Notice that the last equality in equation (14) holds due to equation (13), and the second 

last equality holds because of the following relation 

2 2

2

1 1, P Pφ φ 1φ φ∇ ∇∇ ∇ = ∇φ                                       (15) 

We now put everything together and state the following Euler-Lagrange equation for φ1 
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And similarly for φ2 
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The gradient descent PDE now takes the form 
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And thus if we look at the following weighted length minimization problem with respect 

to the function f(x) 
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The time dependent gradient descent PDE takes the form 
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3. Open Curve Matching in 3D  

Now let us turn to the problem of how to match an open curve in 3D as we did before for 

open curves in 2D.  

By introducing 3 level set functions φ1, φ2, φ3, an open curve Γ in 3D can be implicitly 

represented in the following way 

{ }0)(,0)(,0)(| 321 >===Γ xxxx φφφ                                                      (21) 
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As in the case of open curve matching in 2D, we also propose two different approaches 

for 3D curve matching, namely, using the sum of two line integrals as in equation (8) of 

chapter 6 or using only one line integral coupled with end point constraints as in equation 

(9) of chapter 6. In either formulation, the first term of the cost functions is the same. 

With notations similarly defined as in equation (8) and (9) in chapter 6, the first term in 

the cost function is in the following form 
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Using the result in equation (20), the force field contributed by this part of the cost 

function is then 
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(23)                        

Landmark matching in 3D 

Now the remaining formulation we need to complete the discussion in 3D is the formula 

for level set based landmark matching in 3D. The same formulation also allows us to 

control the end points of an open curve Γ in 3D.  
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Given any continuous function g, the main formulation we want to derive is the following 
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Here the points Pi are the landmark points represented by the intersection of the three 

level set functions. Thus, in 3D, the integration factor needed to recover the point values 

at the intersection of level set functions is the absolute value of the mixed product (or 

scalar triple product) of the gradient vectors. 

321 φφφ ∇⋅∇×∇                                                     (25) 

 This formula can be derived similarly as in the derivation of the length of a curve in 3D 

by integrating g in a small cube with side length ε located at the intersection of the three 

level set functions and letting ε goes to zero. The three adjustments we need to make for 

the level set functions φ1, φ2, and φ3 are 

1φε ∇                                                                         (26) 

21
φε φ ∇∇P                                                                      (27) 
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Recalling the relation in equation (8), we thus recover the integration factor 
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Another intuitive way is to recognize that the absolute value of the mixed product of 

three vectors a, b, and c can be geometrically interpreted as the volume of a 

parallelepiped with edge vectors a, b, and c.  

Using similar notations as in equation (1) of chapter 7 (landmark matching in 2D), we 

propose the following cost function for level set based landmark matching in 3D 
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Now let us compute the Eueler-Lagrange equation for equation (30). The force field 

contributed by the second term of equation (30) is straightforward, and thus we will focus 

on the derivation of the force field for the first term. Instead of working on the 

Lagrangain formulation directly, we work on the Euler-Lagrangian equation for the 

following variational problem in a Eulerian formulation 

dxD∫ ∇⋅∇×∇ 321321,,
)()()(min

321

φφφφδφδφδ
φφφ

                                 (31) 

Let us compute the Euler-Lagrange equation for (31) with respect to 1φ  using similar 

arguments as before by perturbing φ1 
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We further expand the last term in the above equation  
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The last equality holds because 

0)( 322 =∇×∇⋅∇ φφφ                                                            (34) 

and similarly 

0)( 323 =∇×∇⋅∇ φφφ                                                            (35) 

Thus, the Euler-Lagrange equation for φ1 is 
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And similarly for φ2 and φ3  
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We now can go back to the force field contributed by the first term in equation (30). 

Using similar derivations as in (36), (37), and (38), the force field contributed by ϕ1 in 

(30) has the following form 
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The force field contributed by ϕ2 and ϕ3 are obtained similarly. Putting all three terms 

together plus the contribution from the second term in equation (30), we have the force 

field for level set based landmark matching in 3D. 

Automatic initialization of open curves in 3D from data points 

Now if we are given an open curve in the form of some data points in 3D, and we want to 

automatically generate the corresponding three level set functions that describe the open 

curve. A similar cost function as in equation (9) in chapter 6 can be used to find these 

level set functions as in the case of 2D open curves.  
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To achieve the goal, we can arbitrarily initialize the three level set functions and 

minimize the same cost function. All we need in the cost function is the distance function 

to these data points and identification of the two endpoints.  
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Chapter 10 

Numerical Experiments 

Abstract-In this chapter, we present numerical results for the level set based 

object matching in 2D using formulations proposed in previous chapters. 

All numerical examples are computed using either the Horn and Schunck 

functional or the Modified Beg�s algorithm. Results for all formulations in 

2D will be presented. Moreover, we will address the issue of the equivalence 

classe of objects with an open curve matching example. The equivalence 

class of the open curve in the study that minimizes the Hausdorff metric 

between the two curves is presented and the geodesic path that links the two 

curves with or without taking into consideration the invariance of objects 

will be compared.     
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In this chapter, all the results are computed on the unit square [0 1]2 discretized to a 64 by 

64 grid when the modified Beg�s algorithm is used to generate diffeomorphic mapping. 

The remaining results are computed using the regularizer proposed by Horn and Schunck 

on a 128 by 128 grid with grid size 0.1.  

The numerical approximations for Heaviside and delta function introduced in chapter 1 

are used for numerical computation. Notice that in chapter 1, two types of 

approximations for Heaviside function (equation (21) and (23) in chapter1) and delta 

function (equation (22) and (24) in chapter) are proposed. We have tested both types of 

approximations and the results show that numerically they perform similarly. 

Zero boundary condition is used for both the modified Beg�s algorithm and the Horn and 

Shunck type regularization, although other types of boundary condition could be used. 

For example, in the original Beg�s algorithm in [42], periodic boundary condition was 

used.   

1. Shape Matching 

We show two examples of shape matching.  In figure 1, we warped two brain images by 

aligning the contours around the brain tissue and the ventricles using the Horn and 

Schunck type regularizer.  The two images were from the same patient with a traumatic 

lesion in the frontal lobe. Figure 1(a) was acquired right after admission, and 1(b) was 
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taken three months after trauma. Rigid co-registration was first performed based on the 

mutual information before non-linear shape matching was performed. Figure 1(c) shows 

the warping of figure 1(b) to figure 1(a). 

The second example is, without factoring out invariance of objects under translation, 

scaling, and rotation, to match a circle with radius 5 centered at the grid point (35, 35) to 

(45, 45) using the modified Beg�s algorithm. The regularizing operator L+L in this case is 

0.05(-2.5∆+0.1id)2. 

   

           
                   (a)                 (b) 

 
Fig. 1 (a): a brain MRI image right after traumatic brain injury. (b): MRI image of the 

same patient three months later. (c): warped image of (b) to match (a).  
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Fig. 2: The diffeomorphism of moving the circle centered at grid point (35,35) with radius 5 

to (45,45) using the modified Beg’s algorithm calculated on the unit square discretized to a 

64 by 64 grid. 
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2. Open Curve Matching  

 
In this experiment, we validate the second matching approach for matching open curves. 

We generate two level set functions to implicitly represent a line segment joining grid 

points (30, 60) and (90, 60) on a 128 by 128 grid. We arbitrarily initialize two level set 

functions and minimize the proposed cost function (equation (9) in chapter 6). Figure 3 

shows the results using the Horn and Schunck regularizer. Figure 3(a) is the initial level 

set functions and 3(b) shows the final result.  Figure 3(c) shows the result without the end 

point constraint, and thus the result in this case does not match the whole line segment as 

in figure 3(b). The deformation field is shown in figure 4(a). 

Most of the current methods for matching curves are based on matching corresponding 

landmarks on the curves.  The landmarks are chosen to be equidistant from each other 

and the matching is obtained by assuming that landmarks stay equidistant when warped 

to another curve.  Figure 4(b) shows how this assumption can fail. We add oscillations to 

the line segment described above joining the grid points (30, 60) and (90, 60), and the 

displacement field is computed with the same initial conditions and regularizer.  The 

corresponding deformation field is shown in figure 4(b). It is noted that equidistant points 

on the arc are not mapped to equidistant points on the final warped curve anymore.  Thus 

we argue that representing curves by the intersections of level set functions is a better 

strategy for matching open curves.    
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In order to compare the effect of the regularizer, the same testing problem is computed 

using the modified Beg�s algorithm, and the deformation field is shown in figure 5. There 

is a difference in the deformation created by these two formulations. The regularizing 

operator L+L in this case is 0.025(-1.5∆+0.1id)2. 

3. Landmark Matching 

Figure 6 is the result of the level set based landmark matching with six pairs of landmarks 

generated by the modified Beg�s algorithm with distance function re-initialization. The 

landmarks to be matched are (16, 32) to (16 27), (29,35) to (29, 40), (29, 29) to (29 34), 

(35, 35) to (35, 40), (35, 29) to (35, 24), and (50 32) to (50, 37) on a 64 by 64 grid. The 

regularizing operator L+L in this case is 0.025(-∆+0.1id)2. 
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(a)                                                            (b) 

  

(c) 

 

Fig. 3: (a) the zero level sets of two level set functions arbitrarily initialized. (b) the warped 

zero level sets of the level set functions with the arc in the middle matched to the line 

segment joining grid points (30, 60) and (90, 60). (c) the warped zero level sets of the level 

set functions without enforcing matching of the end points. 
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Fig. 4(a): the deformation field of figure 3(b).  

 125



 
Fig. 4(b): the deformation field of matching the line segment in (a) with oscillations added  
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Fig. 5: The same testing problem as in figures 3 and 4(a) is computed using the modified 

Beg’s algorithm. The deformation field obtained in this case is different from figure 5(a).  
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Fig. 6: The diffeomorphism given by the level set based landmark matching with distance 

re-initialization. The landmarks to be matched are (16, 32) to (16, 27), (29, 35) to (29, 40), 

(29, 29) to (29, 34), (35, 35) to (35, 30), (35, 29) to (35, 24), and (50, 32) to (50, 37) on a 64 by 

64 image 
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The following example serves for three purposes. Two random open curves are drawn on 

a 64 by 64 grid (shown in figure 7). The corresponding level set function representations 

are generated. The differential operator L+L used in these numerical examples is 50(-∆ + 

0.1×id) 2. Level set functions and distance functions in the template are re-initialized as 

described before. 

First, landmark matching is applied to match the two pairs of the end points of the two 

curves using the first approach (equation (1) and (2)) introduced in chapter 7.  The 

positions of the corresponding two open curves after end point matching is shown in the 

upper panel of figure 8, and the.deformation field in the lower panel of figure 8. The 

length of the geodesic path in this case is 8.97. Notice that matching the end point alone 

does not ensure whole curve matching.  

Figure 9 shows the whole matching of the two curves using the method introduced in 

chapter 5. The upper panel shows the corresponding two curves under the final 

deformation field that is shown in the lower panel of figure 9. The length of the geodesic 

path in the case of whole curve matching is 10.87. 
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Fig. 7: Two random curves are drawn by hand on a 64 by 64 grid for illustrating 

landmark matching, curve matching, and the equivalence class of images under the action 

of translation, scaling, and rotation 
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Fig. 8: Upper panel: the positions of the two open curves after matching the end points of 

the curves. Lower panel: the corresponding deformation field. 
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Fig. 9: Upper panel: the positions of the two open curves after matching the two curves. 

Lower panel: the corresponding deformation field. 
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In the next part of this numerical example, we try to take into account the equivalence 

classes of the study by factoring out translation, scaling, and rotation. In other words, the 

curve in the template is now matched to an equivalent class of the curve in the study 

using the formulations in chapter 8. The cost function used is the Hausdorff metric 

between two curves approximated by raising the power of the distance function to 7. The 

final result is shown in figure 10. Figure 11 shows the result when the original cost 

function (equation (9) in chapter 8) is used. It is noticed in this figure that, due to the 

presence of the scaling factor in equation (1) of chapter 8, the open curve in the study will 

be shrunk to a smaller scale since the second term in the cost function (9) of chapter 8 

will decrease as the scaling factor decreases. However, it is no longer the case when the 

Hausdorff measure is used, since the measure itself does not depend directly on the scale 

of the curve in the study. 

The four parameters in figure 10 are a = -2.442, b = -6.978, r = 0.7340, and θ= -0.3865, 

while the four parameters in figure 11 are a = -2.582, b = -5.582, r = 0.5314, and θ= -

0.3828. The unit for the translation parameters a and b is pixel. The corresponding 

deformation field of matching the curve in the template to this equivalent class of the 

curve in the study is shown in the lower panel of figure 12. The upper panel of figure 12 

shows the relative positions of the two curves under this deformation field. The length of 

the geodesic that links the object in the template to the equivalence class of the object in 

the study is now 0.7187.  
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I would like to thank Wei Zhu for carrying out the computation in figure 10 and 11, and I 

am grateful for his help in preparing the corresponding level set functions and the 

corresponding distance functions. 

 

 

Fig. 10: The positions of the two open curves after taking into account the equivalence 

class of the curve in the study by factoring out actions of translation, scaling, and rotation. 

The Hausdorff metric between two curves (approximated by raising the power of the 

distance function to the 7-th power) is used as the cost function. The four parameters in this 

example are a = -2.442, b = -6.978, r = 0.7340, and θ= -0.3865.  
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Fig. 11: The positions of the two open curves after taking into account the equivalence 

class of the curve in the study by factoring out actions of translation, scaling, and rotation. 

The original cost function between two curves is used without raising the distance function 

to higher power than one. The four parameters in this example are a = -2.582, b = -5.582, r = 

0.5314, and θ= -0.4828.  
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Fig. 12: Upper panel: the positions of the two open curves after matching the two curves 

using the target in figure 10 where translation, scaling and rotation are factored out. Lower 

panel: the corresponding deformation field. 
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The next two figures show the geodesic path that links the object in the template to the 

object in the study.  Figure 13 and 14 are the geodesic path that links the two oval shapes 

in the second example of shape matching. Figure 13 shows the position of shape in the 

template being carried along the geodesic path and figure 14 shows the underlying grid 

deformation of the geodesic path. Figure 15 shows the geodesic path that links the two 

open curves in figure 7 without taking into account the equivalence class. The time zero 

to one is discretized to 10 time steps and each time step is 0.1. 
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(a)  

(b)  
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(c)  

(d)  
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(e)  

(f)  
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(g)  

(h)  
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(i)  

Fig. 13: The oval shape carried by the geodesic flow that links the two oval shapes in 

figure 2 at time 0.1 (a), time 0.2 (b), time 0.3(c), 0.4 time (d), time 0.5 (e), time 0.6 (f), time 

0.7 (g), time 0.8(h), and time 0.9 (i). 
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Fig.14 (a) 
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Fig.14 (b) 
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Fig.14 (C) 

 145



 

Fig.14 (d) 
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Fig.14 (e) 
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Fig.14 (f) 
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 Fig.14 (g) 
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 Fig.14 (h) 
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Fig.14 (i) 

Fig. 14: The geodesic flow that links the two oval shapes in figure 2 at time 0.1 (a), time 

0.2 (b), time 0.3(c), 0.4 time (d), time 0.5 (e), time 0.6 (f), time 0.7 (g), time 0.8(h), and time 

0.9 (i). 
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Fig.15 (a) 
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Fig.15 (b) 
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Fig.15 (c) 
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Fig.15 (d) 
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Fig.15 (e) 
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Fig.15 (f)
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Fig.15 (g) 
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Fig.15 (h) 
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Fig.15 (i) 

Fig. 15: The geodesic flow that links the two open curves in figure 7 without taking into 

account the equivalence class at time 0.1 (a), time 0.2 (b), time 0.3(c), 0.4 time (d), time 0.5 

(e), time 0.6 (f), time 0.7 (g), time 0.8 (h), and time 0.9 (i). 
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Chapter 11 

Conclusion and Future Directions 

Abstract- In this final chapter, we summarize what have been achieved and 

the contributions of this dissertation. We also outline few interesting 

directions that are worth exploring. 
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1. Conclusion 

In this dissertation, we bring together the framework of the level set method and 

computational anatomy. The following is a summary of what have been achieved. 

The semi-Lagrangian level set method 

The original level set method is a Eulerian framework. The front that we wish to track is 

being implicitly represented as the zero level set of the corresponding level set function 

of one higher dimension. The Eulerian nature of the original level set method can be 

viewed intuitively as if we are standing on the grid points and updating the values of the 

level set function on the grid points regardless of the current position of the front. In 

order to recover the position of the front, we trace back the zero crossing of the level set 

function. The main advantage of this approach is to treat topological changes 

automatically. Due to this nature, it is well suited for tasks that involve the tracking of 

interface commonly encountered in many disciplines. Thus, since the introduction of the 

level set method, a lot of image processing techniques have been designed (or re-

interpreted) and implemented in this manner. 

However, the main advantage of the level set method becomes the main drawback as well 

when it is applied to the computational anatomy in which the objects are to be compared 

along with quantifying the underlying grid deformation. First of all, in computational 

anatomy, topological changes are not allowed since they are not physiologic. Secondly, 
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due to the Eulerian nature of the original level set method, we could never track how the 

particles move since we do not stand on the interface and move along with it. However, it 

would be desirable if the level set method could be applied in computational anatomy 

since it provides a strong tool of representing fronts using implicit representation.  

The contribution of this dissertation is, by re-interpreting the level set method in a semi-

Lagrangian reference formulation, it now can be applied to the framework of 

computational anatomy. In the first few chapters of this dissertation, we give an overview 

of the level set method and the computational anatomy through diffeomorphisms 

generated by infinite dimensional group actions based on formulations borrowed from 

continuum mechanics. The semi-Lagrangian implementation is introduced and discussed 

at the end of chapter 4. We should point out that the semi-Lagrangian implementation 

introduced in this dissertation is slightly different from [64-66] . In these references, the 

interpolation is being done at each iteration while the semi-Lagrangian implementation in 

this dissertation keeps track of the displacement field all the way back to the initial 

image, thus allows the tracking of the underlying grid deformation. Because of this, the 

term semi-Lagrangian in this dissertation is not exactly in the usual semi-Lgrangian 

sense, and a novel name �quasi-Lagrangian� might be more appropriate to describe this 

new technique. 
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The incorporation of the semi-Lagrangian level set method and 

computational anatomy 

In chapters 5, 6, 7, 8, and 9, we re-formulate all object matching problems in terms of the 

level set method. In the past [42, 51, 64-66], objects in the computational anatomy were 

being compared either in terms of the whole image (sum of least square or other global 

intensity measure), or in terms of landmarks placed on the objects beforehand. In this 

dissertation, we derive novel and efficient strategies of comparing overlapping and non-

overlapping shapes, open curves, and landmarks in 2D. Furthermore, the same techniques 

are then generalized to deal with 3D objects. With the help of the level set method, we 

now no longer need to restrict ourselves to certain types of objects. Moreover, due to the 

same variational nature of these techniques, different types of objects can be compared 

easily within the same image. This gives us a whole new world of mathematical tools that 

allow us to explore and tackle the challenging problems encountered in today�s 

computational anatomy.    

2. Future Directions 

In what follows, we point out some interesting directions worth exploring that have not 

been treated or only treated slightly in this dissertation. 
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Narrow banding implementation of the semi-Lagrangian level set 

method 

As in the original level set method, only the zero level set is the interest and thus 

computing the corresponding level set function on the whole image is unnecessary and 

increases the computation load. It remains unanswered in this dissertation as to how to 

construct and implement the narrow banding technique in the semi-Lagrangian 

implementation that allows us to reduce the computation load and storage.  

Theoretical and rigorous justification for the level set based object 

matching 

It should be noted that in this dissertation, all derivations are done in a formal way 

without rigorously looking at the problem of well posedness of the proposed methods and 

existence and uniqueness of the solution. Due to the highly non-linear nature of the 

approaches introduced in this dissertation, it remains an open question as to how to build 

rigorous and sound foundations for them. 

Efficient and practical numerical techniques for 3D object comparison  

Although formulations and strategies are being discussed in this dissertation for matching 

3D objects. Numerically, we have not implemented them yet due to the tremendous 

demand on storage and computation time.  
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Fast and efficient auto-initialization and representation of open curves 

and open surfaces 

Last but not least, as pointed out in [21], one level set function could not represent any 

object with co-dimension higher than one. Thus introducing more level set functions and 

using the intersection to represent open curves in 2D and 3D and open surfaces in 3D are 

used in this dissertation. However, this increases storage requirement for the level set 

functions and a proper auto-initialization technique is then needed for practical purpose 

that allows automatic initialization of the level set functions of which the intersection is 

the open curve or surface we are interested in.  

Although in this dissertation, strategies are discussed as to how to initialize the level set 

functions by enforcing the end points matching, this remains an open question as the 

proposed techniques are too slow due to the fact that semi-Lagrangian implementation is 

used along with diffeomorphisms generated through infinite dimensional group actions. 

A possible answer to this is to implement the proposed strategy of enforcing the matching 

of endpoints back in the original level set method in the Eulerian reference. The big 

challenge remains in that how we prevent the level set functions from breaking into 

different pieces and undergo topological changes. 
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