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Abstract

This paper provides a review on the optimal design of
photonic bandgap structures by inverse problem tech-
niques. An overview of inverse problems techniques is
given, with a special focus on topology design meth-
ods. A review of first applications of inverse prob-
lems techniques to photonic bandgap structures and
waveguides is given, as well as some model problems,
which provide a deeper insight into the structure of
the optimal design problems.
Keywords: Inverse Problems, Optimal Design,
Photonic Crystals, Wave Problems, Maxwell Equa-
tions, Helmholtz Equations

1 Introduction

A new paradigm has emerged, in which the band
structure concepts of solid state physics are applied
(cf. [22, 37]) to Electromagnetics. This has led to a
profusion of scientific creativity as new forms of elec-
tromagnetic crystal structures are invented for radio
and microwaves as well as for optical wavelengths.
These new structures are inspired by the 3-D geome-
try of both natural crystals, and those artificial crys-
tals that can arise only in the human imagination.

These artificial electromagnetic crystals (also
known as photonic crystals), are impacting the di-
verse domains of electromagnetics, extending from
radio waves to optical wavelengths. They are bring-
ing together, under a common umbrella, scientists in
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the fields of Classical Electromagnetics, Solid State
Band theory, semiconductor device Physics, Quan-
tum Optics, Nano-structures, Materials Science, and
now Applied Mathematics.

Essentially this field has concerned itself with arti-
ficial engineering of 3-D structures that achieve a cer-
tain goal, like a photonic bandgap. This is a design
problem, but there is no direct route from the desired
goal, to the structure that achieves that goal. Modern
developments in formal inverse algorithms, combined
with continual increases in computational power, are
now replacing intuitive engineering for problem after
problem. Undoubtedly the design problem of cre-
ating useful photonic bandgap structures will soon
replace intuitive inspiration.

The recent development in the field of photonic
crystals (cf. e.g. [6, 23, 38]) also raised several math-
ematical problems, such as analysis (cf. [25] for an
overview), numerical simulation (cf. [6, 11, 12]), and
- ultimately - design and optimization, which is the
topic of this review.

2 Inverse Problems Techniques

In this section we shall introduce the basic concepts
of inverse problems, such as the problem formulation
and regularization techniques. Moreover, we shall
discuss several different possibilities to model design
variables, in particular the cases important for appli-
cations to photonic crystals. Finally, we discuss some
optimization techniques that can be used to solve the
regularized problems.
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2.1 Problem Formulation and Regu-
larization

In general, an inverse problem consists in the recon-
struction or optimal design of a variable or parameter
in a system in order to fit an observed or to achieve a
desired state of the system. Such problems are called
inverse problems, since there is an associated direct
problem, which consists in solving (or rather simulat-
ing in engineering applications) given the value of the
design variable or parameter. This direct problem is
of importance for itself, but also for the solution of
the inverse problem. As we shall see below any algo-
rithm for solving the inverse problem will need solves
of the direct problem with given parameters or at
least solves of a linearized direct problem.

For eigenvalue problems, such as applications to
photonic crystals, we usually have to deal with a
problem of the form

J(Λ, U ; q) → min
Λ,U,q

(1)

subject to a state equation of the form

A(uj ; q) = λjB(uj ; q), j = 1, . . . , k. (2)

Here, Λ = (λ1, . . . , λk) formally denotes a part of the
spectrum of the direct operator, U = (u1, . . . , uk) the
vector of associated eigenfunctions, and q is the de-
sign variable. In general, one can assume that the
equation (2) is uniquely solvable for uj and λj once
the value of q is known. In order to illustrate this ab-
stract framework, we consider a simple model prob-
lem of maximizing an eigenvalue λk of the Helmholtz
equation. Since one cannot directly compute the
k−th eigenvalue, we have to rewrite the problem in
terms of the eigenvalues Λ, the associated eigenfunc-
tions U , and the density ρ. The functional J is then
simply given by

J(Λ, U ; q) = −λk = −Λ.ek,

where ek = (0, . . . , 0, 1). The state equation is de-
fined by the eigenvalue problem

−∆uj(x) = λjq(x)uj(x), j = 1, . . . , k,

i.e.,

A(u; q) = −∆u, B(u; q) = qu.

We assume that A and B are linear and symmetric
(respectively Hermitian) with respect to the state U ,
which is the case for the Helmholtz equation and for
the Maxwell equations.

A common characteristic of most inverse problems
is their ill-posedness, which means that the solution
might not exist, might not be unique or might not
depend on the data in stable way. For design prob-
lems, nonuniqueness does not create difficulties, since
it is rather desirable if one can achieve a goal with
different designs. Nonexistence and instability with
respect to data are more serious issues for optimal
design problems. A consequence of unstable depen-
dence on the data is that for arbitrarily small changes
of parameters in the system arbitrarily large differ-
ences in the optimal design can occur, which is of
course not desirable in a practical application, where
parameters can be controlled with limited accuracy
only. The nonexistence of a solution usually causes
the ”checker-board problem” in topology design, i.e.,
the solution changes with the grid and develops a
checker-board type structure for fine grids (cf. [2] for
a general discussion, and [16] for a specific example
related to waveguides).

In order to compensate the ill-posedness of the
problem, regularization methods have to be used to
compute a stable approximation of the solution (or
to obtain the existence of a solution at). The main
idea of regularization is to solve a well-posed prob-
lems that is close to the original one. For a detailed
discussion of ill-posedness and regularization we refer
to [15]. A frequently used approached is Tikhonov-
regularization (or penalization), which consists in
minimizing

Jα(Λ, U ; q) := J(Λ, U ; q) + αR(q) → min
Λ,U,q

, (3)

where R is a suitable (convex) regularization func-
tional. If q is a distributed variable, the typical
choices for R are of the form

R(q) =
∫

D

|Lq(x)|2 dx,

where L is either the identity or a differential operator
such as L = ∇. If piecewise constant design variables
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q are desired, one can use the total variation penalty
(cf. [31])

R(q) =
∫

D

|∇q(x)| dx,

or directly model the design variable as a piecewise
constant function and add the perimeter of its dis-
continuities (i.e., the length of the curve in 2D and
surface area in 3D) as a penalty. Note that the
bounded variation penalty is equal to jump height
times times length of the discontinuity curve for
piecewise constant design variables, and therefore
essentially equivalent to penalization by perimeter.
The different possibilities of modelling the design
variable are discussed in the following section.

2.2 Models of the Design Variable

In many optimal design problems the natural design
variable is the distribution or mixture of materials,
which is also the case for photonic crystals. The nat-
ural model for the design variable in such cases is a
piecewise constant function q, with well-defined val-
ues in each phase defined by the specific materials.
The free variable that can be optimized is then the
geometry of the phases, which can be carried out in
several different ways. For simplicity we restrict our
attention to the case of two phases in the following,
but similar reasoning is possible for multiple phases,
too. In this case, we can split the domain D into
D = Ω1 ∪ Ω2, with open sets Ωj representing the
different materials. The function q is defined by

q(x) =
{

q1 x ∈ Ω1

q2. x ∈ Ω2.
(4)

The design problem reduces to the problem of dis-
tributing the phase Ω1 in D (the second phase is
clearly the complement of Ω1), which is usually de-
noted by the terms shape or topology optimization
(cf. [2, 27]). The approach in classical shape op-
timization usually starts from a fixed topology and
tries to find a local minimizer by (local) variations of
the boundary ∂Ω. In general topology optimization,
the shape of the boundary of the phases is optimized
as well as their topological structure such as the num-
ber of connected components. As a representation of

the design variable Ω1, the following methods can be
used:

• Parameterization: A simple method consists
in choosing an a-priori parameterization of the
boundary ∂Ω1 and optimization of the param-
eters. This yields a rather standard optimiza-
tion problem of lower dimension, but strongly
restricts the topology of the phase. In partic-
ular in applications to photonic crystals, where
the number of crystals is not specified a-priori,
this is not a desirable property. Nonetheless,
this approach has been used for the optimiza-
tion of photonic crystals (cf. [14, 17]) with addi-
tional mechanisms to change topologies, which
creates computational complications. On the
other hand, parameterization has proved to be
usefull in the shape optimization of waveguides
when the shape shall be changed only locally (cf.
[16]).

• Level Set Methods: The main idea of the level set
approach (cf. [30, 28]) is to represent the phase
as the zero level set of a continuous function φ,
i.e.,

Ω1 = {x ∈ D | φ(x) < 0}. (5)

By allowing additional time-dependence of φ,
one can compute geometric motion of Ω1 in time
by evolving the level set set function φ. A geo-
metric motion with normal velocity V = V (x, t)
can be realized by solving the Hamilton-Jacobi
equation

∂φ

∂t
+ V |∇φ| = 0. (6)

Optimization within the level set framework con-
sists in choosing a velocity V driving the evolu-
tion towards a minimum (or at least decreasing
the objective). There are various possibilities to
choose the velocity in order to obtain a descent,
we refer to [32, 7] for a detailed discussion.

• Approximation of the Indicator Function: Sev-
eral methods have been devised to directly ap-
proximate the indicator function χ of Ω1, re-
spectively the piecewise continuous function q =
q1χ + q2(1 − χ). A frequently used method in
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structural optimization is the SIMP approach
(Solid Isotropic Material with Penalization),
which optimizes a spatially dependent density
ρ̃(x) such that ρ(x) = ˜rho(x)p, with p > 1. This
power law for the density forces densities close to
0 − 1 distributions. In structural optimization,
it has been shown by Bendsoe and Sigmund [3],
that this power law approach is physically per-
missible as long as some conditions on the power
in dependence of the Poisson ration of the mate-
rial are satisfied, a similar analysis for photonic
applications is not available yet.
Another possibility of approximating the indi-
cator function is the phase-field approach used
by Bourdin and Chambolle [5] for structural op-
timization. In this case, an additional term is
added to the objective functional, penalizing de-
viations of ρ(x) from the values ρ1 and ρ2.

If fine mixtures of phases are allowed, one can
choose a different approach and allow for a general
spatially dependent density q = q(x) satisfying

min{q1, q2} ≤ q(x) ≤ max{q1, q2}. (7)

This density q can be interpreted as a limit of fine
mixtures in the sense of homogenization. The nu-
merical solution is rather straightforward in this case,
since the function q can be discretized directly as well
as the state, which finally yields a standard nonlin-
ear programming problem with the additional bound
constraints for the discretization of q. On the other
hand, the homogenization approach suffers from sev-
eral drawbacks. In particular, it can be made rigorous
only for a limited class of objective functionals and
gives no control on the fineness of details. We refer to
the monograph of Allaire [1] for a detailed discussion
of the homogenization method.

2.3 Optimization Techniques

After modelling the design variable and the regular-
ization term, one ends up with a nonlinear optimiza-
tion problem, which is well-posed due to the regular-
ization term, but probably ill-conditioned for small
values of the regularization parameter. In principle,
any suitable optimization method can be chosen to

solve these optimization problems, but the optimal
choice should of course depend on the regularization
term and the model of the design variable. E.g., if a
total variation penalty term is used, the regulariza-
tion term involves a nondifferentiability and hence,
a method using higher order derivatives is not ap-
propriate. On the other hand, models of the design
variable such as the phase-field model may introduce
strong non-convex terms into the model, so that stan-
dard Newton-type methods may run into difficulties.

Another difference between design variables depen-
dent on a shape and intermediate densities is the
appearance of constraints. If the design variable is
modeled as a piecewise constant function such as in
the level set method, the only constraint that might
remain is a bound on the volume, which can be in-
corporated easily. If intermediate densities are used,
the inequality constraints (7) have to be incorpo-
rated. Therefore, sequential linear or convex pro-
gramming methods like CONLIN (cf. [20]) or MMA
(cf. [35, 36]) are more popular in these cases than
Newton-type or other sequential quadratic program-
ming methods.

Nonetheless, there are some common properties of
all approaches, which we shall discuss in the follow-
ing. The standard approach consists in (implicitly)
eliminating the state variable U and the eigenvalues
Λ, which are uniquely determined for a given design
q. Therefore, with the notation U(q) and Λ(q) for the
unique solution of the eigenvalue problem with given
q, one can reformulate the design problem purely in
terms in q as

J̃α(q) := J(Λ(q), U(q); q) + αR(q) → min
q

. (8)

In order to compute derivatives of the functional J̃α

one has to compute the derivatives of U and Λ with
respect to q, since

J̃ ′α(q)h =
∂

∂q
J(Λ(q), U(q); q)h

+
∂

∂U
J(Λ(q), U(q); q)U ′(q)h

+
∂

∂Λ
J(Λ(q), U(q); q)Λ′(q)h + αR′(q)h.

Here U ′(q)h and Λ′(q)h denote the derivatives of the

4



state and eigenvalues with respect to the design vari-
able q in direction h. These derivatives can be com-
puted from a linearization of the state equation (2),
for simplicity we omit the dependence on q and h in
the notation:

A(u′j ; q) = − ∂

∂q
A(uj ; q)h + λ′jB(uj ; q)

+λjB(u′j ; q) + λj
∂

∂q
B(uj ; q)h.

Here we simply denote the directional derivatives by
u′j and λ′j . Thus, one obtains a similar linear problem
to be solved for the derivatives U ′(q)h and Λ′(q)h,
for each variation h. Solving all these linear prob-
lems for all possible variations would cause an un-
reasonable computational effort, but fortunately this
problem can be avoided by using the so-called adjoint
method. First of all, one can use the symmetry of the
operators A and B to deduce that

〈A(u′j ; q)− λjB(u′j ; q), uj〉 =
〈A(uj ; q)− λjB(uj ; q), u′j〉 = 0.

where 〈., .〉 denotes the L2-inner product. Hence, we
can eliminate the terms depending on U ′ from the
linearized equation to obtain

λ′j〈B(uj ; q), uj〉 = 〈− ∂

∂q
A(uj ; q)h, uj〉

+λj〈 ∂

∂q
B(uj ; q)h, uj〉.

This relation can be used to compute the derivatives
of the eigenvalues with respect to the design - note
that it only depends on the known values q, U(q),
and Λ(q).

3 Optimal Design of Photonic
Crystals

In general, a photonic crystal can be viewed as a
low-loss dielectric medium with several air inclusions,
which are the principle design variables. There are
several design goals related to photonic crystals, lead-
ing to inverse wave problems. In the following we

shall discuss the two main classes, namely the opti-
mization of bandgap structures and the optimization
of waveguide structures. We shall review the (few)
existing papers using inverse problems techniques for
these problems. Finally, we discuss some model prob-
lems related to the Helmholtz equation, which allow
further insight into basic problem structure.

The standard model for the electromagnetic waves
in photonic crystals are the Maxwell-Equations,
which can under standard constitutive relations and
for the assumption of monochromatic waves be re-
duced to the following stationary system for the elec-
tric and magnetic fields E and H:

( ω
c

i
ε∇×

− i
µ∇× ω

c

)(
E
H

)
= 0, (9)

on the space of divergence-free vector fields E and H.
Here, ∇× denotes the curl operator, c is the speed
of light, ω the frequency of the wave, ε and µ are
the electric and magnetic permittivity of the pho-
tonic crystals. The latter parameters can be mod-
eled as scalar function of the location, whose value
is determined by the current phase (i.e., material or
air-inclusions). For most photonic crystal it is as-
sumed that the material is nonmagnetic, i.e., µ ≡ 1.
Thus, the design variable enters the model mainly via
the electric permittivity, which can be modeled as a
piecewise constant function taking different (fixed)
values in the material and the air inclusions.

For two-dimensional structures, there are two-
possible reductions. In the case of transverse elec-
tric (TE) polarized fields, the magnetic field is along
the x3 axis and the electric field is normal to this
axis. The Maxwell system can then be reduced to a
divergence-type problem for the variable u = H3 of
the form

−∇.
1
ε
∇u = λu, (10)

in two dimensions, with λ = ω/c. For transverse
magnetic (TM) polarized fields, the electric field is
parallel and the magnetic field normal to the x3-axis.
In this case, ther three-dimensional Maxwell equa-
tions reduce to the two-dimensional problem

−∆u = λεu, (11)

for the scalar function u = E3.
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3.1 Optimal Design of Bandgap
Structures

A photonic bandgap structure (PBG) is a periodic
photonic crystal, in which electromagnetic waves of
certain frequencies cannot propagate. In order to
deal with the periodic media, so-called Bloch waves
are used (cf. [4, 24] for details), which allow to solve
equations on the unit square instead. The basic idea
of this theory is that solutions on the whole space are
superpositions of the solutions (Eα,Hα) on the unit
cell of

i

ε
(∇+ iα)×Hα = λEα, (∇+ iα).Hα = 0(12)

− i

ε
(∇+ iα)×Eα = λHα, (∇+ iα).Eα = 0,(13)

for all α ∈ K = [−π, π]3 (K is usually called Brillouin
zone), with the eigenvalue λ = ω/c. Thus, bandgap
materials can be computed on the unit cell at the
price of having to compute the solution for all α ∈ K.

A typical design goal is to obtain a maximal
bandgap around a given frequency ω0. In spatial di-
mension two, Cox and Dobson [9, 10] used the objec-
tive functional

J(Λ(q)) = inf
α∈K0

min{ω0 − λk−1(q, α), λk(q, α)− ω0},

where K0 is a suitable subset of the first Brillouin
zone [−π, π]2. An analysis of the problem shows
that the problem may be non-smooth, i.e., Lipschitz-
continuous but not differentiable with respect to the
design variable, for several reasons. First of all, the
infimum and minimum in the above formula for J
are non-smooth functions. Moreover, multiple eigen-
values introduce a non-differentiability with respect
to the design variable as we have seen above. How-
ever, one can still use generalized gradients and bun-
dle optimization techniques to overcome this diffi-
culty (cf. [8]). The model of the design variable in
[4, 24] was a continuous density variable constrained
by (7), i.e. the electric permittivity in the case of
TM-polarization (investigated in [9]) and its recip-
rocal value in the case of TE-polarization (investi-
gated in [10]). The numerical results in both cases
are promising, and the obtained densities are close

to piecewise continuous functions, i.e., permittivities
that can actually be realized. The results demon-
strate that inverse problems techniques can be em-
ployed to design optimal bandgap structures in an au-
tomatic way. Nonetheless, a variety of open problems
remains to be investigated for the optimal design of
photonic crystals, in particular the three-dimensional
case, which is a truly large-scale problem, is of high
importance for applications. This poses a strong de-
mand on the efficiency of the eigenvalue solvers as
well as of the optimization techniques.

Doosje et. al. [13] considered crystals with cu-
bic lattices of air inclusions of radius R, connected
by cylindrical pieces of radius RC . Their model of
the design variable is therefore a simple parametriza-
tion, with the radii R and RC , as well as the distance
a between the centers of the balls to be minimized.
For the maximization of the gap between the bands
8 and 9, they obtained a maximum occurs for aratios
Rc/R = 0.398 and R/a = 0.32, significantly improv-
ing their initial design to a relative bandgap of 9.59%
around the central frequency ω0 = 2π × 0.746c/a.
Since, the optimization is restricted to 3 parameters
in this case, the bandgaps could be increased allowing
for more general shapes. E.g., it seems promising to
use the results of [13] as a starting point for a shape
optimization by the level set method. To our knowl-
edge, the results in [13] represent the only existing
work on optimal design of photonic crystals in 3D.

A related problem in mechanics has been inves-
tigated by Sigmund and Jensen [33] in phononics,
where a similar analysis performed for the elastic-
ity system. So far, phononic structures do not have
existing technological applications, but a promising
potential of such. From a mathematical viewpoint,
the optimal design problem is analogous to the one
for photonic crystals and therefore, developments in
both areas might influence each other in the future.

Finally, a problem of future interest may be the
optimal design of localized defect modes (cf. [18, 19]),
which has not yet been discussed in full generality
but only for a simple model problem that will be
discussed in Section 3.3.
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Figure 1: Maximization of λ2− λ1 for the Helmholtz
equation. The figure show the evolving partition dur-
ing the iterations of the level set method (from [29]).

3.2 Optimal Design of Waveguides

In typical applications to waveguides, one does not
seek periodic structures, but rather finite structures.
The design goal in this case is the guidance of a
mode through the device with minimum power loss
(cf. [16, 17]), in many cases of the first fundamental
mode. Since the structure is usually not assumed to
be periodic in this case, the model does not involve
Bloch waves and consists simply of the Maxwell equa-
tions on a domain Ω modelling the device geometry.

There are two possible design variables for waveg-
uide devices: the topology of the photonic crystal
(i.e., the air inclusions) and the overall device geom-
etry Ω. While the first problem is a typical topol-

ogy design problem as described above, the design of
the device geometry is rather a classical shape opti-
mization problem, where no change of the topological
structure is desired. Therefore it seems reasonable to
use parametrizations and to optimize locally around
the initial shape. This approach was used with suc-
cess by Felici and Engl [16] together with an appro-
priate regularization of the parameters to avoid the
checker-board problem described above.

The design of photonic crystals in waveguide struc-
tures has been investigated recently by Felici and Gal-
lagher [17]. The authors used the radii and the loca-
tions of some of the air inclusions as design variable,
while most of the air inclusions were fixed on a hexag-
onal lattice. The authors used fast local optimization
techniques together with stochastic and determinis-
tic global optimization techniques to compute global
minima in reasonable times.

3.3 Model Problems for the
Helmholtz Equation

Several inverse problems related to the Helmholtz
equation on a bounded domain have been investi-
gated recently. A simple model for the design of
bandgap structures is the maximization of eigenval-
ues considered by Osher and Santosa [29]. The au-
thors discussed the case of a Helmholtz equation in a
bounded domain Ω, i.e.,

−∆u = λqu, (14)

subject to homogeneous Dirichlet boundary condi-
tion. In this case the design variable q was modelled
explicitely as a piecewise constant function satisfying
(4), and the level set method was used to represent
the shapes Ωj . Thus, the density q can be written as

q = q1 + (q2 − q1)H(φ),

where H denotes the Heaviside function. The maxi-
mization of a band gap corresponds roughly speaking
to the minimization of the functional

J(Λ) = λk − λk−1 (15)

subject to a volume constraint. As an alternative way
of improving bandgap materials, the author consid-
ered the minimization of the volume fraction of one
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material subject to a fixed size of the ”bandgap”,
i.e., of the difference λk − λk−1. The latter design
goal models the aim of obtaining a given bandgap as
cheap as possible.

The computation of derivatives is particularly sim-
ple in this case, since one only needs the derivatives
of the eigenvalues λj , which satisfies

λj =

∫
Ω
|∇uj |2 dx∫

Ω
q u2

j dx
.

By similar reasoning as in Section 2 one obtains that

λ′j = −
∫

Ω

q′ u2
j dx

∫
Ω
|∇uj |2 dx∫

Ω
q u2

j dx
= −λj

∫

Ω

q′ u2
j dx,

where q′ is the derivative of q with respect to a vari-
ation of φ. Thus, one can compute the derivative
of the objective functional J(Λ) without solving any
additional differential equation. This formula for the
derivatives of the eigenvalues were the basis for the
level set algorithm applied to this shape optimization
problem in [29]. According to the standard level set
framework, an evolution of the form

∂φ

∂t
+ V |∇φ| = 0

was used with a speed function V of the form

V = (q1 − q2)(λku2
k − λk−1u

2
k−1) + η,

with a Lagrange parameter η guaranteeing volume
conservation in the evolution. This evolution turned
out be succesfull in finding optimal shapes, even with-
out a-priori knowledge of the topology. The obtained
results by this technique can be realized immedi-
ately, since the solution is a decomposition of the
geometry into the two materials. Many of the op-
timal structures obtained by this inverse problems
approach are to some extent non-intuitive and diffi-
cult to be guessed by engineers, which demonstrates
again the importance of automatic inverse problems
techniques for design problems of this type.

Another problem of interest is the optimal design
of localized defect modes. A model problem related

to the Helmholtz equation has been investigated re-
cently by Dobson and Santosa [13]. In order to mea-
sure the locality of the defect mode, the functional

J(u, q) =
∫

Ω

w q u2 dx

was introduced, where u is a solution of the eigen-
value problem (14) and w is an appropriate weight-
function such as w(x) = |x − x0| with x0 being the
point around which the mode is to be localized. The
analysis in [13] shows that this optimal design prob-
lem is ill-posed, since there may exist eigenfunctions
corresponding to higher and higher frequencies and
associated densities q that drive the functional J to
zero, but do not converge to any optimal design. In
order to regularize the problems, constraints on the
eigenvalue have to be enforced, two possible regular-
ization approaches are presented in [13] leading to
successful optimal designs. For more realistic situa-
tions in photonic crystals one has to expect the same
kind of problem, so that these initial results on the
Helmholtz equation may help in the construction of
optimal designs for practical applications, too.
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