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Abstract. The authors introduce two nonlinear advection diffusion equations, each of which
combines Burgers’ convection with a fourth order nonlinear diffusion previously designed for image
denoising. One equation uses the L2-curvature diminishing diffusion of You and Kaveh (IEEE Trans.
Image Process., October 2000), and the other uses the ‘Low Curvature Image Simplifiers’ diffusion of
Tumblin and Turk (SIGGRAPH, August 1999). The new PDEs are compared with a third advection
diffusion equation that combines Burgers’ convection with a second order diffusion recommended by
Perona and Malik for denoising and edge detection (IEEE Trans. Pattern Anal. Machine Intell.,
July,1990). We prove results regarding the existence and nonexistence of traveling wave solutions of
each PDE. Visualizations of each ODE’s phase space show qualitative differences between the two
fourth order problems. The combined work gives insight into the existence of finite time singularities
in solutions of the diffusion equations.

1. Introduction. We introduce two nonlinear advection diffusion equations that
each combine Burgers’ convection with a fourth order nonlinear diffusion intended for
image processing:

e (50%)e = ~(9(0kze)re)os (VK)
and

ug + (%uQ)w = —(9(usz)tzez)e, (TT)
with g(s) = # Very little is known about the fourth order diffusions, despite recent

demonstrations of their effectiveness for image denoising [28, 32]. The combined
advection-diffusion equations have the possibility of smooth traveling wave solutions
approximating Burgers’ shocks. We prove rigorously that such smooth traveling wave
solutions of (YK) do not exist for sufficiently large jumps, whereas smooth traveling
wave solutions of (TT) exist for all jump values. These results suggest very different
behavior of the fourth order nonlinear imaging equations introduced by You and
Kaveh [32] and Tumblin and Turk [28].

1.1. Nonlinear PDEs for image denoising. Nonlinear PDEs are now com-
monly used in image processing for issues ranging from edge detection, denoising, and
image inpainting, to texture decomposition. Second order PDEs for image processing
date back to the seminal works of Mumford-Shah [21], Rudin-Osher-Fatemi [25], and
Perona-Malik [23]. All of these methods are based on a nonlinear version of the heat
equation,

ur =V - ((9(|Vu])Vu), (L.1)
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Fi1c. 1.1. An example thresholding function. g(s) and g(s)s are shown for g(s) = ﬁ

in which the ‘thresholding function’ g is small in regions of sharp gradients. A number
of mathematical issues arise with these equations and their use. For example, Perona-
Malik suggest using a smooth, positive, and even function g that decays fast enough
for large Vu so that significant diffusion only takes place in regions away from image
edges. Specifically, Perona and Malik required the existence of some K > 0 such that

% (g(s)s) >0for 0 < s < K, (1.2)
and
d
I (g(s)s) <0 for s > K. (1.3)

However, the non-monotonicity of g(s)s causes (1.1) to be ill-posed in regions of high
gradients, and the ensuing dynamics result in a characteristic “staircase” instability.
A typical thresholding function g is

1
9(8) = 13 ot (1.4)
where k is a parameter used to establish a standard edge size for the image [11, 12,
15, 30, 31].

In the past few years, a number of authors have proposed analogous fourth order
PDE:s for edge detection and image denoising with the hope that these methods would
perform better than their second order analogues [9, 10, 19, 20, 28, 29, 32]. Indeed
there are good reasons to consider fourth order equations. First, fourth order linear
diffusion damps oscillations at high frequencies (i.e. noise) much faster than second
order diffusion. Second, there is the possibility of having schemes that include effects
of curvature (i.e. the second derivatives of the image) in the dynamics, thus creating
a richer set of functional behaviors. On the other hand, the theory of fourth order
nonlinear PDEs is far less developed than that of their second order analogues. Also
such equations often do not possess a maximum principle or comparison principle,
and implementation of the equations could thus introduce artificial singularities or
other undesirable behavior.

Some examples of fourth order equations include the L? — curvature gradient flow
method of You and Kaveh [32],

ur = —A(g(Au)Au), (1.5)
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the Perona-Malik analogue by Wei [29],
ug = —V - (g(Vu)VAu), (1.6)
and Tumblin and Turk’s ‘Low Curvature Image Simplifiers’ [2§],
ur + V- (9(Diju)VAu) = 0. (1.7

In (1.7), g is a function of the second derivatives of the image intensity function u.
Although demonstrations of the application of these PDEs to images give similar
results, it is unclear how the dynamics of these equations compare to each other. One
immediate observation is that equation (1.5) is linearly ill-posed in regions of high
curvature, while equation (1.7) is not.

A class of equations including (1.6) and (1.7) was studied in [14] by the authors,
who proved global existence of H' solutions when the argument of g, in the form
of derivatives of the intensity u, is convolved with a standard mollifier kernel. How-
ever, as is well known for some second order equations, as in (1.1), such mollification
can turn an ill-posed problem into a well-posed problem [8]. The resulting numerical
methods for the equations with mollification appear to smooth out, but not remove,
undesirable artifacts of the method without mollification, such as the staircase insta-
bility of the Perona-Malik method.

1.2. The model equations. We introduce two model problems designed for
studying the dynamics of these new image processing equations without mollification.
Both are convection diffusion equations which can be studied by a combination of
analytical and computational methods. We introduce a Burgers convection into the
dynamics of the fourth order diffusions (1.5) and (1.7) in order to instigate shock
or jump type behavior typical of edges in images. Such convective motion has real
application in image processing. One area in particular is image inpainting [1, 2] in
which image information is convectively flowed into a region where the image content
is unknown. Thus our study gives insight into the behavior of hybrid imaging methods
that combine diffusion and convection.

The two fourth order equations are compared with a second order convection
diffusion equation that was introduced in [13] and [17]. This equation combines a
Burgers convection term with the second order diffusion of (1.1). The authors of [13]
and [17] share our motivation of using these equations as tools for understanding the
diffusion dynamics.

The three model equations that we consider are

U + (%UQ)E = (g(uz)um)m; (PM)
Uy + (%uz)z = _(g(uwz)uzw)wza (YK)

and
e+ (00)e = ~(9lt)uzea) ()

In each equation, we use the thresholding function

1
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as in [23]. Many of our results can be easily generalized to thresholding functions
g which satisfy the properties stated in [23]. Remarks are made regarding possible
generalizations of our results.

We are interested in one overarching question for all three problems: when do the
equations have smooth solutions, and when do they develop singularities (jumps in
w or its derivatives)? This fundamental question arises when using such methods for
image processing. Moreover, if a singularity forms, it is unclear whether a solution to
the equation will continue to exist, perhaps as a weak or distribution solution, as is
the case with shock dynamics.

We focus on a special class of similarity solutions — traveling waves of the form
u(z — ct). This traveling wave ansatz reduces the fourth order PDEs (YK) and
(TT) to third order ODEs, to which we apply phase plane analysis from dynamical
systems theory, as well as rigorous analysis using Conley index theory and estimates
involving Lyapunov functions. Analyzing the simpler Perona-Malik equation (PM) is
much more straightforward, however it gives some insight and provides a standard for
comparison with the more complicated fourth order equations.

Our approach in this paper has been successfully used for other fourth order
nonlinear equations that model physical systems. A mathematically similar family of
PDEs are the lubrication equations used to model thin liquid films under the influence
of surface tension. These equations take the form

ur + V- (m(u)VAu) =0,

where m(u) is typically degenerate ( i.e. f vanishes when u vanishes). Convection in
thin films can arise due to body forces such as gravity or surface stresses involving
gradients of surface tension. Recent analysis of traveling waves for the PDE

Us + (f(u))z = _(U3uzzz)z

has led to an understanding of compressive and undercompressive shock dynamics
in driven films [3, 4, 6, 7], and we consider some of the analytical methods for these
problems in our study of traveling waves for image processing.

1.3. Organization. We derive traveling wave ODEs for all three PDEs in Sec-
tion 2. By restricting to traveling wave solutions, the problems simplify to nonlinear
ODEs. Sections 3 - 5 each contain an analysis of one of the three traveling wave
ODEs. We first consider the simpler problem (PMODE) in Section 3 and use it as a
standard for comparing (YKODE), discussed in Section 4, and (TTODE), considered
in Section 5. The three sections share the same outline. We first prove analytic results
for the considered ODE. These results are then illustrated with phase plane visual-
izations which also provide strong evidence for ODE properties that are not proved
here. We close each section with a numerical demonstration of the PDE behavior and
its relationship with the corresponding ODE.

2. Traveling wave solutions to PDEs. Traveling Waves are similarity solu-
tions of the form

u(z,t) = ¢(x — ct), (2.1)

where ¢ € R is the wave speed. By substituting (2.1) into the PDE, we reduce the
problem to an ODE in the variable £ = x — ¢t. ODEs are typically easier to study,
as there are many well understood analytical and numerical methods for examining
their qualitative behavior.



In this paper we consider traveling wave solutions that satisfy

lim ¢(§) = ur and 51121 #(&) = ug. (2.2)

§——o0

Such solutions correspond to trajectories connecting ¢ = ur, to ¢ = upg in the phase
space of the traveling wave ODE. They give diffusive shocks, similar to those for the
viscous Burgers equation [18]. The values of ur, and ug determine the viscous shock’s
wave speed, c.

2.1. ODEs resulting from equations (PM), (YK), and (TT). Assume

u(z,t) = ¢(x — ct) = $(¢), (2.3)

for some real number ¢ to be determined. Using the notation ¢’ := %(ﬁ, and substi-
tuting (2.3) into equations (PM), (YK), and (TT), we derive the ODEs

¢'(¢—c) = (9(8")¢), (2.4)
#(6 - c) = —(9(6")8")" (2.5

and
¢'(¢—c) = —(g9(¢")¢") (2.6)

respectively. Assuming (2.2) and that all of the derivatives of ¢ decay at infinity,
integrating each ODE yields

r(¢) = g(¢')¢', (PMODE)
r(¢) = —(g9(¢")¢")' (YKODE)
and
r(¢) = —g(¢")¢", (TTODE)
where
1, 1
r(¢) := 5¢” — ¢+ gurur, (2.7)
with wave speed
1
c= §(UL + uR). (2.8)

For reference, we call (PMODE) the Perona-Malik ODE, (YKODE) the You-
Kaveh ODE, and (TTODE) the Tumblin-Turk ODE. Each ODE has two equilibrium
points: L, where ¢ = ur,, and R, where ¢ = ug. A trajectory of one of the given ODEs
is a traveling wave solution of the respective PDE, if and only if that trajectory is a
heteroclinic orbit connecting L and R. Each equation also has an entropy condition
(which we derive) requiring uy, > ug for such an orbit to exist. This entropy condition
is analogous to that of the viscous Burgers’ equation [18].
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2.2. Reducing the number of parameters. Consider (PMODE) for a given
pair uz, and ug, and corresponding wave speed, ¢ = %(uL + ug). Letting & = ¢ — ¢,
equation (PMODE) becomes

1

: (@2 ~ Hun - uL)2) — 4@ (29)

The dynamics of (PMODE) and (2.9) are affected solely by the difference between ur,
and ug. Changing their average, which gives the wave speed ¢, alters ¢ by only an
added constant. The same holds true for (YKODE) and (TTODE).

For simplicity, we consider only the case ¢ = 0, and we do so without loss of
generality. All of our computational examples are done with ¢(0) = ¢ = 0. These
ODE solutions correspond to PDE solutions that travel with zero speed. We study
the full range of behavior of the traveling wave ODEs by adjusting only one parameter,
v :=ur, > 0. Insisting ¢ = 0 forces ug = —7.

2.3. Comparing the traveling wave ODEs. In [17], Kurganov, Levy, and
Rosenau proved the existence of traveling wave solutions of (PM) for the case g(s) =
ﬁg. Traveling wave solutions exist for only a small range of left and right states. In
particular, if ur, is much larger than ug, the ODE will not have a solution connecting
L to R. We generalize the results of [13] and [16] in Section 3, which contains a proof of
the existence of solutions of (PMODE) for the general class of functions g satisfying the
properties listed by Perona and Malik. By studying equations (PM) and (PMODE),
we develop a framework for analyzing the higher order equations. In Section 3.4, we
compare solutions of (PMODE) with the PDE (PM). Numerical experiments show
a one-to-one correspondence between heteroclinic orbits of the ODE, and attracting
steady state solutions of the PDE. When there is no trajectory connecting L to R
in the ODE, a jump discontinuity forms in the PDE. We show that this restriction
of left and right states stems from a singularity in the ODE which is caused by the
lack of monotonicity of g(s)s. The same dilemma also occurs in (YKODE), and we
establish results in Section 3 that parallel the higher order problem.

The higher order diffusion makes analytical results more difficult to obtain for
equations (YKODE) and (TTODE). However, in Section 4 we prove that equation
(YKODE) does not have a smooth solution connecting L and R for large 7. By
studying the ODE phase plane with the method introduced by [3], we discover that
the unstable manifold of the left state intersects the stable manifold of the right state
only when < is small enough — just as in the second order case. We conclude the
section by comparing the ODE solutions with the PDE (YK).

The Tumblin-Turk ODE is remarkably different from the other two ODEs. In
Section 5, we use a topological argument to prove that equation (TTODE) has smooth
solutions connecting L and R, for all v > 0. Cross-sections of its phase plane illustrate
the key differences between the phase plane geometries of (YKODE) and (TTODE).
Once again, we follow the discussion with numerical computations of the PDE.

3. Perona-Malik with advection. Equation (PM) is carefully studied in [13]
and [17] . We review and expand upon those results here, as they provide an excellent
foundation for our analysis of equations (YK) and (TT). We first prove that (PMODE)
has an orbit corresponding to a traveling wave solution of (PM) only when v >
0 is smaller than a critical value, «.. This result is followed with a numerical and
asymptotic description of solutions of (PMODE) for v > ..
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3.1. The traveling wave ODE. We consider a general thresholding function
g, as described in the introduction. Define

F(s) = g(s)s, (3.1)
so that equation (PMODE) can be written as
r(¢) = F(¢').

Since g(s)s is bounded, we can only define F~! on a subset of R. F~! has three
branches that depend on the unique K satisfying

g (K)K + g(K) = 0. (3.2)

Two of these branches correspond to the regions |s| > K where < (g(s)s) < 0. The
third is an interior branch with its range centered around zero and corresponds to the
interval |s| < K, where L (g(s)s) > 0. We define F~! on the interior branch, since our
traveling waves have ¢’ — 0 as £ — +oo. With this definition, we rewrite (PMODE)

as

with the requirement
Ir(¢)| < F(K) = g(K)K. (33)
This condition is satisfied if and only if

0<v<V2(K)K, (3.4)

and is essential to proving the following theorem, which is proved in [17] for the specific
_ 1
case g(s) = 1752
THEOREM 1. Let g be a smooth, positive, and non-increasing function of |s|, with
some K > 0 satisfying

dis(g(s)s) >0 for |s| < K, and dis(g(s)s) <0 for |s| > K.

Then the ODE (PMODE) has a continuous solution ¢(§) satisfying

lim ¢(€) =7 and lim (&) =~ (3.5)

T——00

if an only if

0 <7< V2g(E)K. (3.6)

Proof. Any traveling wave solution of (PM) satisfying (2.2) corresponds to a
trajectory of (PMODE) connecting L, the point ¢ = v, to R, the point ¢ = —v. Such
a trajectory can only exist when v > 0, since F~1(r(¢)) < 0 for |¢| < |y|. This is
analogous to the Lax-Oleinik entropy condition for Burgers’ Equation [18]. If v <1,
r(¢) < /29(K)K for all ¢ € (—v,7), so the existence of an orbit connecting L to R
is obvious.



Smooth Solutions of Equation (PMODE)
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F1G. 3.1. Heteroclinic orbits of (PMODE) for different values of vy. Solutions connecting
L to R only exist for v < 1. For v = 1.1, we show two trajectories — one starting near L, and one
approaching R.

Suppose v > 1/2¢g(K)K. Any continuous heteroclinic orbit, ¢, connecting L to R
must have ¢(&) = 0 for some &. We calculate |r(0)] = 34* > g(K)K and remem-
ber that g(s)s < g(K)K for all s,implying that ¢ can not possibly satisfy (PMODE). O

Remark. For the remainder of the paper, we restrict the main part of our discussion
to g(s) = 7z, for which K = 1, and |g(s)s| < 5. Comments regarding generalizing
our results to other thresholding functions will be made throughout the paper.

Figure 3.1 shows solutions of (PMODE) for g(s) = H% and various values of 7.
Equation (PMODE) has a trajectory connecting L to R only when v < 1. When
v > 1, (PMODE) only has a solution near the equilibrium points. Starting with ¢
slightly smaller than v, we integrate forward in time until |r(¢)| = 1 = max {g(s)s}.
We then start with ¢ slightly larger than —+, and integrate backward in time until
Ir(¢)| = 3. Figure 3.1 shows ¢(£) for v = 1.1 in the regions of £ where F~!(r(¢(£)))
is defined.

3.2. Second order version of (PMODE). Expanding the right side of (2.4)
yields a second order form of the traveling wave ODE for (PM):

¢'=((4'(¢")9' +9(4) ¢". (3.7)

Unlike (PMODE), equation (3.7) does not depend on the choice of . Due to the
properties of g, equation (3.7) becomes singular as |¢'| — 1. We rewrite (3.7) as a
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Phase Plane Portrait

0
. Sy=08] 1
-0.2+ —vy=10| |

e y=101
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-0.6 -
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15 1 2

F1c. 3.2. Phase plane of ODE system (3.8). A series of trajectories are plotted for different
values of v. If v > 1, any connection from (vy,0) to (—v,0) would need to pass through the line of
singularity, ¢ = —1.

system of two ODEs:

¢' =, W - (3.8)

g'(v)v +g(v)’
System (3.8) has a line of equilibrium points at v = 0. Figure 3.2 shows integral curves
where ¢ — —v as £ = oo and ¢ — v as £ — —oo. Each integral curve coincides with
a particular value of . As  increases, the integral curves move toward the singular
line v = —1, clearly illustrating the results of Section 3, and showing why heteroclinic
orbits of (PMODE) do not exist for large 7. Such traveling waves would require ¢’ to
pass through the singular value ¢' = —1.

3.3. Singularities in solutions of (PMODE). We now consider the behavior
of singular solutions of (PMODE). We examine two cases: v > 1 and v = 1. When
~ > 1, there is no traveling wave solution. We consider a trajectory ¢(£) starting near
L and moving toward R, and examine £, satisfying

lim ¢'(¢§) = —1and lim ¢(&) = ¢*,
E—&y §—=&o

for some ¢* > 0. We have ¢'¢p — —¢* as & = &. Near ¢' = —1,

§(@)F +9(@) ~ 56 +1),

/g * g /‘5 “ @+ ",

9
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and

¢'(§) ~ V¢ (& — &) — 1. (3.9)

When « = 1, there is a non-smooth traveling wave solution. In this case, ¢* = 0 and

B(§) ~ —(& — &) near £ = &, so
¢'(&) ~ V2[¢ - &| — 1. (3.10)

This singular behavior is demonstrated by the solid line trajectory in Figure 3.2.

3.4. Second order PDE computations. We test the stability of each traveling
wave solution found from (PMODE) by choosing an initial condition near the traveling
wave and numerically integrating the PDE (PM). We use a fully implicit scheme with
an adaptive time step, and use Newton’s method to approximate solutions of the
nonlinear system.

Figure 3.3 shows computations for v = 1 and v = 1.1. When 0 < v < 1, equation
(PMODE) has a heteroclinic orbit between L and R. The case v = 1 is discussed in
Section 3.3. This traveling wave, ¢, is continuous, but non-smooth. ¢' behaves like
(3.10) near ¢ = 0. Given an initial condition near this traveling wave, the PDE solution
converges to the traveling wave solution, as long as the gradient of the initial condition
is not too large (for large gradients, (PM) becomes ill-posed, and a jump discontinuity
occurs). There is no traveling wave solution for v > 1, as seen in the computations for
v = 1.1; although the initial condition is smooth with small gradient, a discontinuity
develops in finite time, and the long time solution has a jump discontinuity.

10



- — ode solution|-
0.0
L 1.0 i
0.5 52
104
I 100 1
U o | |
-0.51 .
-1
1, ]
=0.0
- =10 1
=52
0.5 =6.8 .
=73
- =25.0 1
u o——F—— —
I -10 10 |
-0.51 .
-1+ _

Fi1c. 3.3. PDE (PM) solution, u, for v = 1.0 and y = 1.1. When v = 1.0, u approaches the
corresponding traveling wave ODE solution as t increases. v = 1.0 is the mazimum value for which
the PDE has a traveling wave connecting v to —y. When v = 1.1, u forms a jump discontinuity in
finite time.
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4. You-Kaveh with advection. Equation (YK) shares many of the properties
of (PM). We prove that orbits of (YKODE) corresponding to traveling wave solutions
of (YK) do not exist when « is too large. This nonexistence follows from a singularity
in (YKODE) that is analogous to that of (PMODE). We study the phase space of
(YKODE) for evidence of the existence of traveling wave solutions when + is small.
For simplicity, we assume g(s) = H%’ which is the thresholding function chosen by
You and Kaveh in [32]. However, our results generalize to other thresholding functions

as described in Sectionl.l.

4.1. The traveling wave ODE. Equation (YKODE) can be expanded to

r(¢) = —(9'(¢")0" + 9(¢")) ¢"". (4.1)

Since ¢'(s)s + g(s) = 0 for s = £1, we immediately see a similarity to (PMODE): a
solution ¢ of (YKODE) becomes singular in ¢"" when |¢"| — £1, just as a solution ¢
of (PMODE) becomes singular in ¢ when |¢'| — +1.

Remark. For general functions g as described in [23], there exists a K > 0 sat-
isfying (3.2), so equation (4.1) is singular at ¢" = £K. A solution ¢ of (PMODE)
becomes singular in ¢"” when |¢'| — K, and a solution ¢ of (YKODE) becomes sin-
gular in ¢/ when |¢"| — K.

4.2. Lyapunov function for the You-Kaveh ODE. Equation (YKODE) has
a Lyapunov function. Multiplying (YKODE) by ¢' and integrating, we have

¢ 3
/ r(¢)¢' (W)dy + g(¢"(£))¢' (§)¢"(€) = / 98" (W)(¢" W))dy.  (4.2)

Define
R(s) = /sr(a)da
We see that
L1(8) = R($(£)) + 9(¢" ()¢’ (£)8" (&) (4.3)
is nondecreasing, since
6O =9 O ©) >0. (4.4)

This Lyapunov function establishes the entropy condition, v > 0. Also, since
L1(€) = R(¢(€)) at extrema of ¢, the structure of R implies a uniform bound on all
bounded solutions of (YKODE). Figure 4.1 shows R for a particular v. R’s essential
behavior remains the same for different values of v > 0. R is a cubic polynomial with
a local maximum at 7, and a local minimum at —y. R (@) strictly increases for ¢ < —y
and for ¢ > v, while it strictly decreases for —y < ¢ < 7. Let

¢=2y and ¢=-2v. (4.5)
12



R(p) fory=2

AN
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FiG. 4.1. R(¢) for v = 2. We mark the mazimum and minimum values, ¢ and ¢, for a bounded
solution of (YKODE).

A simple calculation shows
R(#) =R(-v) and R(¢) =R(7). (4.6)

We now prove that ¢ and ¢ are respectively upper and lower bounds on the set of all
bounded solutions of (YKODE).

LEMMA 4.1. Let ¢ and ¢ be defined by (4.5). Any bounded solution ¢ of
(YKODE) must satisfy B

b <€) < ¢ (4.7)

forall € € R

Proof. Consider any bounded solution ¢ of (YKODE). There exists a & such that
¢ < (&) < @. Otherwise r(p(£)) would be bounded away from zero for all £, thus
bounding g(¢")¢"" away from zero and causing ¢ to become unbounded. Suppose
there exists a & with ¢(£1) > ¢. Then ¢ has a local extremum, ¢(£y1) = dpr > b,
otherwise r(¢) would remain bounded away from zero, implying that ¢ is unbounded.
Since ¢' = 0 at extrema,

L1(6(Em)) = R(d(€m)) > R(=7) > R(7).

Consider ¢(&) for € > &xr. If ¢ > ¢ for all € > &y, then ¢ is strictly bounded away
from zero for all £ > &y, thus implying that ¢ is unbounded. So ¢ must either have
a local extrema ¢, < ¢, or approach a constant value of v or —y as £ — oco. In the
first case, R(¢«) < R(¢m), a contradiction. In the second, ¢'(£§) — 0 and either

13



L(&) = R(y) or L = R(—7), as & = 0o. Both possibilities contradict the fact that L
increases monotonically. Similarly arguing how ¢(£) must behave as & - —oo shows
that ¢ > ¢. 0

As already noted, |¢"| = 1 is a singular value for (YKODE). We use the Lya-
punov function to prove the following lemma, which shows that smooth heteroclinic
orbits are forbidden from crossing this value. Lemma 4.2 is essential for showing that
(YKODE) does not have a smooth heteroclinic orbit connecting L to R when 7 is too
large.

LEMMA 4.2. Let ¢(€) be a smooth heteroclinic orbit connecting L to R. Then V¢,
l¢"(§) < 1.

Proof. We show ¢ (£) < 1. Proving ¢ (£) > —1 follows the same line of argument.
Suppose that ¢ is a smooth trajectory for which there exists a £ such that ¢"(£) > 1.
We show that ¢ can not connect L to R. Our argument follows directly from the
ODE and its Lyapunov function. Our assumptions on ¢ imply the existence of a &,
and an € > 0 such that ¢"(£.) =1, ¢"(§) < 1for € € (£, —¢€,&), and ¢'"(§) > 1 for
£ e (&,& + ¢€). Since ¢ is smooth, and g'(1) + g(1) = 0, we must have r(¢(&.)) =0,
and therefore ¢(£.) = +v. Suppose ¢(£.) = . Then the ODE implies ¢'(£.) > 0.
Also ¢"'(£) > 0 for £ € (&,&. + €), and since both ¢'(£) and ¢"(£) are positive on
the same interval, ¢ will continue to grow without bound, prohibiting it from being a
heteroclinic orbit.

Now suppose ¢(&.) = —v and that ¢"'(&;) is bounded. Then ¢'(&.) < 0. Since
¢ < —y and ¢" > 1, ¢"'(£) > 0 for some interval of £ > ., and ¢" will continue to
increase until ¢' becomes positive and ¢ once again intersects —v. So there is some
& > & with ¢(£.) = —v, ¢/(€) > 0, and ¢"(€.) > 1. So £1(&) > R(—7), and ¢ can
not be a heteroclinic orbit connecting L to R. O

4.3. Nonexistence of traveling waves for Equation (YKODE). Integrat-
ing (YKODE) on an arbitrary interval [£1, &3], we see

£
9(¢"(£2))¢" (&2) — 9(¢" (61))4" (&) = / r(¢(y))dy- (4.8)

Since |g(s)s| < %, smooth solutions of (YKODE) are restricted by

&2
/ r(¢(y))dy| <1 (4.9)

on any interval [, &]. We now use (4.9) to show that when + is too large, the You-
Kaveh ODE does not have a smooth heteroclinic orbit between L and R.

THEOREM 4.3. There exists a finite C > 0 such that (YKODE) has no smooth
solution satisfying

lim g(€) =7 and lim_4() = — (4.10)

£——o00

when v > C.

Proof. Suppose ¢ is a smooth solution of (YKODE) that satisfies (4.10). Then
¢ must be a heteroclinic orbit connecting L to R, and there exists at least one &
with ¢(£) = 0. Let & be the minimum of all points £ satisfying ¢(§) = 0. Let &
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be the largest number satisfying both £_ < & and ¢(£~) = ~. Since ¢"' > 0 when

—y <P <y &€ <0forall £ € [£_,&]. Otherwise both ¢’ and ¢" would become

positive in (£-,&). ¢' would have to become negative again so that ¢(§) = 0, but

this would require that ¢ become larger than 7, contradicting the assumptions on &_.
Let p denote the minimum of ¢' on [¢_,.]. Then restriction (4.9) implies

¢ £e ! 1
12/-ﬂmm@21-wwm¢@@>ll —r($(s))¢ (s)ds

P(s) ~m
1
= ;(R(V) —R(0)).
Since p < 0 and R(y) < R(0), the above gives
R(0) =R(7) < |l (4.11)

From the bounds on ¢ and ¢" given by Lemmas 4.1 and 4.2, we see that

Il < 2¢/2y (4.12)

as a result of the following interpolation lemma.
LEMMA 4.4. Suppose f € C%(R) satisfies |f| < M and |f"| < C. Then

If'l <2VCM.

Proof. Given x € R, Taylor’s theorem shows

fiay = TEXI D ey (4.13)

for all h > 0 and some & € [—h, h]. The bounds on f and f" give us

M
@) < 5 +Ch
Choosing h = ,/% gives

2
If'(z)? < (% + Ch) =4MC.

h
O
Calculating
Lo 3
R(O) - R() = 3",
and combining (4.11) with (4.12) proves Theorem 4.3. O

Remark. Theorem 4.3 does not depend on the choice g = H% It only relies on

the properties of thresholding functions as explained in [23] and in Section 1.1 . In
particular, the nonexistence follows mainly from the non-monotonicity of g(s)s.
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4.4. The (YKODE) phase space. We rewrite (4.1) as a system of first-order
ODEs:

¢ =v, V=w w= 9 (4.14)

g (w)yw + g(w)

System (4.14) has two equilibrium points, L = (v,0,0) and R = (—+v,0,0). A
traveling wave solution of (YK) satisfying (2.2) corresponds to a heteroclinic orbit
connecting L to R. Let W*(L) and W*(L) denote respectively the stable and unstable
manifolds of L, and define W*(R) and W*(R) in the same way.

Since v > 0, W¥(L) and W*(R) are both two-dimensional with complex eigenval-
ues, while W*(R) and W*(L) are one-dimensional manifolds. We follow the method
used in [3] and [7]. We illustrate the unstable manifold of L by considering a set
of initial values near L and integrating (4.14) forward in time. Each trajectory will
approach W*(L). To visualize the manifold, we mark the intersections of each com-
puted trajectory with a two-dimensional plane (a Poincaré section) in the phase space.
This plane is chosen so that all trajectories intersect the plane transversely. Any
two-dimensional manifold intersects the plane on a curve and any one-dimensional
manifold intersects at a point. Picking initial points near R, and integrating the ODE
backward in time produces trajectories approaching W#(R). Traveling wave solutions
of (4.14) correspond to intersections of W*(L) with W*(R).

In each figure, initial values are taken at a distance of 10~7 to 10~ from the
corresponding equilibrium point. We consider the plane ¢ = 0, denoted by ¥¢. Any
intersection of W*(L) with W#®(R) must appear on ¥g. The symmetry of (4.14) implies
that the restriction of W¥*(L) N W?(R) to ¥ occurs on the line w = 0.

Figure 4.2 shows the intersection of stable and unstable manifolds of u; and
ug with Xy for v = 0.5. Since W*(L) and W*(R) intersect each other, there is a
heteroclinic orbit connecting L to R. One end of W*(L) spirals around the one-
dimensional manifold, W¥(R). Symmetry gives the same relationship between W*(R)
and W#(L). As « is increased, the spiral structure of W¥%(L) shifts toward the line
w = 1, while W#(R) shifts toward w = —1. Figure 4.3 demonstrates that the manifolds
do not have this spiral structure on ¥y when 7 is too large. The one-dimensional
manifolds W?#(L) and W*(R) no longer intersect ¥y when these spiral structures
disappear. Further increasing v moves W¥(L) and W?¥(R) way from each other. For
large enough v, W¥(L) and W?(R) do not intersect each other, as seen in Figure 4.3,
where v = 1.3.

In Figure 4.4, we draw W*(L) for a sequence of 7y values. W?#(R) is not shown,
since it can be deduced by reflecting W*(L) across the line w = 0. The two manifolds
intersect only when the restriction of W%(L) to Xy intersects the line w = 0. W¥(L)
(and consequently W#(R)) shifts away from the line w = 0 as v increases. For large
enough v, W¥(L) does not intersect the line w = 0 at ¥y. As proved in Theorem 4.3,
there is a value 7. such that W*(L) and W*(L) do not intersect when v > ~.. Our
numerical experiments suggest that 1.16 < . < 1.17.

4.5. Manifold boundaries caused by singularities in solutions of (YKODE).
W*(L) and W#*(R) have boundaries caused by the ODE’s singularity. Consider
v = 1.0, for which W*(L) (X is bounded above by w = 1. Certainly the mani-
fold can not extend past w = 1, since (4.14) is singular there, but there is also a
boundary on the opposite end of W*(L) ) Xo. This boundary is far from either line
of singularity, w = £1. Figure 4.5 shows the second derivative of trajectories near
these top and bottom boundaries of W*(L) [ Xo. Let & denote the value of £ for
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I ntersections of Stable and Unstable Manifolds With ZO

y=05
I I
0.5+ -
S Ve e
WiRys) R
W'R, )
(pE 0 =
3 WL,
i u \\\\ S~ 0. o
WL,y - 5
0.5+ " -
-1 \ ;0 \ \ \ B
-1.5 -1 -0.5 0 0.5 1

F1a. 4.2. Cross-section of the phase plane of equation (YKODE) with v = 0.5. We
show the intersections of the stable and unstable manifolds of both equilibrium points with the plane
¢ =0 (denoted Xo).

Intersections of WS(Ry) and w“(Ly) With 5,
y=1.0 andy=1.3

1 \

Wik,

0.5

o
[¢)]
T

F1g. 4.3. Changing manifolds of equation (YKODE) with increasing vy. The intersec-
tions of W*(L) and W*(R) with ¢ are shown for v = 1.0 and v = 1.3. In both cases, W*(L) and
W*(R) do not intersect 9. When v = 1.3, W¥(L) does not intersect W*(R), so there can be no
traveling wave solution of the PDE.
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Intersections of W"( L) with =
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\

=
(€]
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F1c. 4.4. W"(L)(Xo for equation (YKODE) with different values of v. A traveling
wave solution ezists when W¥(L) (| Zo intersects the line ¢’ = 0. We see that no such intersection
exists for large enough 7.

which a given trajectory ¢(£) intersects g (& could be different for each trajectory).
Near the top boundary, ¢ (&) gets arbitrarily close to ¢ (&) = —1. Trajectories near
the bottom boundary approach ¢"(£.) = —1, for some &, < &. We see that ¢(€.) — 7,
since ¢ (&) — 0.

The singularities of solutions to (YKODE) are similar to those of (PMODE),
but they occur in higher derivatives. Consider a trajectory ¢ with second derivative
approaching -1 (the case ¢ — 1 is very similar). Assume there is some &, with

dig 71O = —hand Jig 910 =67

Again we have multiple cases, but this time they depend on the zeros of r(¢).
Case 1: r(¢*) # 0. This corresponds to the case v > 1 for (PMODE). But now the
singularity occurs in ¢" as & — &..

¢" (&) ~ 2v/r(¢*) (& — &) — 1. (4.15)

This singularity is demonstrated by trajectory near the top boundary of W¥(L),
drawn in Figure 4.5.
Case 2: r(¢*) = 0. Either ¢* = v or ¢* = —~. It is easy to check that

¢"(€) ~V2IE - & - 1. (4.16)

Case 2 is demonstrated by the trajectory near the bottom boundary of W*(L), as
seen in Figure 4.5. It also corresponds to a critical case for traveling wave solutions
of (YKODE). We expect that there is some 7, for which (YKODE) has a non-smooth
traveling wave solution analogous to the solution of (PMODE) for v = 1.
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B¢ Along Intersection of WU(L) with 2

y=10
1 [ !
near top boundary;| |
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05 | B
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Peg op—=

near bottom boundaryf

0

3

Fi1c. 4.5. Trajectories of (YKODE) near the boundaries of W%(L) for v = 1.0. Shows
the second derivatives of trajectories that pass near the top and bottom boundaries of W*(L) () Xo.
Trajectories near the top boundary have second derivatives approaching the singular value w = 1
as ¢ approaches 0, as can be seen from the phase portrait. Trajectories near the bottom boundary
have a second derivative near ¢'' = —1, but not where ¢ = 0. The traveling wave solution’s second
derivative is shown for comparison.

Y ou-Kaveh Traveling Waves

2 T
L —y=05 ,
_______________________ I s y=07
j—————— - y=10 |
..................................... - y=1.16

'?15 -io

-5

SN or-

F1G. 4.6. Traveling wave solutions of equation (YK). Shown for different values of .
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O for Different Values of y

1 a—

I i —y=11 ]
N | y=1.12

0.5+ - y=114| A
-- y=1.16

Fi1G. 4.7. The second derivatives of traveling wave solutions of equation (YK). Trav-
eling waves for v near 1.16 have second derivatives near the singular value w = —1.

4.6. Traveling wave solutions of equation (YK). Solutions of ODE (4.1)
that correspond to traveling waves connecting L to R are given by the intersection
of W*(L) with W#*(R). Our study of the phase space shows that there is at most
one such intersection for any given 7. The traveling waves shown in Figure 4.6 were
produced by finding this intersection.

In Figure 4.7, we provide graphs of the second derivative of traveling wave solu-
tions. In each case, |¢"| is bounded by 1 as expected. The local extrema of ¢" are
achieved at ¢ = +~, where ¢"" = 0. As v increases, these extreme values approach
the singular values ¢" = 1. Because of the ODE’s symmetry, ¢" approaches a sin-
gular value in two places. ¢" approaches -1 when ¢ = v, and it approaches +1 when
¢ ==

To show that these traveling waves are stable, we implement equation (YK) with
a fully implicit scheme and adaptive time step. The correspondence between (YK)
and (YKODE) is not as clear as it is for (PM) and (PMODE). The numerics become
very difficult for v near the range of nonexistence of traveling waves. In this parameter
range, the PDE numerics do not converge nicely to a traveling wave solution, even
when our ODE numerics suggests one exists. It is not clear whether this difficulty
results from the numerics or from the PDE. We show an example with a smaller v
in Figure 4.8. In this case, the PDE solution clearly converges to the solution of
(YKODE).
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Fi1g. 4.8. Approximate solution of (YK). When v = 0.7, u approaches the traveling wave
solution given by (YKODE).
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5. Tumblin-Turk with advection. We show that (TT) is qualitatively differ-
ent from both (PM) and (YK). We first use a topological argument to prove that
for all ¥ > 0, (TTODE) has an orbit corresponding to a traveling wave solution of
equation (TT). Our primary tool is the Conley Index, as discussed in [26]. We use
standard methods [3, 24], but the particular nonlinear structure of (TTODE) requires
new a priori bounds and estimates. We rely on the observation that (TTODE) can
be rewritten as

r(¢) = —(arctan(¢"))’, (5.1)
1

when ¢g(s) = 1352+ The analysis consequently depends very much on this particular
choice of g.

In Section 5.3, we present phase plane illustrations that contrast solutions of
(TTODE) to those of (YKODE) and (PMODE). We conclude our discussion of the
Tumblin-Turk equations with numerical simulations of equation (TT).

5.1. Lyapunov function for (TTODE). We seek a Lyapunov function, £5(§),
for (TTODE). Let R(s) denote a primitive of r(s). Multiplying equation (5.1) by ¢'
and integrating produces

13
R(¢) = —arctan(¢" )¢’ +/ arctan(¢” (s))¢" (s)ds.

Since arctan(s)s > 0 for all s, we easily check that

£2(€) = R(S(€)) + arctan(" ()¢ (€) (5.2)
satisfies
d%@(.s) = arctan(¢" (€))¢" (€) > 0. (5.3)

As was the case for £y, £2(§) = R(#(£)) at zeros of ¢' and ¢". This establishes the
entropy condition v > 0 and the following lemma.

LEMMA 5.1. Let ¢ and ¢ be defined by (4.5). Any bounded smooth solution ¢ of
(TTODE) must satisfy B

¢ < ¢&) < ¢ (5.4)

forall € € R
Proof. The proof follows the same argument as that of Lemma 4.1. O

5.2. System of ODEs for (TTODE). We rewrite (TTODE) as a system of
three ODEs:

¢ =v, v =tan(w), w' =-—r(e). (5.5)

System (5.5) has two equilibrium points, L = (v,0,0) and R = (—v,0,0). We use
Conley index theory to prove the existence of a heteroclinic orbit connecting L to R.
To do this, we first find uniform bounds for all bounded solutions, (¢, v,w) of (5.5).
Lemma 5.1 provides such a bound for ¢. It is particularly important to find a bound
C such that |w| < C < %. To do so, we first examine v’ = ¢".
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LEMMA 5.2. Any bounded smooth solution ¢ of equation (TTODE) satisfies

/ " arctan(¢” ()6 (s)ds < R(~7) ~R() = 27" (5.6)

— 00

Proof. We follow an argument used in the proof of Theorem 4.8 in [4]. Let ¢ be a
bounded solution of (TTODE). Bound (5.6) is obvious if either ¢(§) =« or ¢(§) = —
for all . Since L = (v,0,0) and R = (—~,0,0) are the only equilibrium points of
(TTODE), we now assume that ¢ is nonconstant. We first examine the behavior of
(&) as £ = 0. There are two cases to consider, depending on the set of extrema, of ¢.

Case 1. Suppose there exists a &y such that ¢ has no extrema for £ > £y;. Then ¢
approaches an equilibrium point as & — oco. Since L is increasing, ¢ — —v as £ — oo,
otherwise all extrema of ¢ would be less than ¢, and ¢ would grow without bound as
& = —o00. We therefore have B

/ " arctan(¢" ()" (s)ds = R(—7) — R($(0))-

Case 2. Now assume that there is no such &ys. Since ¢ solves (TTODE), it is analytic
(see e.g. [27]), and must have a countable set of extrema with no limit point. Suppose
the extrema occur at & with & > 0 and & < &41. The Lyapunov function implies
that R(&;) is a bounded increasing sequence, and we therefore have R(§) — R, for
some Ry < R(—7). For each &,

13
/0 arctan (¢"(s))¢"(s)ds = R (¢(&) — R (4(0)) < R(—7) — R(¢(0)).

The monotone convergence theorem gives us

/0 N arctan(¢"(s))¢" (s)ds = Ry — R(¢(0)) < R(=7v) — R(¢(0)). (5.7)

Similar arguments show

0
[ arctan(6" ()¢ (s)ds < R((0) - R(). (58)
Combining (5.7) and (5.8) completes the proof. O

We interpret Lemma 5.2 to mean that ¢ = v is almost L', since arctan (s)s is
linear in s for large s. Specifically, for any € > 0, we define S = {s: |¢"'(s)| > €}, and
discover

[ 16 0ds < e [ avctane()6" (s) s

! /00 arctan(¢” (s))¢" (s)ds < #73_ (5.9)

— arctane J_ — Jarctane

We now show that w is bounded away from +7, the asymptotes of tanw.
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LEMMA 5.3. Let (¢p,v,w) be any bounded solution of system (5.5). There exists

a positive Cy, < 5 such that |w| < Cy, for all § € R.

Proof. Since ¢ is uniformly bounded, | — r(¢)| < M for some M, which by (5.5)

implies a uniform Lipschitz bound for w,

w(é — h) > w(&) — Mh, for all & and all k> 0.

(5.10)

We use (5.9) with the uniform Lipschitz continuity of w to derive a point-wise bound
on w. We focus on bounding w away from w = +%. To make use of (5.9), we must
find an interval on which w is bounded away from zero. Pick & with § < w(&) < 3.

If no such & exists, then w({) < §. Choose § > 0 so

%>w(§0)—M6> %

also implying by (5.10) that w(§) > ¢ for all £ € [§ — 6, 6]. Let

S={¢:4"(€) >

Then Lemma, 5.2 ensures

[wl=[ 1< S R = RG) = 20
S S

Now using (5.10) and (5.11), we calculate

wamzﬁ;wwm

o

= /g | tan (w(s))|ds

0—6

&o
zé tan (w(g) — M (£ — 5))ds

0—0

1 cos (w(&) — M) ‘
=—lo
M cos (w(&o))
1 cos T
> —log | ——2—|.
=M% [eos (w(@))
Combining this with (5.12), we see
L lo V2 2
M8 2cos (w(&)) | ~ Tl
S0
2 4
cos (w(€y)) > L2e M) > 0
and

2
w(&) < arccos(%e*M(%Vs)) < g

24

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)



The same argument with slight adjustments shows that

2 4
w(&o) > —arccos(%e‘M(ﬂg)) > —g.

COROLLARY 5.4. There exists a C, > 0 satisfying |v] < C,.

Proof. Since w is bounded in an interval strictly contained within (=%, %), we
have a bound on ¢" = tanw. We use Lemma 4.4 to bound v = ¢'. O

THEOREM 2. Given any v > 0, there exists a solution ¢ of (TTODE) such that
d(&) > v as & = —oo, and ¢(§) = —v as £ — oc.

Proof. Our proof centers on the Conley Index. We refer our reader to [26], which
contains an excellent description of Conley Index theory. Let C, and C, be given by
Lemmas 5.4 and 5.3 Define the set

c, . (5.16)

N is an isolating neighborhood, as all bounded trajectories are strictly contained
within the interior of N. As explained in Theorem 22.18 of [26], N contains an isolat-
ing block, B. Isolating blocks of (TTODE) are special isolating sets whose boundary
points immediately leave the set in positive or negative time under the flow defined
by (TTODE). The Conley Index is the homotopic equivalence class of the quotient
space B/b*, where bT is the set of all points on B that leave B in positive time. Let
B € R, and define the continuous deformation of (TTODE),

r(¢) + B8 =—(g(¢")¢"). (5.17)

Let fo = 3. For 3 < f3o, B contains two equilibrium points, and B can also be chosen
large enough so that it is an isolating block of (5.17) for all 8 < ¢, as uniform bounds
can be found on the set of all bounded trajectories as was done above for the case
B8 =0.

When 8 = Sy, the only bounded trajectory of (5.17) is the constant function ¢ =
0, so B remains an isolating block. Choosing 8 > fy produces a differential equation
with no equilibrium points. B remains an isolating block of the flow, and contains
no isolated invariant set (other than the null set). It follows that the homotopic
equivalence class of B/b+ is that of the null set, implying the existence of an orbit of
(TTODE) connecting L and R (see Theorem 22.33 in [26]). The Lyapunov function
ensures that the trajectory flows from L to R. O

5.3. The (TTODE) phase space. As suggested by our analysis of both equa-
tions, the phase plane geometry of (TTODE) is remarkably different from that of
equation (YKODE). Using the method discussed in Section 4.4, we visualize the
phase space by considering the cross-section u = 0, denoted by Xg. Any intersection
of W¥(L) with W#(R) is visible on X¢, where it must occur on the line w = 0. We
draw W*(L) by computing trajectories with initial conditions near L, and marking
their intersections with Xg. W*(R) is drawn similarly, but by numerically integrating
(TTODE) backward in time.

Smooth curves in the phase space must lie between the two planes w = £ 7, since
v = tanw. Figures 5.1 and 5.2 show the intersections of W#*(R) and W*(L) with X,
for various values of . Since W*(R) and W*(L) do not have boundaries caused by
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singularities of (TTODE), both manifolds stretch from w = —% to w = 7, even for
large 7. This allows an intersection at w = 0 for all v > 0; increasing «y only shifts
the manifolds in the —v = —¢' direction. This is remarkably different from the You-
Kaveh ODE (YKODE), for which W#(R) and W*(L) have boundaries that allow the
manifolds to shift away from each other when < is increased.

5.4. Traveling wave solutions of equation (TT). Figure 5.3 shows traveling
wave solutions of equation (TT) for a series of y-values. Each traveling wave was
produced by finding the intersection of W¥(L) with W*(R) in the phase space of
(TTODE). As the jump height from uy, to upg increases, so does the traveling wave’s
slope near the jump. Although the ODE solutions are smooth, the jump transition
can be so severe that when viewed at large length scales, the solution appears to have
a shock. This is demonstrated when v = 7, as shown in Figure 5.3.

Numerical examples suggest that the heteroclinic orbits of (TTODE) are stable
traveling wave solutions of equation (TT). To numerically integrate equation (TT),
we use the change of variables w = arctan u,,, and solve the nonlinear system

Ut + Uy = Way (5.18)

tanw = —Ugy

using a fully implicit scheme. The change of variables w = arctan u,, is used to ensure
that uz, remains bounded. See [5] for a discussion on numerically implementing the
fourth order diffusion.

Figure 5.4 shows the behavior of u, given an initial condition near the traveling
wave profile. The computations suggest that the traveling wave is a stable solution of
the PDE.
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Intersections of W(R ) and W (L ) With =g
y=10 and y=2.0

Fi1G. 5.1. Changes of the manifolds for (TTODE) with increasing . The intersections
of W¥(L) and W*(R) with Xo are shown for v = 1.0 and v = 2.0.

Intersections of W(R ) and W (L ) With =g
y=2.0,5.0and 8.0

-1

) S R B
-140 -120 -100 -80 V-60 -40  -20 0

F1G. 5.2. Changes of the manifolds for (TTODE) with increasing . The intersections
of W¥(L) and W*(R) with ¢ are shown for v = 2.0,5.0, and 8.0. Each manifold’s structure persists
while increasing -y.
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Tumblin-Turk Traveling Waves

i —y=20
57 I: ..... y:40
................................................... ! ---y=7.0

Fi1G. 5.3. Heteroclinic orbits of equation (TTODE). At this length scale, the traveling
wave solution for v =7 appears to have a shock.

Tumbli n-Turyk:v%/iOth Advection

F1G. 5.4. Numerically integrated solution of equation (TT) for v = 7.0.
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6. Conclusions. We have considered traveling wave solutions of the advection
diffusion equations

1
ug + (§u2)z = —(9(vz)Uzz) 2z (YK)
and
L,
U + (5“ ):c = _(g(uwm)umzz)wa (TT)
with g(s) = H;sz, in order to cleanly illustrate the features of higher order nonlinear

diffusion equations recently proposed for use in image processing.

The advection term wu, in (YK) and (TT) serves two roles. First it allows
for traveling wave solutions that approximate shocks, which in images correspond
to edges. By converting the problem to one of traveling waves, we reduce a fourth
order PDE to a third order ordinary differential equation for which we are able to
prove rigorous results and perform clear phase space computations. Second, advective
PDEs combining similar diffusion terms are being used for such processes as image
inpainting [1, 2]. Thus these kind of equations are interesting for image processing in
their own right.

We discover a fundamental difference between solutions of (YK) and (TT). Smooth
traveling waves solutions of (YK) do not exist for sufficiently large jump height,
whereas solutions of (TT) exist for all jumps. This suggests that the dynamics of
the full PDE (YK) is quite different from that of (TT). In a separate paper, we prove
that in one dimension, the PDE (TT) without advection has globally smooth solu-
tions, given smooth initial data. The study in this paper would lead us to conjecture
that (YK) without advection does have finite time singularities in gz, just as the
classical Perona-Malik equation has finite time singularities in the slope.

Although the PDE numerics suggest that the smooth traveling waves are stable,
a rigorous proof of this is still forthcoming. Osher and Ralston addressed the same
problem in [22], where they proved stability of traveling waves of the convective porous
media equation. More recently, the authors of [6] used Evans function techniques to
prove stability of thin film traveling waves.
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