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We present a scalable design for a quantum gate based on an electrostatically defined InP/InGaAs
quantum dot system. The spin doublet state of an electron trapped under each quantum gate consti-
tutes the desired qubit. A numerical investigation is conducted based on the self-consistent solution
of coupled Poisson and Schrödinger equations in the few electron regime. The Gibbs distribution is
considered to take into account the discrete charge statistics and the Coulomb blockade effect. The
results of the calculation show that the proposed design satisfies the necessary requirements for a
quantum gate.

Since the discovery of an exponential speed up in fac-
torization by quantum computing in comparison to the
best classical algorithms, interest in the field of quan-
tum information science generally, and in schemes for
developing a quantum computer, has increased dramati-
cally [1, 2]. Initial success was forthcoming for developing
quantum computers (QCs), especially in terms of inter-
esting proposals, including most notably ion trap systems
[3], quantum electromagnetic cavity [4], superconductor
Josephson junctions [5], nuclear magnetic resonance [6],
nuclear spins in solids [7], and electron spins [8, 9]. A
potential system must satisfy the following well-known
conditions for quantum computations (see for example
Ref. 10): (a) a two-level system defined as a qubit, (b)
the possibility to prepare the initial states and to mea-
sure each qubit, (c) a controllable source of entanglement
to produce the fundamental controlled-not gate opera-
tion, and (d) long coherence time. The use of artificially
structured solid-state systems to create an ordered ar-
ray of electron spins offers one of the best possibilities
of achieving sufficient coherence time and a pure initial
state for useful operation. State-of-the-art nanoscale fab-
rication and epitaxial growth capabilities are already able
to realize the artificial structures consisting of an array of
quantum dots (QDs) at the required dimensions. With
each QD trapping a single electron at the interface of
a heteroepitaxial structure, an array of spins with near-
est neighbor coupling is produced. These qubits are ad-
dressable with established microwave electron spin reso-
nance or newly emerging g-tensor engineering techniques.
Moreover, electron spin relaxation time in the relevant
semiconductors can reach the values up to several mi-
croseconds [11], providing a sufficiently long coherence
time for error correction.

In this paper, we design a quantum gate based on an
InP/InGaAs vertical quantum dot (QD) structure and
investigate it in the few-electron regime for possible quan-
tum computing applications. A three-dimensional device
model is developed based on the self-consistent solutions
of the coupled Schrödinger-Poisson equations. Our re-
sults show that the proposed structure may be consid-
ered as a realistic candidate for spin-based QC with a
sufficiently robust bias margin.

The basic design described above relies on trapping a
single isolated electron within each QD of an array of
nearest neighbor vertical QDs in a heteroepitaxial crys-
tal. Figure 1 shows the schematic drawing of one such
element (i.e., quantum gate), which consists of alternat-
ing InP and InGaAs layers. The first InGaAs quantum
well starting from the top of the structure creates a QD
region (i.e., qubit), and the second InGaAs layer is used
as a read-out channel [12]. Electron confinement along
the growth direction is produced by the band-gap discon-
tinuity of the heterostructure, whereas the constriction
in the quantum well plane can be achieved by apply-
ing an appropriate voltage to the gate. Similar vertical
QDs based on the Si/SiO2 [13] or SiGe structures (with
split gates) [14] showed promising results. The choice
of InGaAs-based materials and geometries enables ready
integration with a quantum receiver/transmitter system
[12, 15].

To analyze this structure, our numerical model solves
the coupled Poisson and Schrödinger equations self-
consistently. The three-dimensional electrostatic poten-
tial V (~r) is obtained from the non-linear Poisson equa-
tion:

∇2V (~r) = −4πe

ε

[
n(~r) + N+

D (~r)
]
, (1)

where e is the absolute value of the electron charge,
ε is the static dielectric constant, n(~r) is the electron
concentration, and the N+

D (~r) is the concentration of
ionized impurities. This equation is solved subject to
the boundary conditions on the electrostatic potential
V (~r). The metallic gate and the ungated surface at
the top of the structure are modeled by the Dirichlet
boundary conditions taking into account pinning of the
chemical potential (0.3 eV for InP). The substrate is as-
sumed to be grounded. Following the approach as in Ref.
[16], we divide our structure into the ”bulk” and ”quan-
tum” regions. In the ”bulk” region away from the qubit
layer, electrons are treated semiclassically; namely, the
Thomas-Fermi approximation is used in order to obtain
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the electron concentration:

n(~r) =

{
1

3π2

[
2m∗

e

h̄2 (µ− U(~r))
]3/2

, if U(~r) < µ

0, otherwise.
(2)

Here µ is the chemical potential and U(~r) is the effec-
tive electron potential. The chemical potential µ can be
determined by the charge neutrality condition:

∫
[n(~r)−N+

D (~r)]d~r = 0 , (3)

where the integration is carried out over the entire bulk
region. In this region, the electron potential U(~r) consists
of Hartree potential UH = −eV (~r), where V (~r) is defined
by Eq. (1), and the conduction band offset ∆Ec:

U(~r) = −eV (~r) + ∆Ec . (4)

In order to determine the electron concentration n(~r)
in the ”quantum” region, we need to solve the Kohn-
Sham equation:

[
− h̄2

2m∗
e

∇2 + U(~r)
]
ψi(~r) = Eiψi(~r) (5)

with an appropriate electron potential U(~r). The
electron-electron interaction in the quantum region is
treated using a density functional theory in the local den-
sity approximation. The validity of this approximation,
even for the systems of one or two electrons, was demon-
strated by Ref. 17. Thus, for the electron potential U(~r)
in the quantum region, we have

U(~r) = UH + ∆Ec + Uxc , (6)

where Uxc is the exchange-correlation potential in the
form as in Ref. 17. From Eq. (5), we can obtain the
electron concentration in the quantum region through the
relation:

n(~r) =
∑

i

ni|ψi(~r)|2 . (7)

Here ni is electron occupancy in each level which is gen-
erally a function of the electron energy and the temper-
ature.

To complete the specification of the electron charge
density, it is necessary to compute the electron occupa-
tion numbers ni. One might expect that ni would be
given by the Fermi-Dirac distribution and indeed this
would be the case if the electrons in the quantum region
were delocalized and in contact with the electrodes. In
this case, the qubits could exchange electrons with their
environment and the total number of electrons in the dot
N =

∑
i ni could take on non-integer values, which is

clearly not tolerable in a QC. Hence, one must carefully
arrange things so the wavefunctions exhibit a high de-
gree of localization. Then, only an integer number of

electrons can occupy the quantum region and this con-
straint gives rise to what is known as the Gibbs distri-
bution. The number of electrons is determined by min-
imizing the Gibbs free energy with respect to the inte-
ger number of electrons N . The Gibbs free energy is
F (N) = −kT ln[Z(N)], where the grand canonical par-
tition function Z(N) is given by [16]

Z(N) =
∑
ni

∑
i niEi − EH(N)− µN

kBT
. (8)

The summation in Z(N) is carried out over all electron
configurations {ni} for which N =

∑
i ni. EH is the

Hartree energy for the system of N electrons which can
be calculated in the usual way by using Eq. (7).

In the actual design, we require primarily that the
quantum gate trap and maintain one electron in the QD
layer with a sufficiently large window of operation. In
addition, the energy separation between the QD ground
and first excited states should be as large as possible
(e.g., larger than the thermal and Zeeman energies). As
for the read-out channel, the detailed electron occupancy
is not crucial so long as its influence on the QD region
is not significant. Hence, we only require the presence of
electrons. In an integrated device, the read-out channel
will be controlled by additional contacts (see, for exam-
ple, Ref. 12). Due to the large parameter space involved
in this study, an analytical model [18] is employed for
preliminary screening followed by self-consistent numer-
ical calculations. For simplicity, a cylindrical symmetry
is assumed in the in-plane direction.

Table I summarizes the parameters of one design that
satisfies the basic requirements. Roughly speaking, the
structure has the gate diameter of approx. 60 nm and
the InGaAs quantum well widths of approx. 30 nm. The
layers are undoped except at the ground contact. We also
consider two optional δ-doped regions in the InP barriers
(see Fig. 1).

The results of self-consistent numerical simulations are
presented in Figs. 2 and 3. The energy of the ground and
the first excited states for the doped and undoped cases
(i.e., with and without the δ-doping) are plotted in Fig.
2 as a function of the applied gate voltage. In both cases,
the energy levels decrease with increasing gate voltage.
Due to the lack of screening charges in the top InP layer,
this decrease is much more drastic in the undoped case
until the electrons start to occupy the QD region. How-
ever, a close examination of the energy spectrum reveals
that the separation between the ground and first excited
energy levels is almost constant in the range of applied
voltages (approximately 0.25 meV in the undoped case
and 0.2 meV in the doped case). A typical ground state
wavefunction in the QD is plotted for the applied voltage
of 0.35 V as a function of the real-space coordinates.

The crucial electron occupancy in the QD is presented
in Fig. 3. Clearly, the result indicates that both cases
can capture and maintain one electron in each QD with
a sufficiently large bias margin, thus demonstrating their
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feasibility. For the undoped case, the threshold voltage
(i.e., the minimum gate bias to charge the QD with the
first electron) is close to 0.3 V along with the bias margin
of approximately 90 mV. For the doped case, the situa-
tion is less desirable. As expected, the threshold voltage
is shifted to a lower value of 0.2 V accompanied by a sub-
stantially smaller operating window of 50 mV. The design
is relatively insensitive to the structural fluctuations.

In summary, we presented a practical quantum gate

design for a possible QC application based on a system
of coupled QDs. Our model shows that the bias margin
for single electron trapping can be as large as 90 mV.
The relative robustness of the calculation results demon-
strates the potential of our design.
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supported by the Defense Advanced Research Projects
Agency and the Office of Naval Research.
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Table I: Composition and doping profiles of the
proposed quantum gate structure. The InGaAs layers

are lattice matched to InP (i.e., In0.53Ga0.47As).

Parameter Value

Top InP thickness (Å) 1108
Top InGaAs thickness (Å) 290
Middle InP thickness (Å) 878
Bottom InGaAs thickness (Å) 355
Bottom InP thickness (Å) 2000
Gate radius (Å) 310
Top InP δ-doping density (cm−3) 2.5× 1019

Top δ-InGaAs separation (Å) 692
Bottom InP δ-doping density (cm−3) 9.7× 1018

Bottom δ-InGaAs separation (Å) 550
Width of δ-doped regions (Å) 15

InGaAs (qubit layer)

InP

InGaAs (read-out layer)

InP

InP

FIG. 1: Schematic representation of the proposed quantum
gate structure. The dashed lines denote the δ-doping regions.
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FIG. 2: Energy levels of the ground and first excited states
versus applied voltage for the undoped (dash line) and doped
(solid line) cases. The inset shows the ground state wavefunc-
tion for the undoped structure at 0.35 V. The reference point
z = 0 in the z direction is set to the bottom of the structure.
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FIG. 3: Electron occupancy in the QD versus applied voltage
for the undoped (dash line) and doped (solid line) cases.


