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Abstract

We apply the level-set methodology to compute multivalued solutions of the parax-
ial eikonal equation in both isotropic and anisotropic metrics. This paraxial equation
is obtained from 2-D stationary eikonal equations by using one of the spatial directions
as the artificial evolution direction. The advection velocity field used to move level
sets is obtained by the method of characteristics; therefore the motion of level sets is
defined in a phase space, and the zero level set yields the location of bicharacteristic
strips in the reduced phase space. The multivalued traveltime is obtained from solv-
ing another advection equation with a source term. The complexity of the algorithm
is O(N3LogN) in the worst case and O(N?3) in the average case, rather than O(N*)
as the typical Lagrangian ray-tracing, where N is the number of the sampling points
along one of the spatial directions. Numerical experiments including the well-known
Marmousi synthetic model illustrate the accuracy and the efficiency of the Eulerian
method.

1 Introduction

The eikonal equation as a first-order nonlinear PDE usually admits more than one weak
solution. The concept of viscosity solution developed by Crandall, Evans and Lions [8] and
others makes use of the maximum principle for the nonlinear PDE and picks out a unique and
stable solution among many weak solutions; physically, this solution corresponds to the first
arrival or the least traveltime if the solution of the eikonal equation has the dimension of the
time [19]. However, in practice, later arrivals may carry information which is more relevant to
applications. In geophysical oil explorations, for example, the first-arrival wavefront may not
carry the most energetic part of the wave-field, and later-arrival wavefronts may be more
useful for modern high resolution seismic imaging via integral transform in the presence
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of strong refraction [12, 20, 22|. In the quantum mechanics, the WKBJ method for the
semi-classical limit of the Schrodinger equation needs multivalued phases to construct the
asymptotic expansion of the wave field, where the phases are multivalued solutions of an
eikonal equation [13, 17, 35].

Naturally one may use the method of characteristics, a Lagrangian formulation, to com-
pute the multivalued solutions of the eikonal equation. However, it suffers from some typical
shortcomings of Lagrangian methods, for instance, nonuniform distribution of the solutions
in the physical space. The resolution of this is via dynamic addition and removal of rays
(characteristics) as computation proceeds at the cost of complicated data structure and
bookkeeping [42]. Therefore, one looks for Eulerian formulations for computing multivalued
solutions of the eikonal equation. In this regard, a new field, so-called Eulerian geometrical
optics, emerged [2] as many researchers have devoted a lot of efforts to developing efficient
Eulerian methods for computing multivalued solutions since early 90s. As a result, there
are many different approaches in the literature: explicit caustic construction method [1, 3],
slowness matching method [39, 40], segment projection method [10], dynamic surface exten-
sion method [34, 36], kinetic method for multi-branch entropy solutions [4, 13], co-dimension
2 level-set evolution method [23, 29, 18], Liouville equations for escape parameters [11], to
name just a few.

In this paper we propose another level-set based Eulerian method for computing multival-
ued solutions of the paraxial eikonal equation in both isotropic and anisotropic metrics. The
level-set framework provides a natural link from a Lagrangian formulation to an Eulerian
formulation. We first derive the ray tracing equation using one of the spatial direction as
the running parameter, which corresponds to the paraxial eikonal equation. The ray tracing
equation is embedded into a level-set motion equation to define a passive motion for level
sets. The multivalued traveltime is obtained from solving another advection equation with
a non-homogeneous source term. The complexity of the algorithm is O(N3LogN) in the
worst case and O(N?) in the average case, rather than O(N?) as in the typical Lagrangian
ray-tracing, where NV is the number of the sampling points along one of the spatial directions.
This level-set method is different from the ones in [23, 29, 18, 5] in two aspects: on the one
hand for a 2-dimensional eikonal equation we use a level-set motion equation defined in the
2-dimensional space rather than the 3-dimensional space; on the other hand, our method
yields both locations and multivalued times rather than only the multivalued wavefronts.
Of course, the drawback is that the method does not allow overturning, but it is sufficient
for many geophysical applications [14, 31] and for some applications in quantum mechanics
[28]. Numerical experiments including the well-known Marmousi synthetic model illustrate
the accuracy and efficiency of the Eulerian method. In one appendix, we show that our level
set formulation is equivalent to the one proposed in the recent work [18].

2 Paraxial Formulation for Isotropic Eikonal equation

Consider the eikonal equation with a point source condition in an isotropic medium which
occupies an open, bounded domain Q C R? By isotropy here we mean the wave velocity
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has no directional dependence. The equation is as follows,

1
‘VXT(X, Xs)‘ = @ (1)
) T(x,X,) 1
limy ,x, = , T >0, 2
kol e @

where x;, is the given source point, ¢ € C*(f2) is the positive velocity. Here 7(x,x;) denotes
the time (“traveltime”) taken by a particle moving at velocity ¢(x) to travel from the source
point x; to a target point x € ). For x # x; near x,, 7 is a differentiable function of both
arguments and satisfies the eikonal equation (1). However, when x is sufficiently distant
from x; and the velocity c(x) is inhomogeneous with spatial position x, 7 is generally a
multivalued function of both variables, and cusps and caustics occur with high probabilities
[43].

As mentioned above, the concept of viscosity solution can be used to extract a globally
single valued solution for the eikonal equation [8]; this solution assigns to each point x the
least of the (possibly many) traveltimes from x, to x. Relying on this concept we may use
finite difference schemes to compute the least traveltime stably and efficiently [9, 25, 26, 33,
31, 32]. Although the viscosity concept and related numerical methods provide a natural
Eulerian framework for geometrical optics, the drawback is that it provides only first-arrivals
while some applications may require all arrival times.

To motivate our derivation from a multivalued Lagrangian framework to a multivalued
Eulerian framework, we first derive a single-valued Lagrangian framework from the above
viscosity-solution-based single-valued Eulerian framework. Because the rays of geometric
optics are the orthogonal trajectories of the wavefronts (level sets of 7) [7], consider the
one-parameter family of 2-dimensional wavefronts 7(t), where ¢t € [eg,00) is time, ¢ is a
small number and () is a simple, closed and smooth wavefront. Then near ¢ = €, y(?)
can be generated by moving y(€y) along the normal vector field with speed ¢ depending on
position x. Let X(r,t) = (z(r,t), z(r,t)) be the position vector which parameterizes v(t) by
0 <r <R, X(0,t) = X(R,t). Then the equations of motion can be written as

S - S - (3)
\/ 22+ 22 \ 22+ 22

Given the mapping from [0, R] X [¢, 00) to R? generated by the moving curve, there exists
near t = ¢ an inverse mapping function 7 defined by ¢ = 7(x,y). Then the function 7
satisfies the eikonal equation (1), as long as the wavefront stays smooth and non-intersecting
[25]. If the wavefront intersects, then the particle tracking system (3) without regridding is
linearly ill-posed [25]. However, the monotone numerical method for the viscosity solution
of the eikonal equation (1) was well developed which yields a physically relevant solution
even if the wavefront self-intersects. In fact, the success of the level set method in the

xy = c(z, 2) 2z = —c(z, 2)
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early stage was more or less attributed to the concept of viscosity solution and related high-
order numerical methods [26, 16], so that the topology change and merging can be taken
care of automatically when they do occur. On the other hand, it also implies that in the
current framework, i.e. Lagrangian formulation (3) and Eulerian formulation (1), it is hard
to capture self-intersecting wavefronts unless special care is taken to keep track of some
extra parameters, such as amplitude [1] or slowness [39, 40|, etc. These extra parameters are
essentially used to parameterize the self-intersection, i.e., multivaluedness, and this viewpoint
naturally leads to consider phase-space formulations for computing multivalued solutions.

By the method of characteristics for the eikonal equation (1) with the point source con-
dition (2), we have a ray tracing system,

Cé—f = csinf (4)
% = ccosf (5)
de . ,0c oc
i s1n0£—cose% (6)
with initial conditions
im0 = s (7)
z‘t:O = Zs (8)
0|t:0 = 93 (9)

where x = (z, z), Xs = (x5, 25) and 6 varies from —7 to 7. This is a multivalued Lagrangian
formulation because even though the rays in the phase space (z,z,6) may never intersect,
the projected rays in the physical space (x, z) may intersect.

In some applications, for example, wave propagation in reflection seismics [6], the trav-
eltimes of interest are carried by the so-called sub-horizontal rays [14, 38, 31|, where sub-
horizontal means “oriented in the positive z-direction”; see also [28] for an example in quan-
tum mechanics. A convenient characterization for sub-horizontal rays is that

% > €08 bOpax > 0. (10)

This inequality holds for rays making an angle # with the vertical satisfying || < fmax < 5.
To be specific, consider

Q = {(.T,Z) : Tmin S X S xmaxao S 4 S Zmax} (11)

and assume that the source is located on the surface: Ty < T, < Tmax and z; = 0. By
the sub-horizontal condition we can use depth as the running parameter so that we have a
reduced system

Z—z = tanf (12)

do 1 (0c oc
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with

£E|z:0 = Ts (14)
9|z:0 = 05 (15)

where now 0, varies from —0p. < 6 < O, < 5. In addition, the traveltime is computed
by integrating

dt 1

RabdR 16

dz ccosf (16)
with

tl.=o = 0. (17)

This ray tracing system (12-15) is a multivalued Lagrangian formulation defined in the
reduced phase space (z;x,6). Actually, the ray tracing system can be obtained by applying
the method of characteristics to the paraxial eikonal equation

or or 1 o\’ cos? 0 max
& =H (.Z',Z, 8_{12> = max <0_2 — (a—x> , 702 ), (18)

which in turn comes from enforcing the sub-horizontal condition in the eikonal equation (1);
see [40] for a theoretical justification.

As we will see, since the ray tracing system (12), (13) is formulated in a reduced phase
space, we may use a 2-dimensional level set motion equation to move the initial curve deduced
from the initial condition and the curves moved will not self-intersect because they are defined
in the reduced phase space.

3 Paraxial formulation for anisotropic eikonal equation

For general anisotropic media in which wave propagation velocities have both spatial and
directional dependence, we may also formulate paraxial eikonal equations by enforcing a
version of sub-horizontal condition.

To illustrate the idea behind our approach, we consider the two-dimensional anisotropic
eikonal equation only; please see [29] for a detailed derivation of 3-D anisotropic eikonal
equations. Consequently, we denote the 2-D anisotropic eikonal equation as

F(xazaplap?)) = 0, (19)

where F' is a function depending on the anisotropic medium under consideration. Parame-
terize the slowness vector by

sin 0 cos

D=7 > P3=Wa

V(z,z,0) (20)
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where # is known as the phase angle, varying from —=7 to 7, and V as the phase velocity
solving an eigenvalue problem [29] and selecting different wave modes. Applying the method
of characteristics to equation (19) yields

dz OF  OF\ ' OF
a (pla—]al+p38—m) a—pl, (21)
1
% = (plg—i+p3g—i) g—i, (22)
1
P (p1§F+ gf) o, (23)
1
% = —(plg—i-l-mg—i) ?3—};’ (24)

where the evolution parameter ¢ has the dimension of time. To obtain an equation for ¢ E,
we differentiate the equations in (20), arriving at

dpi _ Vcosb - 9 sinf df _sinf (OV dx L oV dz (25)
dt V2 dt V2 \9zdt 0z dt
dp; _ —Vsinf - g cosfdf  cos® (OV da LV oV dz (26)
dt V2 dt V2 \oxdt  0zdt
Thus, solving the above equations for % and substituting in (23) and (24) gives us
do OF ~ QF\ ' (. 0F OF
—-— = V——cosf —V—sinf 27
di (pla ™ +p38p3> ( g oS P sin ) (27)

Equations (21), (22) and (27) give us the ray tracing system which may be solved with
suitable initial conditions as (7), (8) and (9).
The condition for sub-horizontal rays is

—1
dz _ ( OF 8F> 8_F>0’ (28)

- +
dt pl@ D1 ps apg Gpg
which may be enforced easily in the reduced phase space for different wave modes. This

implies that we may use the depth variable as the running parameter along the ray so that
we have

da OF (OF\ "

e S 2
dz 3p1 <8p3) ( 9)
o OF\ ™' [ OF OF

% = <a—p3> (V& cosf — Va— sin 9) (30)

augmented with initial conditions (14) and (15).
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Similar to the isotropic case, the traveltime is computed by integrating

g dzx

= p3s+pi -

31
dz dz’ (31)

with the initial condition (17).

4 Level Set Formulation

As we mentioned above, we treat z as an artificial time variable. Now, if we define ¢ =
&(z,x,0) such that the zero level set, {(z(z2),0(2)) : é(z,x(2),0(z)) = 0}, gives the location
of the reduced bicharacteristic strip (z(z),8(2)) at z, then we may differentiate the zero level
set equation with respect to z to obtain

¢z + u¢x + U¢0 = 07 (32)
with
dx db
u= andv—a, (33)

which are given by the ray equations (12-13) or (29-30). In essence, we embed the ray
tracing equations as the velocity field, u = (u,v), into the level set equation which governs
the motion of the bicharacteristic strips in the phase space.

The initial condition for the level set motion equation (32) is taken to be

¢‘z:0 - ¢(0,$,0):$—3}'5, (34)

which is obtained from initial conditions (14) and (15). This is a signed distance function,
satisfying |V, 06| = 1, to the initial phase space curve

{(x,&) =T, _Hmax < 0 < emax} (35)
in the reduced phase space
QP = {(33, 0) * Tmin S z S Tmax, _Hmax S 9 S gmax}- (36)

The initial curve partitions €2, into two sub-domains represented by {(z,8) : ¢(0,-,-) < 0}
and {(z,0) : #(0,-,-) > 0}. Afterwards, the level set motion equation takes over and moves
this initial curve as z varies, and the zero level set of ¢ at z gives the location of the new curve
which still partitions 2, into two sub-domains. Since the initial curve defines an implicit
function between z and 6, where 6 is a multivalued function of z, the new curve shares the
same property. Therefore, for fixed z, for some x*’s we may have more than one 6* such that
¢(z,z*,60%) = 0. This essentially tells us where the solutions are multivalued.

To determine the arrival-time of the ray from the above level set equation, we now
derive a corresponding equation governing the evolution of traveltime. By the sub-horizontal
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condition in the paraxial formulation and the ray equation (16) or (31), let Fy,(x, 0; 2) be the
flow generated by the velocity field u in the phase space (z,6) along the z-direction. Then
we can write

drl’ 1
E(zaFu(xaea Z)) - ccosf (37)
in the isotropic case and
dT dx

in the anisotropic case. Therefore, having t = T'(z,x,0), we get the following advection
equation

dt dr 1
— = = =T, 4+ul,+vTy = 39
dz dz Tl vl ccosf (39)
for isotropic traveltime and
dt dT dz
— = — =T, +ul, +vIy = — 40
dz dz +uls vl p3+p1dz (40)
for anisotropic traveltime.
The initial condition for T is specified according to the initial condition (17):
Tl,—o = T(0,2,0)=0, (41)

which is consistent with the initial condition (34).

5 Implementation

We will give full details on implementing the level set Eulerian method for isotropic eikonal
equations only.

5.1 Boundary conditions and an algorithm

Non-reflective boundary conditions are used for the level set equation. This can make sure
the information outside the domain €2, will not interfere with the zero level set inside the
computational domain. The boundary conditions for the traveltime equation are determined
using the local information from the characteristics system. We first invert equation (4) and
(6) locally and get

orT 1

= - _- 42
ox csinf’ (42)

which is used for boundaries = zy;jn and £ = .y, and

oTr . 0c dc\ ™
50 = <sm0&—cosﬁa—m> , (43)
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which is used for boundaries § = —0,,x and 6 = 0,,.«. Then the values of T" on the boundaries
will be obtained by solving the above equations by treating them as ODE’s using method
like Adams’ Extrapolation formula.

With above ingredients in place, we summarize the first algorithm for determining the
multivalued traveltimes for all x at some depth z*.

Algorithm 1:

I. Solve the level set equation (32) and the traveltime equation (39) up to z* with the
velocity field generated by the ray equations (12), (13).

II. For all x,

i. determine all 6; such that ¢(z*,z,6;) =0 (i = 1,---) by root finding;

ii. determine T'(2*,z,6;) (i =1,---) by interpolation.

In Step I, the level set equation and the traveltime equation are decoupled and can be
solved separately. The spacial derivatives are approximated by fifth order WENO-Godunov
scheme [16] while third order TVD-RK method [26] can be used for the time derivatives.
Both level set equation (32) and traveltime equation (39) are linear, hence the CFL step Az
can be chosen by

< min(Az, Af)
~  max(VuZ+0?)’

where Az and A@ are mesh sizes along x and 6 directions respectively, and C is a CFL
number taken to be 0.6. For the root-finding and the interpolation in Step II, we can
simply use any non-oscillatory interpolation scheme, for example, linear interpolation or
ENO reconstruction.

Az

(44)

5.2 Regularizations

Initially at z = 0, we have a signed distance function satisfying |V¢| = 1, so that the level
sets, i.e., contours, of ¢ are equally spaced. However, as z varies the level set equation is
solved and the level set function is updated; in general the level set function is no longer
equally spaced because of the underlying inhomogeneous velocity field, even though the zero
level set of ¢ at z, the curve that we are interested in, is moving at the correct velocity. This
implies that ¢ may develop steep and flat gradients at or near the zero level set, making
the computed curve locations and further computations inaccurate, which does happen in
Algorithm 1.

In fact, numerically, if Algorithm 1 is implemented straightforwardly, then the obtained
multivalued solution is inaccurate. Therefore, we propose the following regularization pro-
cedure which consists of reinitialization and orthogonalization.

To restore the equally spaced property for the level sets, the usual way is to make ¢ a
signed distance function without moving the zero level set of ¢ appreciably. This can be
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achieved through the so-called reinitialization by solving the following equation to steady
state ¢ [37, 15, 27, 24]:

99

73

¢|§:0 = ¢(za'a') (46)

where sgn is a smoothed signum function

+ sgn(¢)(|[Vé —1) =0 (45)

¢
V02 + [Vol2AzAl

sgn(¢) (47)

The steady state q;oo has the same zero level set as ¢(z, -,-) within a certain accuracy since
(]5 does not move on the zero level set of ¢. Moreover, at the steady state (boo is a signed
distance function since |V¢oo| = 1. The reinitialization step is to use doo instead of ¢(z, -, -)
as the initial condition at z for solving the level set motion equation to the next stage. To
achieve the steady state we usually need only evolve equation (45) for a few pseudo steps.
How often we should invoke the reinitialization step is a subtle issue; see [27, 24] for some
discussions. In our implementation, we invoke the reinitialization at every z step so that we
have a better-behaved function for determining the values 6; in Step II of Algorithm 1.

Even with careful implementation of the above reinitialization procedure, the location of
the zero level set may still be shifted by an amount less than one grid cell. This is harmless
for the visualization purpose of the location of the ray. However, because the solution from
the traveltime equation (39) would typically vary a lot near the corresponding location of
the zero level set of ¢, this shift makes the results from the interpolation in Step II highly
inaccurate.

Because we are only interested in the value of 7" where ¢ = 0, we propose the following
orthogonalization procedure

oT \Y) B
3 + sgn(o) (\V¢\ VT) =0, (48)
T|§=0 = T(Z’ ) ) (49)

which, theoretically, preserves the values of T where ¢ = 0 but changes them elsewhere
such that the new T would not vary too much near the desired region. At the steady state,
V¢ - VT = 0. Equation (48) may also be viewed as an extension procedure; namely, we
extend the values of T on the zero level set of ¢ along the normals of the zero level set of
¢; see [27, 24]. This generally makes T' discontinuous since lines normal to the zero level set
will eventually intersect somewhere away from the zero level set. Even if the location of the
zero level set may be shifted, the effect to the interpolation will still be acceptable.

Similar to the reinitialization in ¢, we only need to apply the above equation to 7" once
several z-steps. This makes the regularization procedure efficient, simple to implement and
robust.
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Incorporating the regularization procedure into Algorithm I, we have an improved algo-
rithm.
Algorithm 2:

H1ala ] . ] . — max — Zmax—~Zmin __ 20max .
L. .In.lt.lal-lzatlon. given N,, N, and Nyg: Az = s, Ax = Smax—min and Af = e
initialize ¢ and T at z = 0.

II. Fork=1to N,:

1. March one Az step from (k — 1)Az to kAz by solving the level set equation (32)
and reinitializing the level set motion by solving (45) at every intermediate z-step.

2. March one Az step from (k — 1)Az to kAz by solving the traveltime equation
(39).

3. Orthogonalize T and ¢ by solving equation (48).

4. Forx = (j — 1)Az,j=1,---, N,
i. determine all 6; such that ¢(kAz,z,6;) =0 (i =1, --) by root finding;
ii. determine T'(kAz,z,6;) (¢ =1,--) by interpolation.

Since the reinitialization step is usually invoked for a fixed number of pseudo-steps (from
1 to 4 pseudo-steps in our numerical examples presented below), the above algorithm in the
average case has the complexity O(N?) where N, = N, = Ny = N is assumed. In the worst
case, if the reinitialization step is invoked for indefinite pseudo-steps, the above algorithm
has the complexity O(N3LogN).

6 Numerical Experiments

For the first three examples here, we put a point source at the origin and the velocity
functions c¢(z, z) are both C*®. The fourth example, the synthetic Marmousi model, is a
more challenging one where the velocity function is given only as a sampled function.

In all the examples the computational domain is chosen to be

Q = {@0):i-1<z<1,-T<p< T

0 S 0S5t (50)

Accordingly, the Marmousi velocity will be rescaled to the above computational domain.
The last example is an anisotropic model which consists of three different wave modes; one
of the wave modes has the so-called instantaneous singularity.

6.1 Constant velocity model

When the velocity c is constant, the analytic solution for the traveltime is known so that
we can study the accuracy and the convergence order of the proposed Eulerian method. We
compute the traveltime up to z=1.0km with different options of regularization procedures to
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Azx l1 error 1 order l5 error {5 order lo error | ls, order
0.2 | 0.01759847 0.01303857 0.01211053
0.1 | 0.00436508 | 2.0113 || 0.00323837 | 2.0094 || 0.00349637 | 1.7923
0.05 | 0.00095763 | 2.1884 || 0.00074329 | 2.1232 || 0.00079357 | 2.1394
0.025 | 0.00025030 | 1.9358 || 0.00018810 | 1.9823 | 0.00021538 | 1.8814

Table 1: Accuracy and convergence order without either reinitialization or orthogonalization

Azx l1 error 1 order l5 error {5 order lo error | ly, order
0.2 | 0.03100681 0.02516430 0.02906151
0.1 | 0.00696316 | 2.1547 || 0.00539520 | 2.2216 || 0.00589767 | 2.3008
0.05 | 0.00145892 | 2.2548 || 0.00122996 | 2.1330 | 0.00181473 | 1.7003
0.025 | 0.00039597 | 1.8814 || 0.00032670 | 1.9125 | 0.00054628 | 1.7320

Table 2: Accuracy and convergence order without orthogonalization but 2 reinitialization
pseudo steps at each z-step

see how reinitialization and orthogonalization affect the accuracy and the convergence order
of the method.

Table 1 shows the clean second-order accuracy and convergence in [y, [y and [, norms
without either reinitialization or orthogonalization. This is expected because the linear
interpolation is used to extract traveltimes gives us second-order accuracy only, even though
the level set equation and the traveltime equation are solved to third order accuracy.

Table 2 also shows the second order convergence in different norms without orthogo-
nalization but with two reinitialization pseudo steps at each z-step. This shows that the
reinitialization procedure alone does not move the zero level set too much so that the accu-
racy is not affected appreciably.

Table 3 shows the second order convergence in different norms without reinitialization
but with two orthogonalization pseudo steps at each z-step. This shows that the orthogo-
nalization procedure improves the behavior of the traveltime field near the zero level set so
that the traveltime accuracy is enhanced greatly.

Table 4 shows the second order convergence is lost if both reinitialization and orthog-
onalization are invoked; however, compared to the results in Table 1, the accuracy of the
computed traveltime is not lost. This indicates that by reinitialization and orthogonalization
we are solving a PDE which is a high order perturbation of the original PDE.

6.2 Wave guide

The velocity function is

c(z,z) = 1.1 — exp(—0.52%). (51)
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Azx l1 error 1 order l5 error {5 order lo error | ls, order
0.2 | 0.01439364 0.01408975 0.01733903
0.1 | 0.00152187 | 3.2415 || 0.00145152 | 3.2790 || 0.00254247 | 2.7697
0.05 | 0.00031820 | 2.2578 || 0.00030611 | 2.2454 | 0.00049173 | 2.3702
0.025 | 0.00006929 | 2.1992 || 0.00006502 | 2.2350 | 0.00012570 | 1.9678

Table 3: Accuracy and convergence order without reinitialization but 2 orthogonalization
pseudo steps at each z-step

Azx l1 error 1 order l5 error 5 order l error | ly, order
0.2 | 0.00669519 0.00617415 0.00883762
0.1 | 0.00096458 | 2.7951 || 0.00124892 | 2.3055 || 0.00264324 | 1.7413
0.05 | 0.00021842 | 2.1427 || 0.00022786 | 2.4544 | 0.00060027 | 2.1386
0.025 | 0.00009502 | 1.2007 || 0.00014089 | 0.6936 | 0.00057516 | 0.0616

Table 4: Accuracy and convergence order with 2 reinitialization pseudo steps and 2 orthog-
onalization pseudo steps at each z-step

The function is symmetric with respect to x = 0, and we also expect the same type of
symmetry in the traveltime.

Figure 1 shows the traveltime we obtained using only 40x40 grids in the x-6 space.
The solutions here show the traveltimes at z equals 0.8, 1.2, 1.6 and 2.0. The solutions
are symmetric as expected. Another thing we can check from the graphs is the traveltime
for the particular ray with # = 0. This means the ray will always travel in a media with
(0, z) = 0.1 exactly on the z*-axis from the origin. The traveltime for that particular ray
is given by 7' = z/0.1, and this matches with the computations.

Figure 2 shows the zero level set overlaying the traveltime field at z =0.8, 1.2, 1.6 and
2.0 respectively. The dashed line is the location of the zero level set and the solid lines are
the contour plot of the traveltime function 7. There are discontinuities in the traveltime
field coming from the orthogonalization procedure, where the normals of the zero level set
intersect. However, it is reminded that we only use the information near the dashed line and
the jump in 7" will not hurt our interpolation computations. Figure 2 also shows that the
contours are perpendicular to the zero level set as designed. As z varies, the zero level set
is advected so that it has more turnarounds and the number of traveltime arrivals increases
from 1 to 3.

6.3 Sinusoidal model

This example is adapted from the sinusoidal waveguide model proposed in [39, 40], and the
velocity function is given by

c(z,2) =1+ 0.2sin(0.572) sin[37(z + 0.55)] . (52)
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Figure 1: Multivalued traveltimes by the level set method for 2=0.8, 1.2 (in the upper row),
1.6 and 2.0 in the wave guide model. The multivalued solutions are developed as z increases.
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Computational results using 120 by 120 grid in x-6 space are given in Figures 3 to 5.
In these computations the number of pseudo steps in the reinitialization are set to be 1.
Figure 3 shows that the triplications in the traveltime developed at z =0.4, 1.0, 1.2 and
1.8 are clearly captured by the level set Eulerian method. Figure 4 shows the zero level
set overlaying the traveltime field at z =1.2 and 1.8; the zero level set is orthogonal to the
contours of T. Note that there are five traveltimes at some locations .

To check the accuracy of the calculated multivalued traveltimes, we compare the results
with the solution obtained by solving the ray tracing equations (12), (13) directly at z = 2.0;
the comparison is shown in Figure 5. The solid line is the solution using our level set
formulation while the circles represent the ray-tracing solution. The solutions match with
each other; however, the ray tracing Lagrangian method failed to assign traveltimes to some
locations, leaving some shadow zones in the domain, but the level set Eulerian method here
has no such problem at all, and every location was assigned at least one traveltime, i.e., the
first-arrival traveltime.

To study the convergence order of the method, we also compute the solution up to
z = 2.0km using 240 by 240 grids in 2-0 space. The results are shown in Figure 6. Compared
to the results in Figure 5, the accuracy is first order. This is not surprising because the
reinitialization step essentially implies that we are solving an equation which is high order
perturbation of the original equation.

6.4 Synthetic Marmousi model

This example is the Marmousi model from the 1996 INRIA Workshop on Multi-arrival
Traveltimes. The calibration data used here were computed by Dr. Klimes and can be
found at http://www.caam.rice.edu/~benamou/traveltimes.html. This is a synthetic model
which will challenge the level-set method used here, and we will study this model carefully.

The original Marmousi model is sampled on a 24m by 24m grid, consisting of 384 samples
in x-direction and 122 samples in the z-direction; therefore the model dimension is 9.192km
long in x-direction and 2.904km deep in z-direction. In the computational results presented
here, we use a portion of Marmousi model, i.e., a window from 4.8km to 7.2km in x-direction
and from Okm to 2.904km in z-direction. The source is located at x=6.0km and z=2.8km.
The purpose is to compute (possibly multivalued) traveltimes for those sampling points, i.e.
the receivers from 200 to 300 on the surface z=0.0km.

In the first run, we used 100 by 200 grid in z-6 space with Ax=24m and Hmang—g.
The computed traveltime at z=0.0km and the comparison with the ray tracing solution are
shown on Figure 7. The ray tracing data used to calibrate the computed Eulerian solutions
are presumably accurate. As we can see from Figure 7, the computed Eulerian solution is
consistent with the ray tracing solution, being able to capture most of the structure of the
multivalued solution, but it failed to resolve some fine details, especially the two traveltime
branches located from receivers 260 to 280, where those two branches are very close to each
other. Figure 8 tells us why the level set method failed in that region. Figure 8 shows that
the zero level set and its overlaying on the traveltime field in the reduced phase space. From
the ray tracing solution we know that receivers 260 to 280 should have three arrivals, but
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0.4, 1.0 (in the upper row), 1.2 and 1.8 in Sinusoidal model.

Notice that there are five traveltimes for some points near x

Figure 3: Traveltimes for z

0.
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Figure 4: The zero level set and the contour of 7" at z =1.2 and 1.8 in Sinusoidal model.
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Figure 5: Eulerian traveltime (’-’) computed on 120x120 mesh vs. Lagrangian traveltime
(’0’) by a ray tracing method at z = 2.0 in Sinusoidal model. The Eulerian approach captures
more solutions than the ray tracing method.
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Figure 6: Eulerian traveltime (’-’) computed on 240x240 mesh vs. Lagrangian traveltime
(’0’) by a ray tracing method at z = 2.0 in Sinusoidal model.

from the zero level set, receivers from 260 to 280 are single-valued functions of #, and they
correspond to first-arrival traveltimes. Apparently, the tip of the zero level set near receiver
260 should be more elongated, but somehow the level set failed to elongate that tip. This is
partly due to the dissipation of the finite difference of the finite difference scheme used here
and partly due to the resolution capability of the level set method which can resolve the zero
level set only up to one grid-cell width. Computationally, if the segments of the zero level
curve gets too close to each other, then they will merge and this is exactly happening to the
tip that we are interested in.

Therefore, to resolve the fine tip we have to use a finer grid, 400x200 on z-6 space. Since
the original velocity model is given on the discretized points, we use down-sampling (inter-
polation) to obtain a velocity model for the finer computational mesh. The computational
results are shown on Figure 9 and 10. As we can see, in this run the level-set Eulerian method
yields multivalued traveltimes which match with the ray tracing solution remarkably. From
Figure 10, we can see that the zero level set does have an elongated tip from receiver 260 to
280, and the segments of the zero level set curve near the tip are indeed very close to each
other. Without finer computational mesh, the level set method is unable to capture the tip
and the related multivalued traveltimes.

6.5 An anisotropic model

Although a general anisotropic solid has 21 independent elastic parameters, the transversely
isotropic, or TI, solid has only five. It nevertheless retains the essential features of the
anisotropic case that we are interested in. Therefore, it is convenient to use TI solids as
models to illustrate the advantages of our approach. We consider the simplest case for TI
solids, those with vertical symmetry axes, known as VTI solids.
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Figure 9: Left: traveltime at z=0.0 km by the level-set method for Marmousi model on
400%200 grid. Right: Eulerian traveltimes (’-’) vs. ray-tracing traveltimes ("*’)
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Figure 10: The zero level set for Marmousi model on 400x200 grid; the zero level set
overlaying contours of T" at z=0.0 km.
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The elastic modulus matrix for transversely isotropic media with vertical symmetry axes
has five independent components among a total of twelve nonzero components (see, e.g.,
[21]). A closed form solution exists in this case for the eigenvalue problem of so-called phase
velocities. The quasi-P and quasi-SV slowness surfaces for VTI can be represented as a
quartic polynomial equation and the quasi-SH slowness surface can be decoupled from this,
leading to the equations [29]

c1p] + copips + capy + e +espr+1 = 0, (53)
and
1 2 2
5(0611 — a12)py + aup; = 1, (54)
where
Ci = 11044,
C2 = anass+ ai4 — (@13 + 0644)2,
C3 = (33044,
ca = —(an +awu),
s = —(asz+ aua).

In the above equations, a;; are independent elastic parameters of VTI media [21].
Thus, the phase velocities for the three different waves take the form

1

Vip = 2 (—Y1+\/Y12 —4Y2) )
1

Vi = 5 (-ni-yyi-am),

1
2 . 2 2
Vig = §(a11 — a19) sin® @ + aqq cos” 0,
where
Y, = in? 6 + 29
1 = c¢4sin c5 cos” 0,
Yo = ¢y sin? 0+ ¢ycos?0sin? 6 + 3 cost 6.

As an example, we compute the three waves for Greenriver shale, which is a typical VTI
medium [41]. The five elastic parameters are a;; = 15.0638, a3z = 10.8373, a;3 = 1.6381,
Q44 = 31258, and 19 = 6.5616.

First we consider boundary conditions needed in this computation. For the level set
equation we use the non-reflective boundary conditions just as that for the isotropic eikonal
equation.

For the traveltime equation, there need some extra efforts. Because the model is homo-
geneous and independent of x and z, the velocity component v in the level set equation is
zero. Therefore, there is no need to specify any condition on the boundaries

9:g—eand 9=—g+e, (55)
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where € is a small positive number. On the other two boundaries, analogous to the isotropic
case, we can invert the characteristics locally and get

8T P3

—=p+ = 56
oz DTy (56)
where u is another component in the velocity field of the level set equation. With the
substitutions of p; and p3 in terms of #, we have the following differential equations needed
to be solved numerically in order to determine the boundary conditions on the two boundaries
T = Tpmin aNd T = Tmax,

g—i = % <sin9+ C°;0> , (57)
where V' is the phase velocity of the wave mode that we are interested in.

Figure 11 shows traveltimes for the three different waves computed by the level set
approach plotted in circles and comparisons with ray tracing solutions plotted in solid line
at depth z=0.5km. These traveltimes are excited by a point source located at the origin.
The upper-left sub-figure in Figure 11 shows the qP wave traveltime which is the fastest of
the three waves. The lower-left sub-figure in Figure 11 shows the qSH wave traveltime. In
particular, the qSV wave (the upper-right sub-figure in Figure 11) has cusps which imply
the multivaluedness at some locations; those multivalued solutions are captured very well by
the level set method. The lower-right sub-figure shows the three waves together.

7 Conclusion

We have applied the level set methodology to compute multivalued traveltimes in the paraxial
formulation for both 2-D isotropic and anisotropic eikonal equations. The complexity of
the proposed Eulerian method is O(N?) in the average case and O(N3LogN) in the worst
case. Numerical examples including the synthetic Marmousi model have demonstrated the
accuracy and efficiency of the approach.

Although the formulation presented here is mainly for the point source condition, it will
be valid for plane wave propagation too as long as the wave satisfies the sub-horizontal
condition; however, we will not present examples here.

Future work includes computing the amplitude related to the multivalued traveltimes
and implementing localized level set method [27] which will reduce the computational cost
dramatically [30].
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Appendix

It comes to our attention that the formulation we used here is equivalent to a new formulation
proposed in [18]. In this appendix, we will first derive a similar level set equation using the
Jin-Osher formulation and then prove the equivalence of the two level set equations under
the sub-horizontal condition.

We first rewrite the isotropic paraxial eikonal equation in the form of the following
Hamilton-Jacobi equation

with the Hamiltonian

/1

By differentiating the equation with respect to z and introducing u = t,, we have

0

6—1: — Hy(z,z,u) = 0. (60)
To apply the level set method, we introduce a level set function ¢ = (2, z,p) such that
¥ = 0 gives the location of the ray with p = u(z,z). Therefore, the corresponding level set
equation can be obtained by differentiating ¢ (z, z, p(z,x)) with respect to z and is given by

¢z + szjp - prz = 0; (61)

where H is given by equation (59). This provides another way for determining the multival-
ued solution of the eikonal equation. We can now solve this new level set equation, rather
than the one we introduced in Section 4. By using similar procedures as in Algorithm 1, we
determine all p; such that ¢ (z*,2*,p;) = 0. With the relationship between p and 6

sin 6

) (62)

we can then determine all the traveltimes from the traveltime equation (39).
However, it can be proven that two formulations are actually equivalent to each other.
Defining ¢(z, z,p) = ¢(z,z,0(p, z, 2)), we have the following change-of-variable relations

oY 0p  0¢ 00

2, ~ 9: T avo
oy _ 0909
dp 00 0p
d 09 000

ox ox + 90 0’ (63)
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where

06 06 d 00

0z’ Op Ox
are calculated by differentiating the Hamiltonian (59) with respect to z, p and x respectively.
Now we can substitute these relations into the formulation (61) and get back our original

level set equation (32).
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