
A multilevel, level-set method for optimizing
eigenvalues in shape design problems

E. Haber∗

July 22, 2003

Abstract

In this paper we consider optimal design problems that involve
shape optimization. The goal is to determine the shape of a certain
structure such that it is either as rigid or as soft as possible.

To achieve this goal we combine two new ideas for an efficient
solution of the problem. First, we replace the eigenvalue problem
with an approximation by using the inverse iteration.

Second, we use a level set method but rather than propagating
the front we use constrained optimization methods combined with
multilevel continuation techniques.

Combining these two ideas together we obtain a robust and rapid
method for the solution of the problem.

1 Introduction and problem setup

In this paper we consider optimal design problems that involve shape op-
timization. The goal is to determine the shape of a certain structure such
that it is either as rigid or as soft as possible. Although similar problem was
originally posed by Lagrange and later by Rayleigh, only recent numerical
treatment has been given to it [18, 16, 12, 11, 17]. In general, the mathe-
matical problem can be represented as finding a distributed parameter ρ(x)

∗Dept of Mathematics and Computer Science Emory University, Atlanta, GA

1

such that it solves the following constraint optimization problem

min or max λ (1a)

s.t λ is the minimal eiganvalue of Lu = λρ(x)u (1b)

ρ ∈ S (1c)∫

Ω

ρ dV = M (1d)

where L is a self adjoint differential elliptic operator and S is a space such
that ρ can have values of ρ1 or ρ2 only. If L is the minus Laplacian, then the
problem is a model problem for many engineering design problems [3, 4].

In general, the eigenvalues are not continuously differentiable function
with respect to the parameters we seek and this generates a considerable
complication that had lead to semi-definite programming techniques [12]. In
this paper we avoid this complication by assuming that the first eigenvalue
is simple, that is, it does not have a multiplicity of more than one. This is
theoretically justified for the model problem we solve here.

All the methods known to us for eigenvalue optimization use the eigen-
value equations themselves to define gradients of the eigenvalue with respect
to the parameter (for a survey see [12, 17]). For large scale problems such
approach is computationally expensive as it requires accurate evaluation of
eigenvectors. Indeed, if we consider 3D structures then the discretized con-
straint optimization problem (1) can be very large as both ρ and u can have
dimensionality of millions. We therefore take a very different approach. First,
we approximate the (smallest) eigenvalue as a finite fixed point process and
replace the eigenvalue equation with the inverse iteration. We then compute
the gradients of this approximation (rather then of the true eigenvalue). Our
approach tightly couples the way we compute the eigenvalue to the way we
calculate its derivative and it is unlike the common approach where the pro-
cess of obtaining the eigenvalue is divorced from the process of calculating
its derivative. The advantages of our approach is that we are able to easily
transform the problem to a constrained optimization problem and use stan-
dard techniques for its solution. Even more important, we are able to avoid a
very exact eigenvalue computation early in our iteration and we can generate
a natural continuation process to be used for highly nonlinear problems.

In order to deal with the constraint that ρ ∈ S we use a level set method.
In a recent paper Osher and Santosa [15] have used a level-set method to
solve this problem. Their approach requires the computation of the gener-

2

alized eigenvalues problem at each iteration and uses level set technology
to track the evolving interface by solving the Hamilton Jacobi equations
which describe the surface evolution. From an optimization stand point,
their method is equivalent to a steepest descent method and therefore, con-
verges slowly. We like the general idea of using level-set to represent the
shape but our numerical treatment of the equations is very different. We
avoid the Hamilton Jacobi equations all together and treat the problem as
a numerical optimization problem. We solve the optimization problem using
a reduced Hessian Sequential Quadratic Programming (SQP) method com-
bined with multilevel continuation techniques. This allows us to quickly solve
the optimization problem in a very few iterations at a fraction of the cost
used when the problem is solved by traditional level set methods.

We choose to discretize the problem first and only then to optimize so
we are able to use the overall framework and tools of numerical optimization
techniques [14]. Care must be taken that at the end of the process the solution
to the discrete problem is actually (an approximation to) the solution of the
continuous problem. To use level set ideas on a grid we set ρ = χh(m) where
χ is the usual characteristic function. To make this function differentiable
we use similar ideas as in [10] and set

χh(m) =
1

2
tanh(αhm) + 1.5 (2)

where αh depends on the grid size h. The derivative of this function converges
to a (scaled) delta function and approximates the interface. It has been
proved in [10] that at the limit (as α →∞) the solution m converges to the
continuous solution. We choose αh such that the width of the approximation
to the delta function is roughly three pixels1. Discretizing the problem we
define the following optimization problem

min ±λ +
1

2
γ̂‖∇hm‖2 (3a)

s.t λ is the minimal eiganvalue of Lu = λD(m)u (3b)

hdeT ρ(m) = M (3c)

where L is a finite volume or a finite element discretization of L and D(m)
is a diagonal mass matrix of the values of ρ(m) on the grid, ∇h is the dis-
crete gradient and γ̂ is a small regularization parameter. This regularization

1We define the width of the function w is an interval where
∫ w/2

−w/2
χ′h(x) dx = 0.66

3

term is added in order to obtain a smooth level-set function m; it does not
intend to change the level-set of m by much but to rather generate a unique
smooth function m which we are able to easily interpolate on different grids.
Finally, the single integral equality constraint is discretized using the mid-
point method, where h is the grid size and d is the dimension of the problem.
In order to avoid the equality constraint (3c) directly we use regularization
or penalty. We replace the constrained problem (3) with the unconstrained
optimization problem

min ±λ + β

(
1

2
γ‖∇hm‖2 ± hdeT ρ(m)

)
(4a)

s.t λ is the minimal eiganvalue of Lu = λD(m)u (4b)

where β is a fixed regularization or a penalty parameter and βγ = γ̂. It is
easy to show that β correspond to the Lagrange multiplier of the constrained
problem which is positive for the minimization problem (the plus λ) and
negative for the maximization problem. For the minimization problem, if β
is very large, we require to minimize the total mass and therefore we obtain
a very small mass, thus ρ is mainly made of material ρ1 which is lighter. If,
on the other hand, β is very small, the penalty on the total mass is small
and this leads to a large mass thus ρ is mainly material ρ2 which is heavier.
The total mass in this formulation can be thought of as a map

M = M(β) = hdeT ρ(m(β)) (5)

where m(β) is obtained by solving to the optimization problem (4) for a spe-
cific β. The parameter β has to be tuned such that the constraint is satisfied.
From a theoretical point of view, there is no guaranty that the map M(β) is
smooth. In some well known cases such a map can have jumps [7] and this
implies that there is no minimizer subject to the constraint. This formulation
is very similar to regularization of inverse problems [6] and to trust region
methods [5] where an integral constraint is replaced with a penalty parame-
ter. In our previous work [1] we have used multilevel continuation techniques
to evaluate this parameter. In this paper we use a similar strategy with a
few minor modifications.

The rest of this paper is divided as follows. In Section 2 we review the
inverse iteration method to compute the smallest eigenvalue of D−1A and
motivate its use. In Section 3 we formulate the discrete optimization problem
and derive the Euler-Lagrange equations to be solved. In Section 4 we discuss

4

the solution of these equations utilizing constrained optimization techniques
and the reduced Hessian SQP approach. In Section 5 we show how to use
a multilevel continuation method to quickly solve the problem. In Section 6
we use yet another continuation process in the inverse iteration in order to
obtain a stable algorithm. Combining the two continuation processes allow
us to quickly converge even for highly nonlinear problems. Finally in Section
7 we carry out numerical experiments that demonstrate the advantages of
our technique, we summarize the paper in Section 8.

2 The inverse iteration

As explained in the introduction, we would like to avoid the need to ac-
curately compute the eigenvalue problem Lu = λD(m)u at each iteration,
especially if we consider problems in 3D. We therefore reformulate the prob-
lem such that only the smallest eigenvalue is obtained in an increasing order
of accuracy.

There are a few options for such a process. Maybe the fastest converging
one is the Rayleigh Quotient iteration which converges in a cubic rate. The
problem with this process is that it involves with solving linear systems of the
form (L−λkD)v = Du which can become very ill-conditioned. We therefore
use the inverse iteration technique. This method converges only linearly but
it has the three main advantages. First, only systems of the form Lv = Du
need to be solved. Using the fact that L is a discretization of an elliptic
operator we use multigrid methods [19] to quickly calculate an approximate
solution to these systems with the desired accuracy. Second, it can be shown
that the convergence, although linear, is grid independent [13]. Finally, the
approach generates simple expressions which are easily differentiated. This is
an important advantage when we consider a constrained optimization process
where derivatives have to be taken.

The inverse iteration process for the computation of the smallest
eigenvalue of a positive definite system can be summarized as follows

The inverse iteration

• Choose a vector u0 and an integer n such that ‖u0‖ = 1

5

• For j = 1...k

Solve Luj =
1√

uT
j−1uj−1

Duj−1.

• Set λ ≈ 1√
uT

k uk

An important issue is the selection of u0, the initial vector. If the vector
contains mainly the eigenvector which corresponds to the smallest eigenvalue
of D−1L then we may require a small k to obtain good results. We return to
this point when we discuss the multilevel continuation process.

We reformulate the inverse iteration process as a nonlinear system of
equations

C(m,u) = I(u)Au−B(m)u + b(m) = 0 (6)

where

A = diag(L,L, ..., L);

B(m) =




0
D(m) 0

·
D(m) 0




I(u) =




I √
uT

1 u1

√
uT

k uk




u = [uT
1 , ..., uT

k]T ;

b(m) = [(D(m)u0)
T , 0, ..., 0]T

We also define the matrix Q as a matrix of zeros and ones such that Qu =
uk. Obviously, the matrices A,B and I(u) are never generated in practice
and only matrix vector products of the form Lu and Du and are needed
but it is easier to analyze our problem and to use numerical optimization
techniques when the system is written in this form.

6

Using these definitions we replace the original eigenvalue optimization
with the minimization or maximization of

1

2λ2
≈ 1

2
uT QT Qu.

The advantage of this formulation is that while the original eigenvalue
equation has, in general, n solutions however, the process we define here has
a unique result. Also, by minimizing or maximizing the inverse of the eigen-
value square (rather than the eigenvalue itself) we get a simple expression to
be optimized.

3 The discrete optimization problem

We now return to the discrete optimization problem. As explained in the
introduction, we avoid the eigenvalue problem directly and replace it with the
nonlinear system (6). This allows us to use simple optimization tools. Care
must be taken such that we are solving the correct optimization problem, i.e.
that the number of iterations in the inverse iteration process is sufficiently
large to approximate the eigenvalue of the system. We return to this point
later. For simplicity of notation we write the problem of maximizing the
smallest eigenvalue. The minimization is done by simply changing the sign
of the eigenvalue approximation and the level-set term.

The problem we solve is the following constrained optimization problem

min
1

2
uT QT Qu + β

(
1

2
γ‖∇hm‖2 − hdeT ρ(m)

)
(7a)

s.t C(m,u) = I(u)Au−B(m)u− b(m) = 0 (7b)

Following our work [8, 2, 9] we form the Lagrangian

J (u,m, µ) =
1

2
uT QT Qu + β

(
1

2
γ‖∇hm‖2 − hdeT ρ(m)

)
+ (8)

µT (I(u)Au−B(m)u− b(m))

where µ is a vector of Lagrange multipliers.

7

Differentiating with respect to u,m and µ we obtain the following non-
linear system of equations to be solved

Ju = QT Qu + CT
u µ = 0 (9a)

Jm = β
(
γ∇T

h∇hm + hdρ′(m)
)

+ CT
mµ = 0 (9b)

Jµ = I(u)Au−B(m)u− b(m) = 0 (9c)

The matrices Cm and Cu are the differentiation of the constraint C(m,u)
with respect to m and u respectfully.

Cu = I(u)A + [I(u)Aufix]u −B(m)

Cm = [diag ((ρ′(m))(u0)) diag ((ρ′(m))(u1)) , ..., diag ((ρ′(m))(uk−1))]
T

It is important to note that the matrix Cu can be thought of a discretiza-
tion of a differential operator and the matrix Cm is simply a combination
of a diagonal positive matrices which implies that it involves with only zero
order derivatives. This fact is crucial to the effective solution of the prob-
lem. Also, its important to note that the matrix [I(u)Aufix]u is a lower block
triangular dense matrix but its product with a vector can be calculated in
O(n) operations by simple rearrangement of the vectors. The matrix Cu is
a lower triangular matrix with the Laplacian on its diagonal and therefore
it is possible to solve a system of the form Cuv = w and CT

u v = w by solv-
ing a few Poisson equations that can be done efficiently by using multigrid.
Our multigrid is a standard geometrical multigrid method with bilinear pro-
longation and restriction. We use two steps of symmetric Gauss-Siedel as
a smoother and combine everything into a W-cycle. The number of cycles
needed to obtain a relative accuracy of 10−8 range between 5-6.

4 Solving the optimization problem

In order to solve the optimization problem we use the reduced Hessian
Sequential-Quadratic-Programming method (SQP) [14], utilizing the prop-
erties of the matrices in the Euler-Lagrange equations in order to solve the
resulting linear systems.

We start by approximating the full Hessian of the problem by a Gauss-
Newton approximation (see for details [9])


Cu 0 Cm

QT Q CT
u 0

0 CT
m βR







su

sµ

sm


 = −



Lµ

Lm

Lu


 (10)

8

In the reduced Hessian method, we eliminate the unknowns su and sµ

obtaining an equation for sm alone.
We therefore start by eliminating su

su = C−1
u Lµ − C−1

u Cmsm.

To calculate the term C−1
u Lµ solve the lower triangular block system Cuv =

Lµ which is done by solving k Poisson equation.
After eliminating su we eliminate sµ. To do that we substitute the com-

puted su into the Hessian system.

sµ = C−T
u (Lm −QT Qsu).

Note that this requires the solution of the system

CT
u v = w

This system is an upper triangular block system with LT on its diagonal.
We therefore use the same multigrid solver for the solution of this problem
as well.

Substituting su and sµ into (10) we obtain an equation for sm alone. The
equation has the form

(JT J + βR′′)sm = CT
mC−T

u (Lm + QT QC−1
u Lµ) ≡ gr (11)

where the matrix J is
J = −QC−1

u Cm

The right hand side of this equation, gr, is referred to as the reduced gradient
and the dense matrix on the left hand side is referred to as the reduced
Hessian. The reduced Hessian is dense and therefore, we do not compute
it in practice. There are two options to proceed. First, we can solve the
reduced Hessian system using the conjugate gradient (CG) method. At each
CG iteration we require to solve systems of the form Cuv = w and CT

u v = w
which can be done using a multigrid method. If the number of CG iterations
is small then such an approach can quickly converge.

Another approach is to use a quasi-Newton method in order to approxi-
mate the reduced Hessian and solve instead.

H̃rsm = gr

9

where H̃r is an approximation to the reduced Hessian. In this case no or
very simple matrix inversion is needed and the approximation to the reduced
Hessian is obtained through the sequence of reduced gradients gr. In this
work we have chosen to use the L-BFGS method [14]. The advantage of
the method is that the only matrix inversion that is needed for the solution
of the approximate reduced Hessian is its initial guess and therefore we can
quickly calculate the product of the inverse reduced Hessian times a vector.
In general, the number of steps of this method can be larger compared with
the Newton type approach however, for this problem, as we demonstrate in
our numerical examples, the number of steps needed was very small. Our
implementation of L-BFGS is standard (see [14]). The reduced Hessian is
initiated to

H0 = β(I + γ∇T
h∇h).

and we invert it at each iteration by using the same multigrid solver.
In order to globalize the optimization algorithm and to guaranty the

convergence to a (local) minimum we use the l1 merit function with a simple
Armijo backtracking line-search (see [14] for details). We have found that
using our continuation strategy (see Sections 5 and 6) this line search was
more than sufficient and never fail thus we avoided the more involved and
more expensive line search which involves evaluating reduced gradients in
addition to objective functions.

5 Multilevel continuation

In order to speed-up computations, deal with possible high nonlinearities,
gain extra accuracy and evaluate the penalty parameter we have embedded
our nonlinear optimization solver within a multilevel continuation iteration.
Multilevel methods are especially effective for this problem due to two main
reasons.

• The smallest eigenvalue of an elliptic differential operator corresponds
to a smooth eigenvector and therefore can be computed on a coarse
grid with (relative) high accuracy.

• The function m is smooth and therefore we are able to represent it on
a coarse grid.

10

As we now demonstrate, utilizing these properties we obtain a multilevel
iteration that is highly efficient and reduces the computational time signifi-
cantly. We base our method on our previous work [1] with some modifications
to deal with the problem at hand. The algorithm is as follows:

Algorithm 1 - Grid continuation

• Initialize the parameter mH and choose a vector qH as initial guess to
the first eigenvector on the coarse grid.

• while not converge

1. Use the methods discussed in Section 4 to solve the optimization
problem on the current grid.

2. Use a search technique in the regularization parameter to approx-
imately solve the mass constraint (5) M = M(β).

3. Output: mH , λH , β, k and qH where qH is the approximation to the
first eigenvector, β is the regularization parameter evaluated on
grid H and k is the number of inverse iteration needed to compute
the eigenvalue to a prescribed accuracy.

4. Check for convergence

5. Refine the mH and qH grid to h using bilinear interpolation.

mh = Ih
H mH ; qh = Ih

H qH

6. Set the initial guess for the eigenvector qh.

7. Set H ← h

In order to check for convergence we compare the difference between
the computed models τm = ||Ih

HmH − mh|| and the computed eigenvectors
τu = ||Ih

HqH − qh|| on fine and coarse grids. We stop the iteration when
max(τm, τu) ≤ τ . Typically in our implementation we choose τ = 10−3. In
other cases we will use a pre-prescribe fine grid. In these cases we stop the
process only when we have solved the equations on the pre-prescribe finest
grid.

To evaluate the regularization parameter we use a simple secant method.
This allow us to approximately solve the equation

hdeT ρ(mh(β)) = Mh (12)

11

by only a few evaluations of m for different β’s. Our basic assumption is
that M(β) is a smooth function. If this is not the case then β on the coarse
grid may not indicate the correct β on the fine grid. In virtually all of
our numerical experiments we have found this process to be efficient. It is
important to note that we should not try to over-solve equation (12). Recall
that due to our parametrization, the mass is almost a discrete variable. We
therefore solve (12) only approximately and stop when

‖hdeT ρ(mh(β))−M‖ ≤ lhd

where l is a small integer (typically 2-4). Thus we allow some flexibility which
is proportional to the mass of each pixel. We have found in our experiments
that we are able to evaluate β accurately on a coarse grid and avoid expensive
fine grid iterations.

There are a few other points in our continuation procedure which are
different then standard continuation methods. The major being the output
of the initial guess qH and setting it as the initial guess for the next level.
As we have discussed in the introduction, the choice of a good initial vector
can reduce the number of fixed point iterations. If the initial vector is close
enough to the first eigenvector then one requires a very small number of
inverse iterations. We have found that using this strategy, the initial vector
on the finest grid is very good and that we are typically able to reduce the
number of inverse iterations on the finest grid to 2− 3.

Furthermore, using this approach we needed very few fine grid iterations
(usually less than 5) and thus the total work on the fine grid was very minimal
indeed.

6 Continuation in the fixed point iteration

Although our multilevel iteration is highly efficient we found that for some
cases, the solution on the coarsest level required many iterations and in some
cases fail to converge if we start from a very bad guess. In order to be
able to always converge, even on coarse grids, and to obtain a more robust
algorithm we have used a continuation in the fixed point parameter, that is,
we start by doing very few inverse iterations and increase this number until
we converge. The reason that such a method works well is that it is easy to
verify by inspecting the equations that the problem becomes more nonlinear
as the number of inverse iterations increase. Therefore, problems with small

12

number of inverse iterations tend to converge faster and give good initial
guesses to the next problem with more inverse iterations. We summarize the
algorithm as follows.

Algorithm 2 - Fixed point continuation

• Initialize the parameter m and choose a vector q as initial guess to
the first eigenvector on the coarse grid. Set the number of fixed point
iterations k = 2

• while not converge

1. Use the methods discussed in Section 4 to solve the optimization
problem.

2. Use a search technique in the regularization parameter to approx-
imately solve the mass constraint

3. Output: m,λ, β and q

4. Check for convergence

5. Set k ← k + 1.

Similar to the grid continuation we successively improve our initial guess
and obtain high accuracy in the computed eigenvectors and eigenvalues.

7 Numerical experiments

In this section we report on numerical experiments in 2 and 3D. The goal of
these experiments is to demonstrate the effectiveness of the techniques

7.1 Maximizing and minimizing λ in 2D

Our first experiment we run the model problem in 2D where L = −∇2 which
Drichlet boundary conditions, on a 652 grid points and use the LBFGS(10)
method. We shoot for a total mass of 1.154. To obtain an eigenvalue with
at least three digit accuracy we set (after some experiments) the number of
fixed point iterations to 7. We then solve the problem first on the single fine
grid without any continuation and follow the iteration. To solve the problem

13

Grid Iterations Final mass
52 29 1.3601
92 14 1.2592
172 16 1.1584
332 4 1.1538
652 3 1.1539

Table 1: Iterations per grid for maximizing λ

on a single fine grid, we needed 44 fine grid iterations to reduce the absolute
value of the gradient to 10−6. This number is better than the iteration counts
reported in [15] in a factor of 3− 4 but as we see next, we can be much more
ambitions then that. Recall that each iteration requires 14 solutions of the
Poison equation thus even in 2D using multigrid methods, the problem is
computationally expensive.

When we use a multilevel continuation technique we can do much better.
First, initializing the first eigenvector with the coarse grid interpolation, we
can reduce the number of inverse iterations to 2 keeping the same accuracy
and reducing nonlinearity. The number of iterations and the total mass on
each grid is summarized in Table 1.

As we can see, the number of the iterations on the coarsest grid is some-
what large but this iteration is very cheap. Using the coarse grid solution
as an initial guess, the number of finer grid iteration reduces dramatically.
Finally the number of the finest grid iteration is reduced to only 3. Since
we solve only 4 Poison equations at each iteration (due to the good initial
approximation to the first eigenvector), compared with 14 when we do not
use multilevel methods, the cost of each fine grid iteration in the multilevel
setting is roughly 3.5 times cheaper than the iteration on a single grid. Thus
the overall saving is more then a factor of a hundred.

In this case, even though the number of iterations on the coarse grid was
large, the line search did not fail and we did not need to use the continuation
in the fixed point iteration. However, when starting from different starting
models we have used this continuation on the coarse grid if the line search
fails.

The final result of the density on each grid in these experiments are
plotted in Figure 1. The level-set function is plotted in Figures 2 Finally, we
plot the convergence curve of this process in Figure 3. We can see that using

14

Grid Iterations Final mass
52 38 1.603
92 19 1.588
172 12 1.567
332 6 1.562
652 4 1.562

Table 2: Iterations per grid for minimizing λ

the multilevel process, the initial iteration on the finest grid had roughly a
gradient norm of 10−5.

We repeat the experiment but this time we minimize λ by changing the
sign in Equation (4). The results in this case are recorded in Table 2. We
see that we keep the overall efficiency and that our formulation is insensitive
to this change.

7.2 Maximizing λ on a complicated domain

In the next experiment we demonstrate the ability of the level-set to change
topology. We solve the problem on a square domain with two holes with a
butterfly shape. Drichlet boundary conditions are imposed inside and out-
side. In this case we do not use a multilevel scheme as we are interested in
following the changes in the density through the iteration.

We set the grid to 65 × 65 We set the total mass to 1.33 and trace
the iteration. The stopping criteria is set to when the absolute value of
the gradient is smaller than 10−6. We start our iteration with a connected
shape. We see that the shape quickly disconnect into two separate shapes
that “travel” to the right place.

In this case there is no analytic solution to compare our results with.
However, starting from different starting models yield identical results. The
results are plotted in Figure 4.

7.3 Maximizing λ in 3D

As a third experiment we solve the same problem in 3D on a simple domain.
The finest grid is set to 653 thus the size of the matrix is 2746252. We set
the total mass in this case to 1.11. Evaluating eigenvalues and eigenvectors

15

Grid Iterations Final mass
52 52 1.261
92 13 1.132
172 9 1.116
332 5 1.110
652 2 1.112

Table 3: Iterations per grid for maximizing λ in 3D

for this problem is a computationally demanding task. Here we did not use
the single grid option but rather used our multilevel algorithm alone. The
results of this experiment are summarized in Table 3

The final density from this experiment is plotted in Figure 5. We see
again that our method is highly effective and allow us to work with large
scale problems.

8 Summary and discussion

In this paper we have used multilevel methods combined with level-sets to
solve an eigenvalue optimization problem. It is important to note that in this
case as well as many other cases of optimal design and inverse problems, we
do not care about the surface evolution. This is very different from the case
of front propagation where tracking the front is important. Furthermore,
evaluating the speed of propagation for the interface is computationally in-
tensive as it involves with computing the solution to an eigenvalue problem.
Thus the bottleneck of this computation is the solution of the forward prob-
lem. Using fast marching scheme and other front propagation techniques to
solve such problems is very inefficient. Instead, one can use standard nu-
merical optimization techniques combined with multilevel methods to obtain
solutions in only a fraction of the cost that is needed for following the front.

The second technique we have demonstrated in this paper is the use of
the inverse iteration process for eigenvalue optimization. As we stated in
the introduction, using this approach, we can compute the eigenvalues and
eigenvectors with increasing accuracy, avoiding the need to compute a very
exact and time consuming eigenvector for gradient computation. Our work
here involved only the first eigenvalue but we intend to expand our work to

16

the case of minimizing the gap between eigenvalues as well as other eigenvalue
problems.

Acknowledgment

The author would like to thank Stanley Osher for introducing the prob-
lem.

References

[1] U. Ascher and E. Haber. Grid refinement and scaling for distributed
parameter estimation problems. Inverse Problems, 17:571–590, 2001.

[2] U. Ascher and E. Haber. A multigrid method for distributed parameter
estimation problems. Preprint, 2001.

[3] M. Bendsoe and C. Mota Soares. Topology design of structuts. Kluwer
Academic, Dordrecht, MA, 1993.

[4] S. Cox and D. Dobson. Band structure optimization of two dimen-
sional photonic crystals in h-polarization. J. Comput. Phys., 158:214–
223, 2000.

[5] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. SIAM, Philadelphia, 1996.

[6] H.W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse
Problems. Kluwer, 1996.

[7] C. Farquharson and D. Oldenburg. Non-linear inversion using general
measures of data misfit and model structure. Geophysics J., 134:213–
227, 1998.

[8] E. Haber and U. Ascher. Preconditioned all-at-one methods for large,
sparse parameter estimation problems. Inverse Problems, 2001. To
appear.

[9] E. Haber, U. Ascher, and D. Oldenburg. On optimization techniques
for solving nonlinear inverse problems. Inverse problems, 16:1263–1280,
2000.

17

[10] A Leito and O. Scherzer. On the relation between constraint regulariza-
tion, level sets, and shape optimization. Inverse Problems, 19 (1):1–11,
2003.

[11] A.S. Lewis. The mathematics of eigenvalue optimization. Mathematical
Programming, to appear, 2003.

[12] A.S. Lewis and M.L. Overton. Eigenvalue optimization. Acta Numerica,
5:149–190, 1996.

[13] K. Neymeyr. Solving mesh eigenproblems with multigrid efficiency, in
Numerical Methods for Scientific Computing. Variational problems and
applications. CIMNE, Barcelona, 2003.

[14] J. Nocedal and S. Wright. Numerical Optimization. New York: Springer,
1999.

[15] S. Osher and F. Santosa. Level set methods for optimization problems
involving geometry and constraints i. frequencies of a two density inho-
mogeneous drum. JCP, 171:272–288, 2001.

[16] M. Overton. On minimizing the maximum eigenvalue of a symmetric
matrix. SIAM J. on Matrix Analysis and Applications, 9(2):256–268,
1988.

[17] M.L. Overton. Large-scale optimization of eigenvalues. SIAM J. Opti-
mization, 2:88–120, 1992.

[18] A. Shapiro and M.K.H. Fan. On eigenvalue optimization. SIAM J. on
Optimization, 5:552–569, 1995.

[19] U. Trottenberg, C. Oosterlee, and A. Schuller. Multigrid. Academic
Press, 2001.

18

1.2

1.4

1.6

1.8

0 0.5 1

0

0.5

1
1.2

1.4

1.6

1.8

0 0.5 1

0

0.5

1

1.2

1.4

1.6

1.8

0 0.5 1

0

0.5

1
1.2

1.4

1.6

1.8

17 X 17 Grid

0 0.5 1

0

0.5

1

1.2

1.4

1.6

1.8

33 X 33 Grid

0 0.5 1

0

0.5

1

1.2

1.4

1.6

1.8

Initial guess 5 X 5 Grid

9 X 9 Grid

65 X 65 Grid

0 0.5 1

0

0.5

1

Figure 1: Evolution of the density when using the multilevel approach

19

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: The final level set function on the finest grid

20

0 10 20 30 40 50 60 70
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

5 X 5 grid

9 X 9 grid 17 X 17 grid

33 X 33 grid

65 X 65 grid

Figure 3: Convergence curve for the multilevel iteration

21

Initial guess 5 Iter 10 Iter

15 Iter 20 Iter 25 Iter

34 Iter

Figure 4: Density distributions with the iteration

22

Figure 5: The final density on the finest 3D grid

23

