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Abstract
We propose a simple, fast sweeping method based on the Lax-Friedrichs

monotone numerical Hamiltonian to approximate the viscosity solution of
arbitrary static Hamilton-Jacobi equations in any number of spatial di-
mensions. By using the Lax-Friedrichs numerical Hamiltonian, we can
easily solve for the value of a speci�c grid point in terms of its neighbors,
so that a Gauss-Seidel type nonlinear iterative method can be utilized.
Furthermore, by incorporating a group-wise causality principle into the
Gauss-Seidel iteration by following a �nite group of characteristics, we
have an easy-to-implement, sweeping-type, and fast convergent numerical
method. However, unlike other methods based on the Godunov numeri-
cal Hamiltonian, some computational boundary conditions are needed in
the implementation. We give a simple recipe which enforces a version of
discrete min-max principle. Some convergence analysis is done for the
one-dimensional eikonal equation. Extensive 2-D and 3-D numerical ex-
amples illustrate the e�ciency and accuracy of the new approach. To our
knowledge, this is the �rst fast numerical method based on discretizing
the Hamilton-Jacobi equation directly without assuming convexity and/or
homogeneity of the Hamiltonian.

1 Introduction
The Hamilton-Jacobi equation arises in many applications such as geometri-
cal optics, crystal growth, etching, computer vision, obstacle navigation, path
planning, photolithography, and seismology. The solutions of these nonlinear
di�erential equations usually develop singularities in their derivatives even with
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smooth initial conditions. In these cases, the solutions do not satisfy the equa-
tions in the classical sense. The notion of viscosity solution was introduced by
Crandall and Lions [3] to uniquely determine a solution of a Hamilton Jacobi
equation. Numerically, in general, one looks for a consistent, convergent, e.g.
monotone scheme to approximate viscosity solutions [19].

In this paper, we focus on static Hamilton-Jacobi equations of the following
form: {

H(x,∇φ(x)) = R(x) x ∈ Ω
φ(x) = q(x) x ∈ Γ (1)

where H, q, and R > 0 are Lipschitz continuous, and Γ is a subset of Ω. Static
Hamilton-Jacobi equation as a �rst order nonlinear PDE appears in many dif-
ferent applications. In the Dynamic Programming approach for in�nite hori-
zon optimal control, the value function of the optimized cost functional sat-
is�es so-called Hamilton-Jacobi-Bellman equation, a static equation having a
convex Hamiltonian in the gradient variable. In the Dynamic Programming
approach for di�erential games, the value function for the zero-sum game sat-
is�es the so-called Hamilton-Jacobi-Isaacs equation, the resulting Hamiltonian
being nonconvex. In the classical high frequency asymptotic for wave propa-
gation in elastic solids, the phase function, a.k.a traveltime function in some
applications, satis�es the so-called eikonal equation which is an indispensable
element of the family of Hamilton-Jacobi equations. To be more speci�c, in
the isotropic elastic solid, the traveltime satis�es the isotropic eikonal equation
|∇φ| = 1 which is of quadratic nonlinearity and thus has a convex Hamiltonian.
However, in the anisotropic elastic solid, high frequency asymptotic analysis
gives rise to three di�erent wave modes: one quasi-longitudinal wave and two
quasi-shear waves. The Hamilton-Jacobi equation for quasi-longitudinal wave
traveltime is convex in the gradient variable and homogeneous of degree one,
but the Hamilton-Jacobi equation for one of the two shear waves is nonconvex
in the gradient variable. In the semi-classical limit for Schroedinger equation,
the eikonal equation arises as the Planck constant approaches zero. Therefore,
it is of fundamental importance to design fast, accurate numerical schemes to
solve the resulting static Hamilton-Jacobi equations for the above applications.

The numerical methods for this type of equations can be roughly divided into
three categories. The �rst class of methods are those that involve the use of a
fast marching method and heap-sort data structure. These methods [21] [17]
[5] [18] are based on the monotonicity of the solution along the characteristics.
The solutions are constructed with a variation of the classical Dijkstra algorithm.
The complexity is O(N log N), where N is the total number of grid points in the
domain. So far, these methods can only handle convex, usually homogeneous of
degree one, Hamiltonians and become quite complicated with large initialized
regions and cumbersome updating formulae if the Hamiltonian is not closely
related to that of the eikonal equation |∇φ| = 1.

The second class of methods are those that rely on time dependent Hamilton-
Jacobi Equations. The advantage of these methods is that higher order schemes
are easily derived. Osher [8] provided a rigorous link between static and time de-
pendent Hamilton-Jacobi equations. The zero level set of the viscosity solution
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ψ of
ψt(x, t) + H(x,∇ψ(x, t)) = 0 (2)

with suitable initial conditions at a later time t is the set of x such that φ(x) = t
of (1). This gives an approach that one can use to solve the time-dependent
equation by the localized level set formulation [9] [11] with high order approx-
imations on the partial derivatives [10] [6]. Another approach to obtaining
a �time� dependent Hamilton-Jacobi equation from a static Hamilton-Jacobi
equation is using so-called paraxial formulations by assuming that there is a
preferred direction in the wave propagation. In [4], a paraxial formulation was
�rst proposed for the eikonal equation |∇φ| = 1. Later in [14] [15], a parax-
ial formulation was proposed for convex Hamilton-Jacobi equations which is
e�cient in some geophysical applications.

The third, and �nal, class of algorithms rely on iterative methods. Rouy and
Tourin [16] used an upwind, monotone, and consistent discretization for |∇φ| to
solve the discretized eikonal equation iteratively and proved that it converges
to the viscosity solution. For convex Hamiltonians, Tsai et al. [20] used a
fast Gauss-Seidel type iteration method, �rst surmised in [2], and a monotone
upwind Godunov Hamiltonian, �rst obtained in [1] and evaluated in [10], as the
numerical Hamiltonian. Kao et al. [7] proposed a new interpretation of the
monotone upwind Godunov Hamiltonian for the numerical Hamiltonian based
on the Legendre transform and also used a Gauss-Seidel fast sweeping method.
The complexity of these two methods is O(N). This has been rigorously proved
in [22] only for special cases, but the numerical evidence is convincing that this
is true in very general convex cases.

However, all of the above cited methods are designed for static Hamilton-
Jacobi equations by assuming convexity and/or homogeneity of Hamiltonians.
In this paper, we propose a new Gauss-Seidel sweeping type algorithm which
is based on the Lax-Friedrichs Hamiltonian. It can handle both convex and
nonconvex very complicated Hamiltonians. The evaluation of H uses data from
the previous step. This makes the speed of the algorithm dramatically fast. The
algorithm can deal with boundary conditions speci�ed on complicated subset Γ.
Also, the algorithm is extremely easy to implement, using less than 100 lines of
code.

2 The Lax-Friedrichs Sweeping Scheme
If a monotone scheme based on the Godunov Hamiltonian is applied to equation
(1), then a nontrivial calculation involving minima and maxima needs to be
carried out at each grid point to solve for a grid value in terms of its neighbors.
This can be done without too much the di�culty for convex Hamiltonians.
For example, the ordered upwind method [18] updates the grid value using
a minimization formula which essentially boils down to a version of Godunov
type monotone scheme for convex and homogeneous Hamiltonians. To update
the solution at each grid point, the ordered upwind method searches the whole
�considered� front in order to �nd an approximately correct direction to satisfy
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the point-wise causality; thus this can involve an extensive, computationally
costly search, and the resulting method has O(N log N) complexity, where N
is the total number of grid points. An optimal method of O(N) complexity
may be designed by following a group of characteristics at each iteration, so
that a group-wise causality principle is satis�ed. This led to the design of the
fast sweeping methods proposed in [22] [20] [7], and the method for convex
Hamilton-Jacobi equation apparently has only O(N) complexity and is simple
to implement.

However, if the Hamiltonian in (1) is nonconvex, then the Godunov Hamil-
tonian gives rise to a formula involving minima and maxima which is extremely
hard to carry out; therefore, in this case it is a nontrivial task to solve for a
grid value in terms of its neighbors. Hence we resort to using the Lax-Friedrichs
Hamiltonian to avoid a complicated optimization process always needed for the
Godunov Hamiltonian.

2.1 Lax-Friedrichs Hamiltonian
Our new numerical algorithm for static Hamilton-Jacobi equations

{
H(x,∇φ(x)) = R(x) x ∈ Ω

φ(x) = q(x) x ∈ Γ

is composed of an update formula and a sweeping process which can handle both
convex and nonconvex cases. The one dimensional Lax-Friedrichs Hamiltonian
is ( dropping the obvious x dependence on H )

H̃LF (p−, p+) = H

(
p+ + p−

2

)
− σx

p+ − p−

2

where σx is the arti�cial viscosity satisfying

σx ≥ max
∣∣∣∣
∂H

∂p

∣∣∣∣ ,

p = ∂φ
∂x and p± are corresponding forward and backward di�erences approxi-

mation of ∂φ
∂x . We want to use alternating Gauss-Seidel iterations to obtain the

numerical approximation of solutions in the following discretization

H̃LF = R.

In order to have simple update formula, we choose

φn+1
i =

4x

σx

(
R(xi)−H

(
xi,

(p+)n + (p−)n

2

))
+

φi+1 + φi−1

2
(3)

We do not specify the step by putting superscripts on φi+1 and φi−1 because they
depend on the sweeping directions. If we sweep from left to right, φi−1 = φn+1

i−1

and φi+1 = φn
i+1 because we use the newest values for Gauss-Seidel iteration.
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Of course the opposite is true if we go from right to left. The formulas for two
and three dimensions can be obtained by similar procedures:

φn+1
i,j =

(
1

σx

4x + σy

4y

) (
R−H

(
x,

(p+)n + (p−)n

2
,
(q+)n + (q−)n

2

))

+

(
1

σx

4x + σy

4y

) (
σx

φi+1,j + φi−1,j

24 x
+ σy

φi,j+1 + φi,j−1

24 y

)
, (4)

φn+1
i,j,k = c

{
R−H

(
x,

(p+)n + (p−)n

2
,
(q+)n + (q−)n

2
,
(r+)n + (r−)n

2

)

+ σx
φi+1,j,k + φi−1,j,k

24 x
+ σy

φi,j+1,k + φi,j−1,k

24 y
+ σz

φi,j,k+1 + φi,j,k−1

24 z

}
, (5)

where q = ∂φ
∂y and r = ∂φ

∂z ,

c =
1

σx

4x + σy

4y + σz

4z

,

and σx, σy and σz are arti�cial viscosities satisfying

σx ≥ max
∣∣∣∣
∂H

∂p

∣∣∣∣ , σy ≥
∣∣∣∣
∂H

∂q

∣∣∣∣ , andσz ≥ max
∣∣∣∣
∂H

∂r

∣∣∣∣ .

We remark that no nonlinear inversion is required in the above formulae,
therefore the algorithm is simple to implement, no matter how complicated the
Hamiltonian might be.

2.2 Computational Boundary Condition
There is a major di�erence between the Godunov Hamiltonian and the Lax-
Friedrichs Hamiltonian. The Godunov Hamiltonian is an upwind Hamiltonian
while the Lax-Friedrichs Hamiltonian is not. The Godunov Hamiltonian will
choose the grid points automatically to give reasonable results on the com-
putational boundary given that characteristics are assumed to �ow out of the
regions. However, the Lax-Friedrichs Hamiltonian gives a solution depending
on all of its neighbors in all Cartesian dimensions. If we do not carefully specify
the values of points outside of the computational domain, a huge error will be
introduced for the points on the computational boundary and then propagate
into the computational domain.

For simplicity, we describe the two dimensional case on the compact domain
[xmin, xmax]× [ymin, ymax]. Suppose we have the uniform discretization (xi, yj),
i = 0, 1, ..., m1, m1 +1, and j = 0, 1, ..., m2,m2 +1 where xi = (i−1)4x+xmin,
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yj = (j − 1)4 y + ymin, 4x = xmax−xmin

m1−1 and 4y = ymax−ymin

m2−1 . We use the
following formulas





φnew
0,j = min(max(2φ1,j − φ2,j , φ2,j), φold

0,j )
φnew

m1+1,j = min(max(2φm1,j − φm1−1,j , φm1−1,j), φold
m1+1,j)

φnew
i,0 = min(max(2φi,1 − φi,2, φi,2), φold

i,0 )
φnew

i,m2+1 = min(max(2φi,m2 − φi,m2−1, φi,m2−1), φold
i,m2+1)

(6)

which combine extrapolation, maximization and minimization to calculate the
values for points outside of computational domain. For a source point not
on a computational boundary, it is very reasonable to do linear extrapolation.
It means that p+ = p− for the points on the computational boundary. For
a source point on a computational boundary, we need to choose ∂φ

∂n = 0 in
order to avoid in�ow. For well-posed problems, in the absence of physically pre-
scribed boundary conditions, we must always have out�ow on the computational
boundary. That is why we choose (∂φ

∂x )+ ' φ2,j−φ1,j

4x = (∂φ
∂x )− ' φ1,j−φ0,j

4x when
(∂φ

∂x )+ ≈ φ2.j−φ1,j

4x > 0 and (∂φ
∂n )c ' φ2,j−φ0,j

4x = 0 when (∂φ
∂x )+ ≈ φ2.j−φ1,j

4x ≤ 0.
We want to make sure that our numerical approximation is decreasing after each
iteration so we update the value only when it is less than its old value. This is
how our formula (6) is derived.

2.3 Algorithm for Lax-Friedrichs Sweeping
The Lax-Friedrichs sweeping algorithm is very easy to implement. There are
three steps: initialization, alternating sweeps, and enforcing the computational
boundary condition. We take the two dimensional case for the sake of exposition.
Suppose we have the discretization (xi, yj), i = 0, 1, ...,m1,m1 + 1 and j =
0, 1, ..., m2, m2 + 1 as mentioned before.

1. Initialization: We assign exact values or interpolated values for φ0
i,j at grid

points on or near Γ. These values are �xed in later iterations. At all other
grid points, we assign large positive values for φ0

i,j . These values will be
updated in later iterations.

2. Alternating sweeps: At iteration n + 1, we calculate φn+1
i,j according to

(4) at all grid points (xi, yj) 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 except for those
which have assigned values and update φn+1

i,j only when it is less than its
previous value φn

i,j . Recall that this process needs to be done in alternating
sweeping directions, which means that it needs 4 di�erent sweeps in the
two dimensional case. (1) From lower left to upper right i = 1 : m1,
j = 1 : m2, (2) from lower right to upper left i = m1 : 1, j = 1 : m2, (3)
from upper left to lower righti = 1 : m1, j = m2 : 1, and (4) from upper
right to lower left i = m1 : 1,j = m2 : 1. In general, for dimension l, we
need 2l alternating sweeps.

3. Enforcing the computational boundary condition: After each sweep, we
enforce the computational boundary condition by using formula (6), triv-
ially modi�ed depending on which boundary we are at.
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3 Properties for One Dimensional Eikonal Equa-
tion

For the one dimensional eikonal equation, H(p) = |p|, R = c(x), we may choose
the optimal σx = 1 and 4x = h. Thus

φi = h

(
c(xi)− |φi+1 − φi−1|

2h

)
+

φi+1 + φi−1

2

We have
φi =

{
hc(xi) + φi+1 if φi+1 ≤ φi−1

hc(xi) + φi−1 if φi−1 < φi+1
.

It is very easy to see that the computational boundary condition does not a�ect
the result. This gives exactly the same approximation of the solution as the
upwind Godunov method does, no matter how many source points we have.

For general σx > 1, we have the update formula

φi =

{
h
σx

+ ( 1
2 + 1

2σx
)φi+1 + ( 1

2 − 1
2σx

)φi−1 if φi+1 ≤ φi−1
h
σy

+ ( 1
2 + 1

2σx
)φi−1 + ( 1

2 − 1
2σx

)φi+1 if φi−1 < φi+1

In this case, it is harder to prove that it converges. We �rst discuss the case
with a single source point in the center of the domain [−1, 1]. Suppose we have
the discretization xi = i

m , −m − 1 ≤ i ≤ m + 1, xm+1 and x−m−1 are points
outside of domain, and φ(0) = 0, x0 = 0. We sweep from left to right and
then from right to left. The approximation after two sweeps on the left hand
side of the center is symmetric to the approximation after one sweep on the
right side. Without loss of generality, we can just discuss the approximations
on the right hand side of the center. Denote a = ( 1

2 − 1
2σx

) and b = ( 1
2 + 1

2σx
).

(φn)+ represents the sweep from left to right at the nth iteration while (An)−

represents the sweep from right to left at the nth iteration. We can write down
the update formula as the following linear system

A+(φn+1)+ = B+(φn)− + C

and
A−(φn)− = B−(φn)+ + C

where

A+ =




1 0 . . . 0 0
−b 1 0 . . . 0
0 −b 1 . . . .
. 0 . . . . .
. . . . 1 0 .
. . . 0 −b 1 0
0 . . 0 1 −2 1



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B+ =




0 a 0 . . . 0
. 0 a . . . .
. . 0 . . . .
. . . . . . .
. . . . 0 a 0
. . . . . 0 a
0 . . . . . 0




A− =




1 −a 0 . . . 0
0 1 −a 0 . . .
. 0 1 . . . .
. . . . . 0 .
. . . . 1 −a 0
. . . . 0 1 0
0 . . . 1 −2 1




B− =




0 . . . . . 0
b 0 . . . . .
0 b 0 . . . .
. 0 . . . . .
. . . b 0 . .
. . . 0 b 0 a
0 . . . 0 0 0




φn =




φn
1

φn
2

.

.

.
φn

m

φn
m+1




and, C =




h
σx
h
σx

.

.
h
σx
h
σx

0




Thus the update formula becomes
(φn+1)+ = (A+)−1B+(φn)− + (A+)−1C = B̂+(φn)− + Ĉ+

and
(φn)− = (A−)−1B−(φn)+ + (A−)−1C = B̂−(φn)+ + Ĉ−

where

B̂+ =




0 a 0 . . . . . . 0
0 ab a . . . . . . .
0 ab2 ab . . . . . . .
. ab3 ab2 . . . . . . .
. . . . . . . . . .
. . . . . . . 0 . .
. . . . . . . a 0 .
0 abm−2 abm−3 . . . . ab a 0
0 abm−1 abm−2 . . . . ab2 ab a
0 −abm−2 + 2abm−1 −abm−3 + 2abm−2 . . . . −ab + 2ab2 −a + 2ab 2a



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B̂− =




ab a2b a3b . . . am−2b am−1b 0 am

b ab a2b a3b . . . am−2b 0 am−1

0 b ab a2b a3b . . am−3b 0 am−2

. 0 b . . . . . . .

. . 0 . . . . . . .

. . . . . . a2b a3b . .

. . . . . . ab a2b . a3

. . . . . . b ab 0 a2

. . . . . . 0 b 0 a
0 . . . . 0 −b (2− a)b 0 (2− a)a




Ĉ+ =




h
σx

h
σx

(1 + b)
h
σx

(1 + b + b2)
.
.
.
.

h
σx

(1 + b + ... + bm−3 + bm−2)
h
σx

(1 + b + ... + bm−2 + bm−1)
h
σx

(2 + b + ... + bm−2 + 2bm−1)




Ĉ− =




h
σx

(1 + a + ... + am−2 + am−1)
h
σx

(1 + a + ... + am−3 + am−2)
h
σx

(1 + a + ... + am−4 + am−3)
.
.
.

h
σx

(1 + a + a2)
h
σx

(1 + a)
h
σx

(1− a) h
σx




We have convergence for any �xed m when the spectral radius ρ(̂B+B̂−) < 1
because

(φn+1)+ = B̂+B̂−(φn)+ + B̂+Ĉ− + Ĉ+

It is hard to calculate the spectral radius for B̂+B̂− theoretically. We show the
numerical calculation for m = 100 and m = 200 in the following. The spectral
radius approaches to 1 when σx goes to in�nity, but vanishes rapidly as σx goes
down to 1.
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Figure 1: spectral radius of B̂+B̂−

4 Numerical Simulation
We primarily test our Lax-Friedrichs sweeping method on Wul� crystal shape
problems and the traveltime calculation of elastic waves. However, its usage is
not limited to these two areas. Our method works for general static Hamilton-
Jacobi equations (1). In each of the following example, we consider the iter-
ations convergent if the L1 norm of the di�erence of two successive iterations∥∥φn+1 − φn

∥∥
L1

is less than 10−10. Generally, we have convergence within a few
hundred iterations. Even though our algorithm needs more iterations than the
sweeping methods based on the Godunov Hamiltonian, it is still very fast. This
is because the Lax-Friedrichs sweeping scheme does not involve any nonlinear
inversion at all, let alone a complicated procedure involving many �if� state-
ments.

4.1 The Wul� Crystal Shape
The level set formulation of the Wul� crystal shape problems [12] is

{
ψt + γ( 5ψ

|5ψ| )| 5 ψ| = 0, x ∈ Rd, t > 0
ψ = 0, x ∈ Γ

(7)

where γ is the normal speed, also known as the surface tension in the material
science. The zero level set of the viscosity solution ψ of (7) at time t is the
viscosity solution φ(x, y) = t of the following static Hamilton-Jacobi equation
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[8] {
γ( 5φ
|5φ| )| 5 φ| = 1, x ∈ Rd

φ = 0, x ∈ Γ
(8)

If Γ is a collection of closed surfaces of codimension one, there is no di�erence
between these two formulations. If Γ is more complicated, (8) gives both inward
and outward propagation.

In [12], γ is given as γ(ν) where ν is the angle between the outward normal
direction 5φ

|5φ| and x-axis, −π < ν ≤ π for two dimensional cases. Thus we
have cos(ν) = p√

p2+q2
and sin(ν) = q√

p2+q2
, where p = ∂φ

∂x and q = ∂φ
∂y . For

three dimensional cases, γ = γ(ν, ϕ) = γ̃(ν)h(ϕ) is given, where ν and ϕ are the
spherical coordinates, −π < ν ≤ π, π

2 < ϕ ≤ π
2 . Thus we have

cos(ν) = p√
p2+q2

sin(ν) = q√
p2+q2

cos(ϕ) =
√

p2+q2√
p2+q2+r2

and cos(ϕ) =
√

p2+q2√
p2+q2+r2

where p = ∂φ
∂x , q = ∂φ

∂y and r = ∂φ
∂z . Applying these trigonometric equalities to a

given surface tension γ(ν) or γ = γ(ν, ϕ), we obtain a corresponding Hamilton-
Jacobi equation. For example, if γ(ν) = 1 + | sin(ν + π

2 )|, then we have the
corresponding Hamilton-Jacobi equation

√
p2 + q2 + |p| = 1.

In each Wul� crystal shape problem, we specify the normal speed, obtain
the corresponding Hamilton-Jacobi equation, and choose the arti�cial viscosity
as small as possible to make the scheme monotone. For Wul� crystal shape
problems, we sometimes have terms such as

√
p2 + q2 and

√
p2 + q2 + r2 in the

denominator. We need to regularize them by adding a small quantity ε e.g.
ε = 10−6 in order to avoid �dividing by zero�.

First we apply the scheme to some two dimensional problems with three
di�erent type of boundary conditions: (1) a single source point at the center of
the domain, (2) Γ is a square, and (3) 100 random source points {(xi, yi), 1 ≤
i ≤ 100, s.t φ(xi, yi) = 0}.

In Figure 2, γ(ν) = 1+ | sin(ν + π
2 )|, the Wul� crystal shape is an ellipse. In

Figure 2-1, we obtain very nice ellipse contours with a single source point at the
center of the domain. In Figure 2-2, we have inward and outward propagation.
The outward propagation tends to smooth the kink and the contours gradually
become ellipses. The inward propagation makes the contours become vertical
ellipses. However, they look more like rectangle because there is not enough
space to propagate. In Figure 2-3, 100 random source points interact with each
other to give rise to complicated contours.
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Figure 2: |p| +
√

p2 + q2 = 1, σx = 2, σy = 1 (1) contour di�erence = 0.1,
200x200 grid, 55 iterations (2) contour di�erence = 0.05, 200x200 grid, 31 iter-
ations (3) contour di�erence = 0.02, 400x400 grid, 36 iterations.

In Figure 3 and Figure 4, γ(ν) = 1 + | sin(3
2 (ν + π

2 ))| and γ(ν) = 1 +
3| sin(3

2 (ν + π
2 ))| respectively, and the Wul� crystal shapes are triangles in

both cases. In Figure 5 and Figure 6, γ(ν) = | cos(ν)| + | sin(ν)| and γ(ν) =
1 + 3| sin(2ν)| respectively, and the Wul� crystal shapes are quadrilaterals in
both cases. From these simulations, we see that the more non-convex the Hamil-
tonian, the sharper the facets are resolved numerically and the more iterations
are needed for convergence.
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Figure 3:
√

p2 + q2 +
√

(p2+q2)
3
2−(3p2q−q3)

2
√

p2+q2
= 1, σx = σy = 2 (1) contour di�er-

ence = 0.1, 200x200 grid, 100 iterations (2) contour di�erence = 0.05, 200x200
grid, 68 iterations (3) contour di�erence = 0.02, 400x400 grid, 62 iterations.
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Figure 4:
√

p2 + q2 + 3
√

(p2+q2)
3
2−(3p2q−q3)

2
√

p2+q2
= 1, σx = σy = 4(1) contour

di�erence = 0.1, 200x200 grid, 222 iterations (2) contour di�erence = 0.05,
200x200 grid, 137 iterations (3) contour di�erence = 0.02, 400x400 grid, 130
iterations.
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Figure 5: |p| + |q| = 1, σx = σy = 1 (1) contour di�erence = 0.1, 200x200
grid, 19 iterations (2) contour di�erence = 0.05, 200x200 grid, 3 iterations (3)
contour di�erence = 0.02, 400x400 grid, 16 iterations.
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Figure 6:
√

p2 + q2 + 6|pq|√
p2+q2

= 1, σx = σy = 4 (1) contour di�erence = 0.1,
200x200 grid, 134 iterations (2) contour di�erence = 0.05, 200x200 grid, 120
iterations (3) contour di�erence = 0.02, 400x400 grid, 119 iterations.

In Figures 7, 8, 9, and 10, γ(ν) = 1 + | sin(5
2 (ν + π

2 ))|, γ(ν) = 1 + | sin(3(ν +
π
2 ))|, γ(ν) = 1 + | sin( 7

2 (ν + π
2 ))|, and γ(ν) = 1 + | sin(4ν)| respectively, and the

corresponding Wul� crystal shapes are pentagon, hexagon, seven multilateral,
and octagon respectively.
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Figure 7:
√

p2 + q2 +
√

(p2+q2)
5
2−(−5qp4+10q3p2−q5)

2(p2+q2)
3
2

= 1, σx = σy = 2 (1) con-
tour di�erence = 0.1, 200x200 grid, 93 iterations (2) contour di�erence = 0.05,
200x200 grid, 58 iterations (3) contour di�erence = 0.02, 400x400 grid, 61 iter-
ations.
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Figure 8:
√

p2 + q2 + |p3−3pq2

p2+q2 | = 1, σx = σy = 2 (1) contour di�erence =
0.1, 200x200 grid, 88 iterations (2) contour di�erence = 0.05, 200x200 grid, 45
iterations (3) contour di�erence = 0.02, 400x400 grid, 58 iterations.
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Figure 9:
√

p2 + q2 +
√

(p2+q2)
7
2−(−q7+21q5p2−35q3p4+7qp6)

2(p2+q2)
5
2

= 1,σx = σy = 2 (1)
contour di�erence = 0.1, 200x200 grid, 167 iterations (2) contour di�erence =
0.05, 200x200 grid, 53 iterations (3) contour di�erence = 0.02, 400x400 grid,
121 iterations.

19



−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 10:
√

p2 + q2 + |4pq(p2−q2)|
(p2+q2)

3
2

= 1, σx = σy = 4 (1) contour di�erence =
0.1, 200x200 grid, 231 iterations (2) contour di�erence = 0.05, 200x200 grid,
163 iterations (3) contour di�erence = 0.02, 400x400 grid, 195 iterations.

Next we apply the scheme to several three-dimensional examples. For ease of
visualization, we only do simulations with a single source point in the center of
the domain even though we can handle very complicated boundary conditions.
The contours are plotted with speci�ed di�erences or values.

In Figures 11, 12, 13, and 14, h(ϕ) = (1+2| sin(ϕ)|) and γ̃ are (1+| sin(3
2 (ν+

π
2 ))|), (1 + | sin(2(ν + π

2 ))|), (1 + | sin( 5
2 (ν + π

2 ))|), and (1 + | sin(3(ν + π
2 ))|)

respectively.
In Figure 15, γ(ν, ϕ) = (1 + 2| sin(3

2 (ϕ + π
2 ))|)(1 + | sin( 5

2 (ν + π
2 ))|), and the

resulting Wul� crystal shapes are pyramids. In Figures 16 and 17, γ(ν, ϕ) = (1+
2
√| sin(|ϕ| − π

2 )|)(1+ | sin( 3
2 (ν + π

2 ))|) and γ(ν, ϕ) = (1+2
√| sin(|ϕ| − π

2 )|)(1+
| sin(5

2 (ν + π
2 ))|) respectively, and the Wul� crystal shapes are bi-pyramids in

both cases.

20



Figure 11: (
√

p2 + q2 + r2 + 2|r|)(1 + 3
√

(p2+q2)
3
2−(3p2q−q3)

2(p2+q2)
3
2

) = 1, σx = σy = 9
2 ,

σz = 27
4 , 100x100x100 grid, 254 iterations, contour value = 0.2, 0.3, 0.4 and 0.5.

21



Figure 12: (
√

p2 + q2 + r2 + 2|r|)(1 + |2pq|
p2+q2 ) = 1, σx = σy = 5

2 , σz = 15
2 ,

100x100x100 grid, 97 iterations, contour value = 0.2, 0.25, 0.3, 0.35 and 0.4.
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Figure 13: (
√

p2 + q2 + r2 + 2|r|)(1 +
√

(p2+q2)
5
2−(−5qp4+10q3p2−q4)

2(p2+q2)
5
2

) = 1, σx =

σy = 2, σz = 3 100x100x100 grid, 126 iterations, contour value = 0.2, 0.25, 0.3,
0.35 and 0.4.
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Figure 14: (
√

p2 + q2 + r2 + 2|r|)(1 + |p3−3pq2|
(p2+q2)

3
2
) = 1, σx = σy = 2, σz = 6,

100x100x100 grid, 136 iterations, contour value = 0.25, 0.3, 0.35 and 0.4.
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Figure 15: (
√

p2 + q2 + r2)(1 +
√

2(1− 3p2r+3q2r−r3

(p2+q2+r2)
3
2

))(1 +
√

(p2+q2)
5
2−(−5qp4+10q3p2−q4)

2(p2+q2)
5
2

= 1 σx = σy = 3.5, σz = 4, 100x100x100
grid, 179 iterations, contour value = 0.2, 0.3, 0.4 and 0.5.
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Figure 16: (
√

p2 + q2 + r2 +
√

2
√

p2 + q2 + r2|√3|r| −
√

p2 + q2|)(1 +

3
√

(p2+q2)
3
2−(3p2q−q3)

2(p2+q2)
3
2

) = 1, σx = σy = σz = 6, 100x100x100 grid, 91 itera-
tions, contour value = 0.2, 0.4, 0.6 and 0.8.
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Figure 17: (
√

p2 + q2 + r2 +
√

2
√

p2 + q2 + r2|√3|r| −
√

p2 + q2|)(1 +√
(p2+q2)

5
2−(−5qp4+10q3p2−q4)

2(p2+q2)
5
2

) = 1, σx = σy = 3.5, σz = 4, 100x100x100 grid,
54 iterations, contour value = 0.3, 0.4, 0.5, 0.6 and 0.7.
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4.2 Traveltime Computation for The Elastic Wave Prop-
agation

In the high frequency asymptotic for linear elastic wave propagation, we need to
compute traveltime functions for three di�erent wave modes: the quasi-P and
two quasi-S waves; see [13] and reference therein for details. Here we consider a
typical anisotropic elastic model, the transversely isotropic solid with horizontal
symmetry. Then the quasi-P and the quasi-SV slowness surfaces are de�ned by
the following quartic equation

c1p
4 + c2p

2q2 + c3q
4 + c4p

2 + c5q
2 + 1 = 0

where

c1 = a11a44, c2 = a11a33 + a2
44 − (a13 + a44)2, c3 = a33a44,

c4 = −(a11 + a44), c5 = −(a33 + a44).

Here aijs are given elastic parameters. Substituting p = ∂φ
∂x and q = ∂φ

∂y into the
above equation, we have a nonlinear Hamilton-Jacobi equation for the function
φ, the traveltime. Similarly, the quasi-SH slowness surface is de�ned by the
equation

1
2
(a11 − a12)p2 + a44q

2 = 1.

Since the model is transversely isotropic with horizontal symmetry, we may
replace p2 by p2 + r2 to obtain three dimensional Hamilton-Jacobi equations,
where r = ∂φ

∂z . Furthermore, we remark that the Hamilton-Jacobi equation for
quasi-SV wave traveltime in this model has a nonconvex Hamiltonian; see [13]
for results related to multivalued traveltime computation.

Figure 18 shows wavefront contours for the three di�erent wave modes in
a homogeneous transversely isotropic solid. Since the Hamilton-Jacobi equa-
tion for quasi-SV traveltime is nonconvex, the quasi-SV wavefront has cusps,
corresponding to a class of multivalued solutions; see [13] for capturing those
multivalued wavefronts. However, the concept of the viscosity solution underly-
ing the Lax-Friedrichs sweeping scheme allows single-valued solution only which
essentially picks out the �rst-arrival traveltime and removes those cusps. This
can be observed on Fig 18-2, where we can see that kinks appear along the two
diagonals.
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Figure 18: a11 = 15.0638, a33 = 10.8373, a13 = 1.6381, a44 = 3.1258, and a12 =
6.5616, contour di�erence = 0.05, 200x200 grid (1)quasi-SH: σx = σy = 1.5, 31
iterations (2)quasi-SV: σx = σy = 2, 44 iterations (3)quasi-P: σx = σy = 3, 50
iterations.

Figure 19 shows computational results for a model with two layers, so that
the corresponding Hamilton-Jacobi equations have discontinuous coe�cients;
therefore, this model is used to test the stability and robustness of the sweeping
scheme. As we can see from the �gure, Snell's law for anisotropic media is well
enforced.
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Figure 19: a11 = 15.3871, a33 = 14.5161, a13 = 3.9321, a44 = 5.6074, and
a12 = 3.4993 for upper half domain, a11 = 15.0638, a33 = 10.8373, a13 = 1.6381,
a44 = 3.1258, and a12 = 6.5616 for lower half domain, contour di�erence = 0.05,
200x200 grid (1)quasi-SH: σx = σy = 2, 56 iterations (2)quasi-SV: σx = σy = 2,
44 iterations, (3)quasi-P: σx = σy = 3, 48 iterations.

Figure 20 shows results for a three-dimensional transversely isotropic model
with horizontal symmetry. As we can see from Figures 20-2 and 20-3, the
wavefront pro�les along y−direction are circles as expected from the horizontal
symmetry of the model.
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Figure 20: a11 = 15.0638, a33 = 10.8373, a13 = 1.6381, a44 = 3.1258, and
a12 = 6.5616, contour value = 0.2 and 0.3, 100x100x100 grid (1)quasi-SH: σx =
σy = σz = 1.50, 26 iterations (2)quasi-SV: σx = σy = σz = 1.50, 24 iterations,
(3)quasi-P: σx = σy = σz = 2.50, 26 iterations.
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4.3 Convergence Test
To validate the new Lax-Friedrichs sweeping scheme, we �rst apply the method
to the eikonal equation |∇φ| = 1 with a single source point at the center of the
computational domain. In this case, we know the exact solution so that the
convergence behavior of the method can be easily observed. Table 1 presents
the L∞ errors between computed and exact solutions for di�erent mesh sizes.
As we can see, the errors indicate the apparent �rst-order convergence as the
mesh size approaches zero.

dx L∞error convergence order
2
50 0.062286
2

100 0.036946 0.743490
2

200 0.019846 0.896570
2

400 0.010416 0.930047
2

800 0.005378 0.953660
2

1600 0.002750 0.967638

Table 1: The 2D eikonal case: errors and convergence order

Next we study the Lax-Friedrichs sweeping scheme for two dimensional Wul�
crystal shape examples with source points located at the center of the computa-
tional domain. In these cases, we do not know the exact solutions; therefore, we
consider the computed solution for the mesh size 2

1600 as a good approximation
of the true solution and observe the L∞ error behaviors on coarser meshes. In
Table 2, Figures 2-1, 3-1, 5-1, and 7-1 correspond to ellipse, triangle, quadrilat-
eral, and pentagon Wul� crystal shapes, respectively. The errors listed in Table
2 also indicate �rst-order convergence.

example Fig. 2-1 Fig. 3-1 Fig. 5-1 Fig. 7-1∥∥∥φ 2
50
− φ 2

1600

∥∥∥
∞

0.074627 0.142362 0.119700 0.037861∥∥∥φ 2
100

− φ 2
1600

∥∥∥
∞

0.042410 0.089958 0.073120 0.020970∥∥∥φ 2
200

− φ 2
1600

∥∥∥
∞

0.022857 0.053107 0.042770 0.013404∥∥∥φ 2
400

− φ 2
1600

∥∥∥
∞

0.011111 0.028248 0.022670 0.007039∥∥∥φ 2
800

− φ 2
1600

∥∥∥
∞

0.004121 0.011427 0.009180 0.002419

Table 2: The errors of two dimensional Wul� crystal shape examples

Table 3 presents the number of iteration for two dimensional Wul� crystal
shape examples, and the result indicates that in some cases, for example, Fig
5-1, we have O(N) complexity since the corresponding Hamiltonian is separable;
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However, in general, we have an algorithmic complexity better than O(N2) but
worser than O(N).

dx Fig. 2-1 Fig. 3-1 Fig. 5-1 Fig 7-1
2
50 28 65 16 75
2

100 39 79 18 80
2

200 55 100 19 93
2

400 86 140 20 117
2

800 146 229 20 202
2

1600 262 404 20 354

Table 3: The number of iterations for two dimensional Wul� crystal shape
examples

Table 4 illustrates the computational results for some three-dimensional ex-
amples, and the errors also indicate �rst-order convergence.

example Fig. 17 Fig. 20 quasi-SH Fig. 20 quasi-P Fig. 20 quasi-SV∥∥∥φ 2
50
− φ 2

300

∥∥∥
∞

0.139730 0.060470 0.061429 0.033068∥∥∥φ 2
100

− φ 2
300

∥∥∥
∞

0.091490 0.026058 0.027040 0.014548∥∥∥φ 2
150

− φ 2
300

∥∥∥
∞

0.067460 0.013513 0.014183 0.007627∥∥∥φ 2
200

− φ 2
300

∥∥∥
∞

0.055150 0.006913 0.007311 0.003930∥∥∥φ 2
250

− φ 2
300

∥∥∥
∞

0.045040 0.002810 0.002988 0.001606

Table 4: The errors of three dimensional examples

Table 5 shows the number of iterations for these 3-D examples; once again,
the observed algorithmic complexity is much better than O(N2).

dx Fig. 17 Fig. 20 quasi-SH Fig. 20 quasi-P Fig. 20 quasi-SV
2
50 42 21 21 19
2

100 52 26 26 24
2

150 90 31 31 29
2

200 109 36 36 34
2

250 131 41 41 39
2

300 206 46 47 44

Table 5: The number of iterations for three dimensional examples
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5 Conclusion
In this paper, we proposed a simple, fast sweeping method based on the Lax-
Friedrichs Hamiltonian to approximate the viscosity solution of static Hamilton-
Jacobi equation. By using the Lax-Friedrichs Hamiltonian, we can handle much
more complicated Hamiltonians than was previously done, including convex and
general nonconvex cases. By using the sweeping method, we follow a group of
characteristics at each iteration to speed up the algorithm. Unlike the Godunov
Hamiltonian, we need to specify a simple computational boundary condition
for our scheme. In order to have no in�ow at the boundary, we have derived
a min-max formula for the computational boundary. Some properties of the
approximation for the one-dimensional eikonal equation were analyzed. We
illustrated the e�ciency and accuracy of the approach with extensive numerical
examples in two and three dimensional cases. Currently, we are applying the
method to di�erential game problems and we will report the result elsewhere.
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