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Abstract

The success of some recent texture synthesis methods,,sEd,[8ug-
gests that there exists an underlying formulation exptagtieir performance
and paving the way to more involved modeling. Based on tde@s, we for-
malize a low-leveplobal deterministicsolution for image inpainting.

A correspondence map is defined as linking each blank or mgigskel
to the pixel where its value is taken from, in the seed imagke above-
mentioned algorithms are seen as descent procedures tmizena func-
tional of this correspondence map, the inpainting energg. dicuss why
they should not be seen as procedures to sample a probalslitijpution on
the correspondence maps. We therefore question the claahprobability
is anywhere involved at this explanatory level.

The algorithm we use is mostly taken from [17]. The latter boer
suffers from a strong directional bias, the direction inethtiexture is grown.
We restore rotation-invariance at the level of both thedafgnction and the
algorithm. Our encouraging numerical results could noehasen obtained
by a directional texture-growing algorithm.



1 Introduction

The problem we address in this report is that of image inpainting or disaoclus

A special case is texture synthesis constrained by boundary matching setida
texture. Given an image where a few pixels or a whole regidhis missing, we

wish to recover the lacking information in the best possible way to the eyewA fe
principles come to mind when trying to give this problem a more precise statement

1. The seed image should provide a guideline to the synthesis of the missing
pixels. The result of inpainting should locally be visually close to parts of
the known image.

2. In addition to considering the seed image, one might wish to consider a set
of images, build a summarizing account of their properties, and use this as
learneda posterioriknowledge.

3. Oura priori knowledge of some typical image properties (there are uniform
regions, edges, texture, etc.) should provide other indications for theinp

ing.
4. Atyet a higher level, our understanding of the scene can give tsdtihow
to inpaint properly.

The method we present in section 2 is at a ‘low level’ since it only concestrate
on the first approach. Variational or PDE-based inpainting methodg,[@n#&he
other hand, are based on some a priori information (e.g. the functional imind)
as well as data fitting (e.g. the boundary condition), so they fall in betwesen th
third and first categories. Markov random field texture models, cfi, fidhsist in
building a big probability distribution from a large set of images, and then sagplin
it in order to synthesize the learned patterns. This follows approach muznbe
above.

Section 2 formulates the inpainting problem as the minimization of a new in-
painting functional. An algorithm to reach a good local minimum is then described
The core of the paper, sections 3, is a discussion related to the new ftomula-
sues related to its deterministic vs. probabilistic interpretation are addréssmae.
numerical experiments are presented in section 4. Directions for fukganeh are
given in section 5.



2 Inpainting by correspondence maps

2.1 Formulation

We are given a known image (intensity functiar(yx) defined on the pixela €
I\ for some missing regioft. The problem is to recover the unknown intensities
u() for a € Q. Our strategy is to define @rrespondence map : Q@ — I\Q
and to paste the pixel values from the seed image(as := u(F'(«)). This is
depicted in Fig. 1.

The mapF should be chosen so that the synthesized region looks as much as
possible like parts of the seed image. Define the neighbordgpdf a pixel «
as, say, the set of its eight surrounding neighbdfs ¢annot containy). Visual
closeness of two pixel neighborhootg and N3 can be measured using the usual
Euclidean distance

d*(Na, Ng) = > [ula+7) —u(B+ )% (1)
YE€No

where Ny denotes the neighborhood of the origin. One can now define a global
indicator of performance, the inpainting energy or functional, as

E(F) =) d*(Na, Np(a))- (2)
a€e

This is the objective to be minimized with respectfoIn other words, finding”
amounts to fillingt2 in the visually most faithful way by pixels of the seed image.

An ambiguity appears in this definition when the neighborhogd,,) of the
target pixel is not fully contained in the imadeor if it overlaps with unknown
pixels in{2. The most obvious way to deal with this problem is to restrict the range
of F' to ‘acceptable’ pixelg, in the sense thaVy is fully contained in/\<2.

Classical variational formulations (see [2, 7]) are based on the smastiofie
the interpolant: on the occluded regioft. They are local in the sense that only
information at the bounda§f2 of ) is really taken into account. Here the situation
is very different. The synthesized image need not be smooth : the objectve
functional of ', not directly ofu. A minimizing correspondence mdp has itself
no reason to be smooth. Inpainting from a correspondence map is olgvous
global (in contrast to local) method.

Our inpainting energy is at a much more elementary level than a regularization
functional like TV, in the sense that it is defined with poor learned (a posider
knowledge or subjective (a priori) assumption on what the solution shoald lo
like. Minimizing E(F) is not really a model, it is hardly more than one possible
low-level formulation of the inpainting problem. A set of pixel neighborh®od
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built from a single texture or image sample does not qualify satisfactorily et a s
of model parameters.

Let us remark that this inpainting function&l ') does not lend itself easily to
minimization, unlike the nicer convex functionals sometimes found in image pro-
cessing. It possesses lots of local minima. Finding a global minimum is probably
a hard combinatorial problem.

2.2 Algorithm

The following algorithm is a descent fdéf(F'). It is based on local minimizations
at every unknown pixel. Information is grown from the border to the inefde in
multiple sweeps. The main ideas are taken from [8, 17]. How our implementation
differs from theirs is detailed below.

We follow the following steps :

1. Initialization of the magF" at random.
2. Select a pixel in Q2 immediately near the border ©¥.

3. UpdateF'(«)) by neighborhood matching. This means finding a pjxet
I\Q2 minimizer of d(N,, N3) so thatF'(«) := (. Then assign(«) :=
u(F(a)).

4. Repeat 2 and 3 for all the pixels insi@eand near the border. Then go to the
next row of pixels, not immediately adjacent to the border, etc. until every
pixel of Q) is visited.

5. Sweep again the totality 61, i.e. repeat 2 through 4, untfi (') stagnates
at a minimum value.

This basic scheme can be made faster and more efficient in a variety oédiffe
ways. We have implemented the following improvements.

e Codebook PruningAn exhaustive search is far from being necessary when
looking for a good match among the seed pixels (step 3 above). One can
restrict the search for a good neighborhood match to a subset of te see
pixels, e.g. chosen randomly and not too far from the cursentypically
a decimation of a factor 10 still produces visually similar results. If we
call ‘codebook’ the set of neighborhoodg, of the candidates, this is
codebook pruning.

e More likely candidates There are a few natural pixels to include in the set
of candidates in the seed image. They should not all be chosen randomly.
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Figure 1: The correspondence mép 2 — I\

Suppose all the neighbors of a pixelhave already been inpainted, then a
good candidate foF'(«) would beF'(a — 3) + 3 for 3 close to the origin.
This way, larger regions of the known image are likely to be copieel iive
learned that this strategy has also been adopted in [1].

e Multiresolution The construction of the correspondence map can be done
in a multiresolution way, by successive refinements on embedded grids. In-
painting (steps 2 through 5) is done at a very coarse scale first, onra dow
sampled imagé and inpainting mask. Using an appropriate interpolation
procedure one can then recursively refine this guess at finer anddiolu-
tions. This way interactions can occur at a much larger scale than the size of
the neighborhood (a 3 by 3 square, say).

e Extension to color imaged his is straightforward if we understand that for
vector-valued intensities the absolute valugbecomes thé&-norm |ju|| =

2 2 12
Vui + uz 4 us.

The algorithm presented in [17] is very similar to the one presented here with
one noticeable difference. Their neighborhood is ‘causal’ in the stradeonly
known or already inpainted pixels are taken into account in the neighbdrho
This has the big computational advantage of producing good results afyevroe
sweep of2, for example in raster-scan order, but is highly anisotropic. In cantras
the functional (2) is rotation-invariant and the algorithm presented aisaneant
to correct the bias of causality. A more detailed discussion of this causabws
causal aspect will be given in the next section. Let us also mention thaiges a
clever tree structure of the codebook in order to speed up the segroaiing it
approximate).



3 Discussion

3.1 Remarkson thealgorithm

This section aims at clarifying the deeper link between the formulation in terms
of inpainting energy and the ‘pixel-pasting-by-neighborhood-matchatgprithm
we presented.

Let us go back for a moment tausalneighborhoods as in [8, 17]. We num-
ber the pixels of in raster-scan order (from left to right and top to bottom) as
at,ao,. .., a,. When visiting pixeky;, step 3 of our algorithm consists in solving
the following problem,

min d(Ng,;, Np(q,
F(a;) (Na, F )) (3)
giV@nF(Oél), F(Oxz), ey F(Oéifl).

The seed image on I\ is also hidden in the constraints, we drop it for notational
convenience. That the values B «;1), ... are not present in the condition is
what we refer to as the ‘causality’ property of the neighborhood.

This can also be seen as the maximization of the conditional probability

P(F(0)|F(e1), ..., Fai_1)) = Ce~@WaiNre@y) (4)

Here C' is an appropriate normalization constant. The choice of an exponential
is not compulsory at this level but will prove useful below when we takelog
rithms. It is now natural to consider the corresponding joint probability ibistr

tion P(F(ay),..., F(ay)). Causality of the neighborhood is indeed a clever way
to factorize it via Bayes’ rule as

P(F(an))P(F(ag)|F(a1)) ...

5
P(F(an)|F(a1), F(ag2),...,Flap-1)). ®)
The global ‘inpainting energy’ is therefore nothing but
E(F) = —log P(F(a1),...,F(an))
= Z d2(Nozi)NF(ai)) e (6)

a; €EQ

for some unimportant constat

Obtaining the global minimum of (6) is a different and much more difficult
problem than performing the successive neighborhood matchingskR)isTtrue
regardless of whether the neighborhood is causal or not. When desmmethod



to solve such a hard optimization problem there is a trade-off to solve betiveen
ability to make the energy decrease and the ability to escape from local minima.
The successive minimizations (3) can be considered as a rather naiverptast
greedy procedure to reach a good point of low energy. This is howngerstand
the success of the algorithms in [8, 17].

The reader might wonder where we needed causality of the neighlwbrhoo
the above reasoning. If for example each neighborhigds symmetric around
the pixela, we can still introduce the inpainting energy as 6 and define a corre-
sponding total probability distribution &&e~#() . But the latter would not neatly
factorize anymore via Bayes’ rule. It would actually be forbidden to wreach
Ce ¥ WNa:Nr@) gs a conditional probability. The formal application of Bayes’
rule would give different values for the joint probability depending ondfder in
which pixels are taken. Instead, the right conditional probabilies to censidhe
non-causal case are

P(F(Q)|F(N,)) = Cem T (MeNr),

where the notatior’(N,,) refers to all the values af' for the pixels inN,, and
with the distancel defined as

d*(Na, Np(o)) = Y [ula +7) — u(F(a) + 7))
v€No

(7)
+ Y u(F(e) —u(F(a—7) +7)

This expression can be obtained by isolating the dependence on acginethe
expression of the total energy. The application of Bayes’ rule doesaend much
beyond
P(F(a)andF(N,))

P(F(Na))

It is instructive to compare equations (1) and (7). The first term in (7¥is e
actly d> and measures neighborhood closeness\a&. F (o). The second term is
present becauseis itself a neighbor of the pixels which are in its neighborhood.
It measures how much changigat o disrupts the neighborhood matches for the
pixels surroundingy. Of course the algorithm of section 2 can be modified by
using this new distancé instead ofd. It has the advantage of making the global
energy decrease at every step (this is not necessarily the casé vétid is there-
fore guaranteed to reach a local minimum. However this idea comes with a big
drawback. The algorithm becomes a pure descent and loses all itivitye#o
find a good local minimum. Typically it would produce uniformly gray or colored
regions by copy-pasting pixels from a flat smooth region in the seed imdge. T

P(F(a)|F(Na)) =




is why we kept the originad in our algorithm. The true problem is the need for
clever algorithms to minimize the function&l( ).

3.2 Deterministic vs. Probabilistic

So far we have associated probability and energy, thragh —logp + C or
p = CeF, but this identification is only formal. The models people build from
these two concepts can be very different.

e An ‘energy’ functionalE(F') should beminimized For our purposes it is a
criterion that sorts every possible arguménin a definite order, from the
best one (lowest energy) to the worst ones (highest energy). &\thenefore
interested in the (often unique) argument of the minimum. Examples related
to our purpose include regressions in statistics, denoising-deblurraiy pr
lems addressed by variational or Bayesian methods in image processing, an
of course variational inpainting [7].

e A probability distributionp(F') should besampled For our purposes it is a
criterion that sorts each event into categories, e.g. as typical or naaiyp
All the typical events have approximately the same probability. All the non-
typical events have approximately zero probability, or have a very higir pr
ability but then are by far outnumbered by the typical events. We are inter-
ested in any one of these typical events. Examples include the simulation of
Markov Random Field models in statistical mechanics or texture synthesis
[4,19].

In some sense a probability model is ‘weaker’ than an energy model. dtrdiie
manage to rank all the events into a significant one-dimensional scale olore
the most probable outcomes of a random vector need not look like the viasityna
of typical outcomes, so it might turn out to be a bad idea to try and maximize the
probability. The classical example is a multivariate random variable made of i.i.d.
N (0, 1), which typical samples look like ‘noise’, but which most probable outcome
is the vector that is identically equal to zero (this is not ‘typical’).

The two paradigms are usually used in very different contexts to addeegs
different questions. However it is not clear yet where solutions to itipgishould
belong. As far as the simple 'neighborhood-matching’ algorithms are coade
most authors seem to classify them as sampling from a distribution. A hint in
this direction is the complete factorization of the probability distribution (5) into
conditional probabilities in the case of a causal neighborhood. This iseat id
setting for sampling the joint distribution : just sample the successive conditiona



distributions one after the other. This is called Gibbs sampling and is the core of
the approach in [13].

Instead, we believe that(F) should be minimized rather thare () sam-
pled. As far as we experienced, no harm was done when trying to eegolod
minimum. The descent never seems to reach atypical highly probable statess. T
no need for a careful sampling. The pixel-pasting-by-neighborhmatthing ap-
proach is presumably not involved enough to require a true probabilistielingd
The numerical experiments supporting this conclusion are shown in theseext
tion.

Other thought experiments confirm this. Take for instance an infinite period
pattern, occluded by any reasonable mask. It is perfectly inpainted loyitfieal
pattern, which is visually reasonable and therefore qualifies as ‘typitalthat
case the inpainting energy is zero, as low as it can get. There is no raom fo
atypical solutions, no need for a probabilistic modeling.

This provides an explanation for the difference of performance of lipe- a
rithms in [8] and [17] : the former approach insists on sampling the conditional
probabilities whereas the latter approach simply maximizes them. This results in a
much faster algorithm without loss of visual quality of the synthesized texiire
numerical experiments supporting this conclusion are shown in the néiirsec

There is a way to re-introduce probability in our setting, not at a modeling leve
but rather as a tool to solve the optimization problem. When getting trapped at a
nonsatisfactory local minima is the inevitable faith of naive descent proesdu
people often resort to 'stochastic descents’ to have a better chaneaabiimg the
global minimum. For instance, simulated annealing intuitively keeps the system
from freezing at a high-energy state by “shaking it hard enoughindua slow
cooling. For the particular case of our pixel synthesis algorithm, it couldhmea
randomly assigning a disadvantageous tafgfet) to the current pixetv. Of course
such a procedure would considerably slow down the descent butpmyd useful
to output a better looking result. One reference for these probabilistic optiiz
algorithms is [4]. These tools turn out to be closely related to sampling strategies
but our message here is that the deterministic vs. probabilistic nature of thed mod
investigated is a different question.

3.3 Continuousimages

If we model the image: as a function froml ¢ R? to R, and the correspondence
map as a functiod” from Q c R? to I\Q2 C R?, the total inpainting energy to be
minimized overF is expressed as

BF) = [ dy [ dax@lu(Fly =) —uFe) -0, @
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wherex(z) is an indicator function of the neighborhood of 0. Then, as before,
u(z) = u(F(z)) for everyz € Q. Well-posedness, existence, uniqueness and
regularity of the minimizers of this highly nonconvex functional seem quitécha
lenging questions.

4 Numerical experiments

Fig. 2 is a synthetic geometric example. On the left is the image to be inpainted,
the 'noise’ indicating the mask where the pixel intensity values are occluded o
missing. On the right is the result after inpainting. In this example, the minimum
of the inpainting energy is zero. Fig. 3 is de Bonet's texture sample nr. 161.
Again, (a) is the occluded image, (b) is the inpainting result and (c) is thrgene
vs. the number of sweeps. The energy decreases quickly in a feywsaed then
stagnates till some approximately steady state is reached. Note that plots(c) wa
obtained only from running the algorithm at the finest resolution. Fig. wshioat

the algorithm can also be very successfully applied to textured images. iBithes
‘Barbara’ image that contains both a texture and a cartoon part : (a)detraded
image, (b) is the result of inpainting by correspondence map. We obetthe
texture part is mostly recovered. (c) is the result of TV inpainting. We eartlsat

the texture part is not recovered at all. Another very efficient way ¢agss this
image would be to decompose the image as a texture plus cartoon image and then
use a different inpainting method for each part. See [3] for detalils.

In all the above examples and many others the quality of the result does not
degrade as the number of sweeps gets very large. This supports thesoomthat
the model behind the algorithm is deterministic and not probabilistic, in the sense
discussed above.

Another interesting experiment to test this claim is to start withabeuded
original imageas initial guess, and apply the algorithnWe observe that, on toy
inpainting problems such as the one in Fig. 7, the 'steady-state’ is visually clos
to the original image and the inpainting energy is not significantly loweredeOnc
again, this validates the claim that minimizing an energy is the right framework
behind the algorithm. Had the algorithm degraded the image substantially, we
could have resorted to sampling strategies to avoid that phenomenon ; hist this
not the case here.

Note that running the algorithm with the 'forbidden’ occluded part of the inag
as initial data could be used in practice to erase unwanted information.

!No multiresolution strategy is adopted here. The initial inpainting map is comjugn obvi-
ous way from the original image by neighborhood matching.
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Figure 2: Inpainting a synthetic image. Left: The image to be inpainted. The
'noisy square’ in the middle indicates the occluding mask. Right: After inpainting

(b)

Figure 3: Inpainting a textured imagé-his is a color imagga) The occluded
image. (b) After inpainting (c) Inpainting energy vs. number of iterations.
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(b)

Figure 4: Inpainting a textured image. (a) The image to be inpainted. (b) After
inpainting.

Figure 5: Inpainting a linear smooth image. Left: the image to be inpainted. Right:
After inpainting.
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Figure 6: Inpainting a real-life image. (a)lmage with missing information, (b)
Result of inpainting by correspondence map. We can see that the tesftris p
well recovered. (c) Result of TV inpainting.
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(b)
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Figure 7: Taking original occluded image as initial guess and applying itipgin
This is a color image. The point is to illustrate the claim that the algorithm does
not degrade the image or ‘go too far’ if the number of sweeps is larg@r{ginal
image. (b) After inpainting. (c) Inpainting energy vs. number of iteratidste

that the energy does not always decreaBeis example is not supposed to show
the performance of the method, see explanations in the text.

5 Extensons

The low-level inpainting solution consisting of minimizing (8) will probably gain
from being formulated using some additional a priori information. A few pedms
be followed.

e There is a notion of visual closeness associated with the energy (8).l)yame
for every synthesized pixel there exists a pixel in the seed image in good
agreement in terms of similarity of the neighborhoods. It would however
make little sense if the correspondence map took the observer to a very dis-
tant pixel everytime a step is taken in the missing region. Rather than isolated
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pixels, we expect reasonably large patches to be pasted into that régisn.
amounts to requiring ‘smoothness’ of the correspondence map andsssigge
adding the following penalization term,

/ dy / dox (@) [u(F(y — 7)) — u(F(y) — z)[?
Q R2

A /Q dyIVF(y) — I||r,
u(y) = u(F(y)).

In other words the correspondence map should locally look like the identity
(|| - | is the Frobenius norm). The parameteweights the importance of
each term. How to efficiently implement the minimization of this new energy
is the interesting problem. A step in this direction is [1] where the author
does not just select the pixel candidates randomly in the seed image but
also according to what has already been synthesized. Preferemeeigety

given to these pixels that extend the correspondence map so as to gmy lar
patches into the missing region. See also comments in section 2.

Naturally, the algorithm is well-suited for texture synthesis but sometimes
fails on reproducing geometrical features of the image. This is precisely
what TV inpainting does reasonably well for us. It is therefore tempting to
write combined models such as the following minimization problem.

min E(F) + M TV () + Aoffu(F(z)) ~ u(@)|[3,
whereTV (u) is the TV norm ofu, E(F) is the total inpainting energy de-
fined in (8). The issue would then again be to find a clever algorithm to min-
imize this. It is probably a good idea to make decrease as the number of
iterations (sweeps) increases. This situation would more or less cangespo
to choosing the TV inpainting as initial guess for the usual algorithm.
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