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Abstract

The aim of this paper is to construct Levenberg-Marquardt level set methods for
inverse obstacle problems, and to discuss their numerical realization. Based on a recently
developed framework for the construction of level set methods, we can define Levenberg-
Marquardt level set methods in a general way by varying the function space used for the
normal velocity. In the typical case of a PDE-constraint, the iterative method yields an
indefinite linear system to be solved in each iteration step, which can be reduced to a
positive definite problem for the normal velocity. We discuss the structure of this systems
and possibilities for its iterative solution.

Moreover, we investigate the application and numerical discretization of the method
for two model problems, a mildly ill-posed source reconstruction problem and a severely
ill-posed identification problem from boundary data. The numerical results demonstrate
a significant speed-up with respect to standard gradient-based level set methods, in par-
ticular if topology changes occur during the level set evolution.
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1 Introduction

Level-set methods (cf. [35]) have received growing attention as flexible algorithms for inverse
obstacle problems and shape optimization, due to their ability to handle topological changes
and to compute reconstructions with minor a-priori information. The frequently used ap-
proach still consists in a gradient-type evolution of the level sets (cf. [2, 11, 27, 29, 34, 31,
32, 37]), which generalizes the classical speed method in shape optimization (cf. [30]). This
approach and a generalization to general gradient flows (cf. [8, 12]) are able to succesfully
compute reasonable reconstructions even if the initial number of connected components does
not coincide with those of the solution. As usual for gradient-type methods, the convergence
speed is quite slow for such approaches, in particular if the topological structure of the shape
changes during the iteration.

The classical fast alternative to gradient-type methods are Newton-type or Gauss-Newton
methods. Inexact Newton methods taking into account second derivatives have been applied
recently to problems in image segmentation, (cf. [25, 26]), but not yet to inverse obstacle
problems. A Gauss-Newton type level set method for a special class of inverse obstacle
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problems, namely those where the output depends on the indicator function of the shape to
be identified, has been proposed already by Santosa [37], but was hardly used afterwards. The
aim of this paper is to generalize this approach in order to obtain Levenberg-Marquardt type
level set methods for general inverse obstacle problems and in a rather general setting. In order
to construct such methods we use a framework developed by the author and applied to the
construction of general gradient-type methods in [12]. The main idea of this approach is to use
a Hilbert space norm for the normal velocity in the shape evolution, which we interpret as the
update to be computed by the optimization algorithm. The Levenberg-Marquardt level set
method consists in minimizing a quadratic functional in each time step to obtain this normal
velocity, and succesively performing a time step for the level set method. The quadratic
functionals to be minimized in each time step consist of a Gauss-Newton type approximation
to the least-squares functional augmented by a penalty incorporating the squared norm of the
normal velocity. Under general assumptions, we verify the well-definedness of this method
and show that it has a descent property if the step size is sufficiently small.

As usual for Newton-type methods we expect a significant decrease in the number of
iterations compared gradient-type methods, which is confirmed strongly by our numerical
experiments. On the other hand the Levenberg-Marquardt method requires the solution of
(large) linear systems in each iteration step. Therefore, a significant reduction of numerical
effort can be achieved only if these linear systems can be solved in an efficient way. For this
reason, we discuss the iterative solution of these linear optimality systems in some detail for
two model problems, where the obstacle is related to the output by the solution of partial
differential equations with interfaces. We propose to solve an all-at-once formulation of the
optimality system (obtained by treating the linearized partial differential equation as a con-
straint) by preconditioned Krylov subspace methods. We test and compare the behaviour of
several block-preconditioners in numerical examples.

The setup of our investigation is as follows: Let Kad ⊂ K(D) be a class of admissible
compact sets in Rd, and let F : Kad → Z be a Frechet-differentiable operator mapping to
some Hilbert space Z. Our aim is to solve the nonlinear equation

F(Ω) = z, Ω ∈ Kad (1.1)

respectively the associated least-squares problem

J(Ω) =
1
2
‖F(Ω)− z‖2 → min

Ω∈Kad

. (1.2)

For the representation of the obstacles we introduce a level set function φ : Rd ×R+ → R
and define an evolution of shapes by

Ω(t) = { x ∈ Rd | φ(x, t) < 0 }. (1.3)

The evolution of the shapes is obtained by a geometric motion with normal velocity Vn, which
is obtained by computing a viscosity solution of the Hamilton-Jacobi type equation

∂φ

∂t
+ V̂n |∇φ| = 0, (1.4)

the so-called level set equation (cf. [33]). In our subsequent analysis we shall use the level
set method as a device to evolve shapes, we shall not discuss the theoretical and numerical
details involved with the solution of (1.4) (cf. [33] and the references therein.
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The remainder of this papers is organized as follows: In the remaining part we formulate
two model problems for inverse obstacle problems, to which we shall apply the Levenberg-
Marquardt level set methods. In Section 2, we introduce the Levenberg-Marquardt level set
method and analyze some of its basic properties. In the Sections 3 and 4, we discuss the
application of the method in detail for the two model problems and give results of several
numerical experiments.

1.1 Model Problems

In this section we formulate two model problems for shape reconstruction, a source reconstruc-
tion problem from distributed measurements and the identification of cavities from boundary
measurements. These problems differ with respect to the problem size and with respect to
the kind of ill-posedness. While the first one is ”mildly” ill-posed (i.e., the singular values
of the linearized shape-to-output map decay with polynomial order), the second problem is
known to be ”severely” ill-posed (i.e., the singular values decay with exponential order, cf.
[3, 17]).

Our first model problem is one of the most simple PDE-constrained inverse obstacle
problems, namely the identification of the shape Ω, given the solution u of the elliptic equation

−∆u = χΩ, (1.5)

subject to homogeneous Dirichlet boundary conditions on ∂D. The weak formulation of this
problem reads as follows: find u ∈ H1

0 (Ω) := { u ∈ H1(D) | u|∂D = 0 } such that
∫

D
∇u.∇v dx =

∫

Ω
v dx, ∀ v ∈ H1

0 (D). (1.6)

Problems of this type (i.e., problems with the domain appearing in the PDE-constraint only
via their indicator function) have been considered in the majority of papers on level set
methods for inverse problems and the model problem (cf. [24]) represents a canonical example
for this class.

The second important type of model problems are those with the boundary Γ appearing in
the state equation via a boundary or interface condition. Here we consider the identification of
cavities (cf. [3]), which can be formulated as the identification of Γ = ∂Ω from a measurement
of the boundary values uj ∈ L2(∂Dn), j = 1, . . . ,M , with the states uj defined by the
boundary value problem

divA∇uj = 0 in D − Ω, (1.7)
(A∇uj).ν = ψj on ∂Dn (1.8)

uj = 0 on ∂Dd = ∂D − ∂Dn (1.9)
(A∇uj).ν = 0 on Γ. (1.10)

The conductivity matrix A is assumed to be positive definite. This problem has a weak
formulation in the space H1

0,d(Ω) := { u ∈ H1(Ω) | u|∂Dd
= 0 } , which consists in finding

(uj) ∈ H1
0,d(Ω)M such that

∑

j

∫

D−Ω
(A∇uj).∇vj dx =

∫

∂Dn

ψj vj dx, ∀ (vj) ∈ H1
0,d(Ω)M . (1.11)
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This model problem incorporates several typical features of inverse obstacle problems, namely
boundary measurements, multiple loads in the state equation, and a boundary condition on
the obstacle boundary. A consequence of the latter is that the function space for the state
must depend on the obstacle and will thus change during the identification process.

2 Levenberg-Marquardt Level Set Methods

In the following we derive Levenberg-Marquardt methods for inverse obstacle problems using
a framework developed by the author in [12] for gradient-type methods using a notion of
geometric gradient flows from [4].

2.1 Operator Equations

The general setup for a Levenberg-Marquardt method is to linearize in each step the operator
F in (1.2) and to add a penalty on the update. In the context of the level set method, we
can interpret the normal velocity Vn as the update, which is then used to perform a step of
the level set equation in a small time interval. With this interpretation, corresponding to the
approach in [12], the Levenberg-Marquardt approach can be realized by solving the quadratic
problem

1
2
‖F(Ω) + F ′(Ω)Vn − z‖2 +

β

2
‖Vn‖2

H → min
Vn∈H

, (2.1)

in each step of the iteration, with F ′(Ω) denoting the shape derivative (cf. [16, 38]). Here
H is an appropriate Hilbert space, e.g. L2(Γ) or H± 1

2 (Γ) (cf. [12] for an overview of typical
Hilbert space norms for the velocity). Note that due to the strict convexity of the functional
in (2.1) for β > 0, there exists a unique velocity Vn ∈ H minimizing (2.1).

The weak form for the Levenberg-Marquardt update is given by

〈F(Ω) + F ′(Ω)Vn − z,F ′(Ω)Wn〉+ β〈Vn,Wn〉H = 0, ∀ Wn ∈ H, (2.2)

which can be interpreted as a linear equation for the velocity Vn.
The iteration procedure can be summarized as follows:

Algorithm 2.1 (Levenberg-Marquardt Level Set (LMLS) Method). Set t = 0, choose
initial shape and level set function φ0 such that Ω(0) = {φ0 < 0}.
Until termination criterion is satisfied do

• Compute the shape Ω(t) = {φ(., t) < 0} and the corresponding output F(Ω(t)).

• Compute the velocity Vn by solving (2.1).

• Extend the velocity Vn to obtain V̂n.

• Choose an appropriate time step τ and evolve the level set function φ by solving (1.4)
in the time interval (t, t + τ).

• Set t = t + τ .

Obviously, a fundamental requirement for the use of this method is the well-definedness
of the Levenberg-Marquardt step, i.e., the well-posedness of the linear problem (2.2):
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Theorem 2.2. Suppose that the shape derivative of F exists at Ω and that F ′ : H → Z is a
bounded linear operator. Then there exists a unique solution of the variational problem (2.2).

Proof. Under the above assumptions on F ′, (2.2) is a standard variational problem of the
form

a(Vn,Wn) = f(Wn), ∀ Wn ∈ H,

with a continuous linear form f and the bilinear form

a(Vn,Wn) := 〈F ′(Ω)Vn,F ′(Ω)Wn〉+ β〈Vn, Wn〉H.

Due to the Lax-Milgram lemma, the well-posedness of (2.2) is then equivalent to the continuity
and coercivity of a. The continuity of a follows from the assumptions on F ′, and the coercivity
from

a(Vn, Vn) = ‖F ′(Ω)‖2 + β‖Vn‖2
H ≥ β‖Vn‖2

H.

If the time steps are bounded away from zero, then the level set evolution defined by this
approach cannot fatten, i.e., the zero level set will not develop interior during the evolution.
This is due to the fact that the speed function is stationary in each time interval, for which
case a non-fattening result has been obtained in [5].

Another important property for a Levenberg-Marquardt type method is the decrease of
the least-squares functional if the iteration has not reached a stationary point.

Theorem 2.3. Suppose that the shape derivative of F exists at Ω(t0). Then, either Ω(t0) is
a stationary point of (1.2) (with respect to shape derivatives) or there exists a time t∗ such
that the least-squares functional (1.2) is decreasing in the time interval [t0, t∗), i.e.,

J(Ω(t)) < J(Ω(t0)), ∀t ∈ (t0, t∗). (2.3)

Proof. The existence of a shape derivative F ′(Ω) for the operator F implies that

d

dt
J(Ω(t))|t=t0 = 〈F(Ω(t0))− z,F ′(Ω(t0))Vn)〉,

and from (2.2) with Wn = Vn we conclude that

d

dt
J(Ω(t))|t=t0 = −β‖Vn‖2 − ‖F ′(Ω(t0))Vn‖2.

If Vn = 0, then (2.2) implies that

J ′(Ω(t0))Wn = 〈F(Ω(t0))− z,F ′(Ω(t0))Wn〉 = 0, ∀ Wn ∈ H,

and hence, Ω(t0) is a stationary point of J . If Vn 6= 0, then d
dtJ(Ω(t))|t=t0 < 0 and thus, there

exists a time interval [t0, t∗) with (2.3).

Theorem 2.3 provides important information on the monotonicity of the least-squares
functional. For ill-posed problems in presence of noise, the decrease of the least-squares
functional does not imply convergence (cf. [18]). In order to obtain a convergent regularization
method one has to use a stopping rule in dependence of the noise level. A natural choice for
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such a stopping rule is the discrepancy principle, i.e., one stops the iteration for the minimal
value of k such that

‖F(Ωk)− zδ‖ ≤ τδ, (2.4)

where τ > 1 is an appropriate constant, δ is the noise level, and zδ denotes the noisy data
satisfying

‖z − zδ‖ ≤ δ. (2.5)

2.2 PDE-Constrained Problems

In the majority of inverse obstacle problems, the operator F involves the solution of a partial
differential equation, whose coefficients or boundary condition depend on the shape Ω. The
typical form of these problems is given by F(Ω) = G(uΩ), where the state uΩ is the solution
of an equation of the form

E(u; Ω) = 0. (2.6)

For the sake of simplicity we restrict our attention to equations that are affinely linear with
respect to u and allow a unique solution uΩ for each Ω ∈ Kad. The shape derivative of F can
be computed by the chain rule, i.e., F ′(Ω)Vn = G′(uΩ)u′, where u′ is the solution of

E0(u′; Ω) + E ′(uΩ; Ω)Vn = 0, (2.7)

where E ′ denotes the shape derivative of E for fixed state uΩ and E0(., Ω) := E(., Ω)−E(0, Ω).
Note that because of the above assumptions on E , the solution u′ of (2.7) exists and is unique.

If we use the weak form of the Levenberg-Marquardt update and the above notation, then
we can formulate (2.2) as

〈G(uΩ) + G′(uΩ)u′ − z,G′(uΩ)w′〉+ β〈Vn,Wn〉H = 0, (2.8)

for all Wn ∈ H, where u′ solves (2.7) and w′ solves

E0(w′; Ω) + E ′(uΩ; Ω)Wn = 0. (2.9)

By introducing an adjoint variable λ, solving

〈G(uΩ) + G′(uΩ)u′ − z,G′(uΩ)w〉+ 〈E0(w; Ω), λ〉 = 0, ∀ w, (2.10)

we obtain an symmetric indefinite system for the velocity Vn, the primal variable u′, and the
dual variable λ, given by

〈G′(uΩ)u′,G′(uΩ)w〉+〈E0(w; Ω), λ〉 = 〈z − G(uΩ),G′(uΩ)w〉
β〈Vn,Wn〉H+〈E ′(uΩ; Ω)Wn, λ〉 = 0 (2.11)

〈E0(u′; Ω), v〉+ 〈E ′(uΩ; Ω)Vn, v〉 = 0,

for all test functions v, w, and Wn.
If we rewrite this problem in operator form, we obtain a linear system of the form




A1 0 K∗

0 βA2 L∗

K L 0







u′

Vn

λ


 =




r
0
0


 , (2.12)
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which is a standard form for PDE-constrained inverse problems (cf. [13, 14, 20, 21]). Under
standard assumptions, this linear system is well-posed and allows a finite element approxi-
mation of optimal order (cf. [14]), which we shall investigate for our model problems below.

Under the above assumption on E , the operator K is regular and thus, one can eliminate
the first and the last equation to obtain the Schur-complement equation

(βA2 + L∗(K∗)−1A1K
−1L)Vn = L∗(K∗)−1r. (2.13)

The operator in this equation is positive definite for β > 0 and thus, the discretized version of
this system can be solved by standard iterative methods such as conjugate gradients. Since
the evaluation of the operator involves the evaluation of K−1 and (K∗)−1, the solution of the
Schur complement system may be rather expensive. As an alternative one can consider the
solution of the whole optimality system (2.12) by an iterative method for indefinite systems
such as GMRES. Since such an iteration is efficient only for matrices with structured spectra,
suitable preconditioning is needed. We shall discuss this issue in further detail for our model
problems in the following sections.

Summing up, we can write the algorithm in the case of PDE-constrained problems as:

Algorithm 2.4 (LMLS-Method with PDE Constraints). Set t = 0, choose an initial
shape Ω(0) and a level set function φ0 such that Ω(0) = {φ0 < 0}.
Until termination criterion is satisfied do

• Compute the shape Ω(t) = {φ(., t) < 0}, the corresponding state u(t) = uΩ(t) by solving
(2.6) for u and the output F(Ω(t)) = G(u(t)).

• Compute the velocity Vn by solving (2.11) for (u′, Vn, λ).

• Extend the velocity Vn to obtain V̂n.

• Choose an appropriate time step τ and evolve the level set function φ by solving (1.4)
in the time interval (t, t + τ).

• Set t = t + τ .

2.3 Inequality Constraints

In some applications, inequality constraints on the domain Ω have to be enforced, in particular
one encounters a relation of the form Ω ⊂ D for some given (physical) domain in many inverse
obstacle problems. In order to incorporate the constraints into the Levenberg-Marquardt level
set method, one can again use its shape derivative. I.e., if an inequality constraint of the form

C(Ω) ≤ 0 (2.14)

is enforced, then we have to supplement (2.1) by the constraint

C′(Ω)Vn ≤ 0 if C(Ω) = 0. (2.15)

Determining the velocity Vn then requires the solution of a quadratic problem with linear
constraints.

For the geometric restriction Ω ⊂ D, similar reasoning leads to the local constraint

Vn(x)ν∂Ω(x).ν∂D(x) ≤ 0 if x ∈ ∂D ∩ ∂Ω, (2.16)

where ν∂Ω and ν∂D denote the outward unit normal to ∂D and ∂Ω, respectively.
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3 Application to an Inverse Source Problem

In our first model problem, the weak form of the state equation is given by (1.6), which yields

〈E(u,Ω), v〉 =
∫

D
∇u.∇v dx−

∫

Ω
v dx, ∀ v ∈ H1

0 (Ω), (3.1)

corresponding to the notation of Section 2. The shape derivative of the operator E in weak
form is given by

〈E ′(u,Ω)Vn, v〉 = −
∫

Γ
v Vn ds, ∀ v ∈ H1

0 (Ω), (3.2)

and the linear part in u is given by

〈E0(u,Ω), v〉 =
∫

D
∇u.∇v dx, ∀ v ∈ H1

0 (Ω). (3.3)

The least-squares functional corresponding to a (noisy) observation z ∈ L2(Ω) is given by

J(u, Vn) =
1
2

∫

Ω
|u− z|2 dx +

β

2
‖Vn‖2

H, (3.4)

which means that G is the embedding operator from H1
0 (Ω) to L2(Ω) and thus G′(u) = G. In

[12], the choice H = H− 1
2 (Γ) has been proposed as a suitable norm for this model problem,

computationally an equivalent norm can be realized by taking the norm in L2(D) of an
extension V̂n to D.

According to the derivation in Section 2, the optimality system to be solved in each
iteration of Algorithm 2 is given by

∫

D

(
u′ w +∇w.∇λ

)
dx =

∫

D
(z − u) w dx

β

∫

D
V̂n Ŵn dx−

∫

Γ
λ Wn ds = 0 (3.5)

∫

D
∇u′.∇v dx−

∫

Γ
v Vn ds = 0,

for all test functions v, w ∈ H1
0 (Ω), Wn ∈ H− 1

2 (Γ), where the integral over Γ has to be
understood in a generalized sense due to Vn,Wn ∈ H− 1

2 (Γ).

3.1 Approximation of the State Equation

In order to approximate the state equation on a fixed grid independent of the shape Ω(t)
respectively the level set function φ(., t), we introduce a smoothed function Hε tending to the
Heaviside function as ε → 0. Together with the level set function φ, we gain an approximation
of the weak form (1.6) as

∫

D
∇u.∇v dx =

∫

D
Hε(−φ) v dx, ∀ v ∈ H1

0 (Ω). (3.6)

We discretize equation (3.6) by finite elements on a regular triangular decomposition D =⋃
T∈Th

T , using the subspace

Vh = { v ∈ H1
0 (Ω) ∩ C(Ω) | v|∂Ω = 0, v|T ∈ P1(T ) },
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for u and the test functions v. Here and below Pk(T ) denotes the subspace of polynomials of
order less or equal than k on T . In order to evaluate the right-hand side we use a piecewise
constant approximation of the level set function φ on each triangular element, which yields

∫

T
Hε(−φ)v dx = Hε(−φ|T )

∫

T
v dx.

Hence, the assembly of the linear system to be solved for a given level set is very cheap:
the system matrix is the standard discretization of the Laplace operator, which is independent
of φ as well as the integrals needed for the right-hand side. Thus, the main computational
effort can be realized in a preprocessing step, for a given level set function φ, we only have
to compute a piecewise constant approximation on Th and evaluate the smoothed Heaviside
function Hε.

3.2 Approximation of the Optimality System

If we use the approximation (3.6) for the state equation, we can derive the corresponding
optimality system using the level set equation (1.4). Since the computation of the shape
derivative in the original problem can be interpreted as a time derivative with normal velocity
Vn, it is natural to compute a ”level set derivative” of (3.6) by computing a time derivative
and inserting (1.4). This yields the linearized state equation, given in weak form as

∫

D
∇u′.∇v dx = −

∫

D
H ′

ε(−φ)
∂φ

∂t
v dx =

∫

D
H ′

ε(−φ)V̂n|∇φ| v dx, (3.7)

for all v ∈ H1
0 (Ω). Note that due to the coarea formula (cf. [19]), we can rewrite the last

integral as ∫

D
H ′

ε(−φ)V̂n|∇φ| v dx =
∫

R
H ′

ε(−ρ)

(∫

{φ(.,t)=ρ}
V̂n v ds

)
dρ,

and since H ′
ε approximates the Dirac-δ distribution, this derivative approximates the original

shape derivative
∫
{φ(.,t)=0} Vn v ds as ε → 0.

By analogous reasoning as above, we can also derive the optimality system corresponding
to the minimization of (3.4) subject to the linearized equation (3.7), given by

∫

D

(
u′ w +∇w.∇λ

)
dx =

∫

D
(z − u) w dx

β

∫

D
V̂n Ŵn dx−

∫

D
H ′

ε(−φ)Ŵn|∇φ| λ dx = 0 (3.8)
∫

D
∇u′.∇v dx−

∫

D
H ′

ε(−φ)V̂n|∇φ| v dx = 0,

We discretize the system (3.8) by finite elements on a regular triangular decomposition
D =

⋃
T∈Th

T . We use the subspace Vh defined above to discretize the linearized state variable
u′ and the adjoint variable λ, and the subspace

Hh = { W ∈ L2(Ω) | W |T ∈ P0(T ) },

to discretize the extended velocity V̂n ∈ L2(Ω). In addition, we approximate the functions φ
and ψ := |∇φ| piecewise constant functions, i.e., elements of Hh. This yields the following
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discrete approximation: we look for (u′, V̂n, λ) ∈ Vh ×Hh × Vh satisfying
∫

D

(
u′h w +∇w.∇λh

)
dx =

∫

D
(z − u) w dx

β

∫

D
Vh W dx−−

∑

T

H ′
ε(−φ|T ) W |T ψ|T

∫

T
λh dx = 0 (3.9)

∫

D
∇u′h.∇v dx−

∑

T

H ′
ε(−φ|T ) Vh|T ψ|T

∫

T
v dx = 0,

for all test functions (w,W, v) ∈ Vh ×Hh × Vh.

3.3 Structure and Solution of the KKT System

By using standard nodal basis functions in Vh and basis functions supported on single triangles
in Hh, we can rewrite (3.9) equivalently as a linear system for the coefficients with respect
to these basis functions. Denoting by p and r the coefficients of u′h and λh with respect to
the basis of Vh and by q the coefficients with respect to the basis of Hh, we obtain the linear
system




M 0 KT

0 βD LT

K L 0







p
q
r


 =




f
0
0


 . (3.10)

Here f is a right-hand side arising from the discretized residual z − u, and the matrices on
the left-hand side are defined as follows:

• K = KT is the standard system matrix corresponding to the discretization of the
Laplace operator

• M is the mass matrix arising from the L2-scalar products of basis elements in Vh

• D is a diagonal matrix arising from scalar products in Hh

• L is a possibly singular but sparse matrix, each of whose element is a multiple of a basis
function integrated over a single triangle.

The above system (3.10) has a standard form for the optimality system arising in Levenberg-
Marquardt-type methods for PDE-constrained inverse problems, the same structure arises in
distributed parameter identification (cf. [14]).

Note that, since we use a fixed triangulation during the level set evolution, most effort
needed for assembling the matrices can be carried out in a preprocessing step. The matrices
K, M, and D do not depend on the level set function φ at all, the matrix L can be written
as L = L0C, where L0 is a sparse matrix (of the same size as L) containing all integrals
of test functions over single triangles (independent of the level set function), and C is a
diagonal matrix, whose diagonal entries are given by H ′

ε(−φ|T ) ψ|T for each T ∈ Th. Hence,
the system matrix in (3.10) can be computed very efficiently during the progress of the
Levenberg-Marquardt method.

For the numerical solution of the linearized optimality system, we apply the preconditioned
GMRES algorithm (cf. [36]). As for all iterative methods, in particular for indefinite systems,
the use of an appropriate preconditioning strategy is fundamental for its efficiency.
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In order to gain further insight into the structure of the system matrix, we can consider
the associated Schur complements, i.e., the system matrix of the linear equation arising when
two of the three variables are eliminated. The first one, usually considered for many indefinite
systems like the Stokes problem, is obtained by eliminating the primal variables (p,q) as

S1 = KM−1KT +
1
β
LD−1LT . (3.11)

Essentially, the Schur complement S1 is the sum of a discretized biharmonic operator and
a second operator, whose eigenvalues are of order 1

β on the orthogonal complement of its
nullspace. Hence, for small β the spectrum of this matrix may be rather complicated, one
may expect that the eigenspace is mainly a decomposition into a subspace close to eigenvectors
of the larger eigenvalues LD−1LT and a second one related to eigenvectors of the biharmonic
operator.

The second one is the natural Schur-complement for PDE-constrained optimization, aris-
ing from the elimination of the state variable p and the dual variable r, i.e.,

S2 = LTK−TMK−1L + βD. (3.12)

The Schur complement S2 is the sum of a discretized compact operator and a regular diagonal
matrix multiplied by β. Again, the spectrum may be rather complicated for small β, with a
subspace of eigenvectors related to those for large eigenvalues of the first term and a second
subspace with eigenvalues of order β.

We investigate the solution of the optimality system using three different preconditioners,
namely an indefinite block-preconditioner proposed by Battermann and Sachs [6, 7]

P1 =




0 0 K̂T

0 Ŝ2 LT

K̂ L 0


 , (3.13)

a block Gauss-Seidel preconditioner of the form

P2 =




M 0 K̂T

0 Ŝ2 0
K̂ 0 0


 , (3.14)

and finally, the inexact Uzawa preconditioner

P3 =




M 0 K̂T

0 βD 0
K̂ 0 −Ŝ1


 . (3.15)

For these preconditioners, K̂ denotes a preconditioner for the stiffness matrix K and Ŝk

denotes a preconditioner for the corresponding Schur complement Sk, k = 1, 2.
Within the setup used for numerical experiments in the following section, we performed

tests with the preconditioned GMRES-method for two different triangular discretizations,
with 177 respectively 665 inner grid points and 312 respectively 1248 triangles. The total
number of unknowns is thus given by 666 on the first and 2578 on the second grid. The
regularization parameter is chosen as β = 10−7.
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Preconditioner GMRES-It.Grid 1 GMRES-It. Grid 2
I 379 1404

P1 − I −K 64 222
P1 − J −K 60 180
P1 − J − J 88 194
P2 − S2 −K 6 12
P2 − I −K 123 425
P2 − J −K 119 353
P3 − S1 −K 2 2
P3 − J −K 208 734

Table 1: GMRES-iterations for the optimality systems.

The resulting number of iterations needed to achieve an accuracy of 10−6 for different
preconditioning strategies are shown in Table 1. The general notation is Pk − Ŝk − K̂, where
Pk denotes the preconditioner used for the KKT-matrix (as above), Ŝk denotes the type of
preconditioning for the associated Schur-complement and K̂ the type of preconditioning for
the finite element stiffness matrix K. Here, I means preconditioning with a scalar multiple
of the identity matrix, J a Jacobian preconditioner, whereas Sk and K mean the use of the
exact Schur-complement and stiffness matrix, respectively. The first row shows the result
without any preconditioning, which leads to an unreasonable number of GMRES-iterations,
as one may expect. The next three rows present results with the block preconditioner P1,
which results in a not small, but still reasonable number of iterations, which do not change
strongly with the different preconditioning strategies for the Schur-complement and even for
the stiffness matrices K. Note that the application of the third preconditioner P1 − J − J
only enforces the solution of systems with diagonal matrix and is therefore extremely cheap.

The next three rows show results with the block Gauss-Seidel preconditioner P2, whose ap-
plication is of compareable numerical effort as P1. One observes that the number of iterations
is extremely low for exact preconditioning of the Schur-complement (which of course enforces
unreasonable numerical effort), but the increase in the number of iterations is much stronger
than for P1 if inexact preconditioning of the Schur-complement is used. The same behavior
holds in an even more pronounced way for the Uzawa preconditioner P3, which yields the
lowest iteration number on both grids for exact, but the highest for inexact preconditioning
of the Schur complement. In general, the number of iterations clearly further increases for
any preconditioners if in addition inexact preconditioning is used for the state equation, so
that P1-J-J seems to be a reasonable choice for this problem. In particular, the numerical
effort for a step of the LMLS method compares to the one for few steps of a gradient method,
where only an adjoint problem with system matrix K has to be solved. For methods using
exact preconditioning of the state equation, the iterative method requires many solves with
the stiffness matrix K and its adjoint, each them being of the same effort as two steps of the
gradient method.

We finally want to mention that the preconditioning techniques we have investigated for
this problem are by far not complete, improvement is possible for the choice of the overall
preconditioner as well as for the preconditioning of the Schur-complements and the stiffness
matrix, where many other tools are available (cf. e.g. [9, 23, 40]). Moreover, a detailed
theoretical investigation and comparison of preconditioning strategies is left to future re-
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search. However, even among the rather simple block preconditioners above we were able
to find a strategy (P1-J-J) that leads to acceptable effort in each step of the ”outer iter-
ation” by the LMLS method, and together with the lower iteration number obtained the
Levenberg-Marquardt method outperforms gradient-type level set methods, as we shall see
in the following section.

3.4 Numerical Experiments

In the following we report on some numerical experiments with the Levenberg-Marquardt
level set method for the source reconstruction problem. We want to reconstruct an obstacle
consisting of two distinct circles (plotted blue in all figures), starting from a simply connected
initial shape. Numerical experiments for the same setup yield convergence of the gradient-type
approach, but a very high number of time steps in [12].

For the discretization of the level set equation we use a high-order WENO finite difference
scheme with Godunov flux and TVD Runge-Kutta discretization in time (cf. [28]), which is
of 5th order in space and 4th order in time (with time step determined according to the CFL-
condition, cf. [33]). The underlying rectangular grid consists of 32 × 32 cells. The elliptic
state equation and the optimality system have been implemented using the finite element
discretization above on a grid of 665 interior points and 1248 triangles (within the MATLAB
PDE Toolbox). All numerical experiments presented here and below have been implemented
within the software system MATLAB. The optimality system arising in each step was solved
using preconditioned GMRES with the preconditioner P1-J-J introduced above.

In order to test the behavior of the method with respect to noise (and to avoid inverse
crimes), we generated artificial data by solving the state equation for given exact shape
at a very fine adaptive discretization, adding high frequency noise and interpolation to the
subsequently used grid. We applied the Levenberg-Marquardt level set method for several
different noise levels, monitoring the residual and L1-error (i.e., L1-distance between the
indicator functions of the reconstructed and exact shape).

Moreover, we use the following simple line search strategy to achieve a descent: we start
with a step size close to the one allowed by the CFL-condition and subsequently decrease the
step size if no descent is achieved. The step size is accepted if it is less than the CFL step
size divided by ten, in order to unreasonably small step sizes. Such a step size selection yields
decaying residuals, but surprisingly does not yield a decrease in the number of iterations in
general. In some of our numerical experiments, it even happened that the method without
step size needed less iterations. This is due to the fact that an increase in the residual during
some iteration step usually yields a strong decrease in the following step, which seems to be
a rather general effect in level set methods for inverse problems and has been observed also
for gradient-type methods (cf. [8, 12]). A further speed up could be achieved by violating
the CFL-condition (cf. [33]) in some of the iterations (as e.g. used by Hintermüller and Ring
[26]), but if too many large time steps are made, the shapes tend to be very irregular, and
new connected components can appear purely due to numerical oscillations.

Figure 1 shows the evolution of the residual (left, semi-logarithmic) and the L1-error for
different noise level, showing typical behavior for iterative regularization methods. First of
all, the residual is only decreasing to the order of the noise levels, and secondly, the error in
the reconstruction decreases only to a certain value dependent on the noise, while it stagnates
or even increases in later stages of the iteration. One also observes that no further decrease
of the residual can be obtained after reaching some minimal value. Nonetheless, stopping the
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Figure 1: Residual (left) and L1-error (right) versus number of time steps, for different noise
levels.

iteration by the standard discrepancy principle, i.e., using the first index with residual less
than τδ, yields almost optimal results for typical choices of τ between 1.5 and 2.

The figures 2 and 3 show the evolution of the reconstructed shapes during the LMLS
iteration for the noise levels δ = 1% and δ = 4%. One observes that the method is faster
for lower noise level and that the final reconstruction is closer for lower noise level, as one
would expect. In both cases, the initially simply connected shape splits into three components
between iteration 15 and 20, and the smaller third component subsequently vanishes. The
quality of the reconstruction is still very good for higher noise level, which is probably caused
by the mild ill-posedness of the problem (reconstruction the right-hand side in this elliptic
equation is like differentiating twice).

4 Application to the Identification of Cavities

For the identification of cavities, the state equation is given by

〈E(u,Ω), v〉 =
∑

j

∫

D−Ω
(A∇uj).∇vj dx =

∫

∂Dn

ψj vj dx, (4.1)

and hence, its shape derivative is given by

〈E ′(u, Ω)Vn, v〉 = −
∑

j

∫

Γ
Vn (A∇uj).∇vj dx. (4.2)

The linear part in u is simply given by

〈E0(u,Ω)Vn, v〉 =
∑

j

∫

D−Ω
∇uj .∇vj dx (4.3)

The measurements of the traces uj ∈ L2(∂Dn) induce the least-squares functional

1
2

∑

j

∫

|
u′j + uj − zj |2 dx +

β

2
‖Vn‖2

H, (4.4)
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Figure 2: Evolution of the reconstruction (red) and exact shape (blue) for δ = 1%, β = 10−7,
at time steps 10, 15, 20, 25.

15



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Exact Solution and Reconstruction at t=44.8939

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Exact Solution and Reconstruction at t=104.504

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Exact Solution and Reconstruction at t=153.334

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Exact Solution and Reconstruction at t=250.284

Figure 3: Evolution of the reconstruction (red) and exact shape (blue) for δ = 4%, β = 10−7,
at time steps 10, 20, 30, 40.
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i.e., G is a direct product of trace operators from H1
0,d(D − Ω) to L2(∂Dn) and due to its

linearity G′(u) = G. In [8, 12], the choice H = H
1
2 (Γ) turned out to be an appropriate norm

for this model problem, which is realized by taking the norm in H1(D) of an extension V̂n to
D.

As above, we can derive the optimality system to be solved in each iteration of Algorithm
2 is given by

∑

j

∫

∂Dd

u′j wj ds +
∑

j

∫

D
(A∇wj).∇λj dx =

∑

j

∫

∂Dd

(zj − uj) wj ds

β

∫

D
(∇V̂n ∇Ŵn + V̂n Ŵn) dx−

∑

j

∫

Γ
Wn (A∇uj).∇λj ds = 0 (4.5)

∑

j

∫

D
(A∇u′j).∇vj dx−

∑

j

∫

Γ
Vn (A∇uj).∇vj ds = 0,

for all test functions vj , wj ∈ H1
0,d(D−Ω), Wn ∈ H

1
2 (Γ). Note that these KKT equations are

system of 2M + 1 partial differential equations for 2M + 1 unknowns.

4.1 Approximation of the State Equation

In order to compute a numerical approximation of the state equation, we use an ”ersatz
material” approach (cf. [1, 2]), i.e. we use a

Aε = (ε + (1− ε)Hε(φ)) A, (4.6)

in the whole domain D, where Hε is a smooth approximation of the Heaviside function. Using
a straight-forward estimate one can show that the error introduced by this approximation is of
order

√
ε if Hε satisfies standard conditions and if φ is sufficiently close to the signed distance

function locally around the zero level set Γ.
The arising state equation in weak form is then given by

∑

j

∫

D
(Aε∇uj).∇vj dx =

∫

∂Dn

ψj vj dx, ∀ (vj) ∈ H1
0,d(D)M . (4.7)

and can directly by approximated by finite element methods (cf. [10]). In our numerical im-
plementation we choose standard linear finite element methods, i.e., a Galerkin discretization
in the subspace

Vh = { v ∈ H1
0 (D) ∩ C(D) | v|∂Dd

= 0, v|T ∈ P1(T ) }.

Note that in order to obtain a sufficient resolution of the interface, standard adaptive solu-
tion procedures can be used. It seems reasonable to use the grid obtained from an adaptive
refinement in the state equation for the solution of the optimality system, too, so that the
discretization of the linearized state equation approximates well the linearization of the dis-
cretized state equation.
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4.2 Approximation of the Optimality System

In an analogous way to the state equation, we can use the ersatz material for the optimality
system of the sequential quadratic problems, which then becomes

∑

j

∫

∂Dd

u′j wj ds +
∑

j

∫

D
(Aε∇wj).∇λj dx−

∑

j

∫

∂Dd

(zj − uj) wj ds = 0

β

∫

D
(∇V̂n ∇Ŵn + V̂n Ŵn) dx +

∑

j

∫

D
H ′

ε(φ) Wn (A∇uj).∇λj |∇φ| ds = 0 (4.8)

∑

j

∫

D
(Aε∇u′j).∇vj dx +

∑

j

∫

D
H ′

ε(φ) Vn (A∇uj).∇vj |∇φ| ds = 0,

This system can be approximated by standard finite elements, with u′j , λj ∈ Vh and

V̂n ∈ Hh = { v ∈ H1
0 (D) ∩ C(D) | v|∂D = 0, v|T ∈ P1(T ) }.

The arising optimality system now has the form (3.10), with different submatrices: K
is a block diagonal matrix consisting of M identical blocks, each representing the stiffness
matrix of the differential operator −div(Aε∇.), and M is a block diagonal matrix, where
each block has nonzero entries only for those indices corresponding to elements adjacent
to the measurement boundary. D is simply the stiffness matrix of the differential operator
−∆+I, and L is a block matrix with each block representing the discretization of the operator
V̂n 7→ −div(AH ′

ε(φ)V̂n∇uj). The matrices K and L depend on the level set function φ and
change during the iteration.

For the iterative solution of the discretized optimality system we used the GMRES method
with two different preconditioning strategies. With the settings of the numerical experiments
for the next section , we performed tests at two different fine grids, the first consisting of
1609 nodes and 3096 elements, and the second with 6313 nodes and 12384 elements. The
first preconditioning strategy uses again the block preconditioner P1 of the form (3.13) with
different choices for its blocks. The notation is the same as in Section 3, except K0 denoting
a multiple of the stiffness matrix for −∆ + I as a preconditioner for the Schur complement.
The second preconditioning strategy uses the geometric multigrid preconditioner in FEMLAB
using two pre-smoothing and one post-smoothing step by the Gauss-Seidel iteration (cf. [39]
for multigrid methods). In order to apply smoothers in a reasonable way, we rewrite the
optimality system in the form




KT 0 M
LT βD 0
0 L K







r
q
p


 =




f
0
0


 , (4.9)

i.e., with the highest order differential operators in the diagonal blocks. Note that in this
case the smoother (Gauss-Seidel) is the same as the preconditioner P1 with Gauss-Seidel
preconditioners for the stiffness matrix. We test several versions of multigrid preconditioning,
denoted by PM − k − V ` if V-cycles and PM − k −W` if W-cycles are used. The number k
denotes the number of grids used below the first fine grid, i.e., in the case of fine grid 1 we use
k+1 and in the case of grid 2 we use k+2 grid levels for the multigrid preconditioner. On the
coarse grid, we obtain a linear system of dimension less than 100× 100 that is solved directly
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Preconditioner GMRES-It.Grid 1 GMRES-It. Grid 2
P1 −K0 −K 16 16
PM − 2− V 1 8 8
PM − 2−W1 7 6
PM − 2− V 2 5 5
PM − 2−W2 5 4
PM − 1− V 1 7 7

Table 2: GMRES-iterations for the optimality systems.

by LU-factorization. The value ` denotes the number of cycles we run for the multigrid
preconditioner.

In table 2 we report the number of GMRES iterations obtained at the first outer iter-
ation in example one, which represents a typical case compared to the results obtained at
other outer iterations. We only give the iteration number for the preconditioner P1 with
exact preconditioning of the state equation and a multiple of K0 as a preconditioner of the
Schur-complement, which gave 16 iterations for each grid. Note that an application of this
preconditioner is exactly of the same effort as the solution of the state and adjoint equations
in a gradient method. Thus, one step of the Levenberg-Marquardt level set method with this
preconditioning strategy would correspond to 16 steps of a gradient method, and hence it
did yield almost no speed-up of the overall procedure in most of our numerical experiments,
since in most cases the gradient method needed around 15 to 25 times the number of steps
as the LMLS method. For cheaper versions of P1 with inexact preconditioning of the state
equation as used in the inverse source problem above, the GMRES iteration failed to converge
to the desired accuracy of 10−6 (with a maximal iteration number of 500 on the first and of
1000 on the second grid). A much better behaviour is found for the multigrid preconditioners
introduced above. One observes that for all multigrid tests, the iteration number is below 10,
and does not increase for the refined grid (which is due to the case that there is one additional
grid level after refinement). The number of iterations needed is compareable to those needed
when solving each of the linearized or adjoint state equations with multigrid preconditioning
and thus, the numerical effort for solving the linear optimality about the same as in one step
of a gradient-type methods. Therefore, one can directly compare the outer iteration numbers
between the LMLS and the gradient method in this case, which will clearly show the reduction
of numerical effort obtained in the next section.

4.3 Numerical Experiments

For our numerical experiments, we use the same discretization of the level set method as
in the first model problem. We chose three different piecewise sinusoidal loads in the state
equations, with Dirichlet boundary on the lower segment of the boundary (y = −1). The
anisotropic conductivity is given by

A =
(

2 0.5
0.5 2

)
. (4.10)

For the discretization of the state equations and the optimality system we used the software
package FEMLAB. The regularization parameter is chosen as β = 10−4 for all computations.
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Figure 4: Semi-logarithmic plot of the residual (left) and L1-error (right) versus number of
time steps, for the Levenberg-Marquardt method (solid line) and the gradient-type method
(dash-dotted line).

Our first example is the reconstruction of a rather smooth shape, namely an ellipse, with
the initial guess being again a circle. The results for almost exact data, i.e., no artificial
noise but only numerical errors, are shown in Figures 4 and 5. Figure 4 shows a quantitative
comparison of the evolution of residual and L1-error with the one obtained by the gradient-
type level set method. In this case, the Levenberg-Marquardt level set method is able to
decrease the residual almost to zero in only nine iteration steps, whereas the gradient-type
method needs more than one hundred iterations to decrease the residual to a reasonable size.
As usual for these type of methods, the gradient-type approach is slightly faster in the initial
stage, but becomes very slow after few iterations. Figure 5 shows the exact and reconstructed
shape after 2, 4, 6, and 8 iteration steps. One observes that the shapes approximate the exact
solution very well and that convergence is faster in the upper half of the ellipse than in the
lower one. This is due to the fact that the upper part is closer to a measurement boundary,
whereas there is no measurement in the lower boundary segment y = −1 representing the
Dirichlet boundary.

Finally, we investigate the behavior with respect to noise by solving the inverse problem
for different levels of artificial noise. In order to avoid inverse crimes, we generate the data on
a different grid, add Gaussian random noise of relative variance δ and interpolate the data to
boundary of the grid used for the solution of the inverse problems. The resulting evolutions
of the residual and the L1-error are shown in Figure 9. One observes that the increase in
the L1-error after obtaining its minimal value is much stronger than for the inverse source
problem investigated above, which is due to the stronger instability in the identification of
cavitites. The residuals and errors show the expected behavior, one observes that reasonable
results for all noise level would be obtained with the discrepancy principle for a choice τ in
the interval [3, 5].

In a second numerical test we consider the reconstruction of a shape consisting of two
different connected components, a circle and a rectangle. The evolution of the shapes for
a noise level δ = 0.1% is shown in Figure 7 for the iterates 5, 10, 15, and 20. For this
low noise level the shape splits as expected during the level set evolution and one obtains
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Figure 5: Exact solution (blue) and shapes (red) obtained from the LMLS method at iterates
2, 4 (above), 6, and 8 (below).
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Figure 6: Evolution of the residual (left) and L1-error in the first example for different noise
levels.
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Figure 7: Exact solution (blue) and shapes (red) obtained from the LMLS method at iterates
5, 10 (above), 15, and 20 (below).

a good reconstruction after 20 iteration steps. For higher noise level, the quality of the
reconstruction is much lower and splitting does not occur in general. This can be seen from
the reconstructions obtained by stopping the LMLS method using the discrepancy principle
with τ = 4, plotted in Figure 8.

The evolution of the residual and L1-error are shown in Figure 9. In this case, one does
not obtain reasonable results for large noise levels, in particular we did not observe splitting
of the domain during the level set evolution for δ > 2%. For a noise level of 5% the iteration
was not able to compute a better reconstruction than the initial guess. Therefore, we only
plot the corresponding curves for noise levels from 1% to 4%. As expected, the number
of iterations needed to obtain the best possible reconstruction (or until the method has to
be stopped according to the discrepancy principle) increases monotonically with the noise
level. Moreover, the total number of iterations for low noise level (also in the noise-free
case) is considerably larger as in the first example with a simply connected solution, whereas
it is lower for large noise level. The reason for this behavior is the splitting of connected
components that occurs for low noise level and slows down the convergence speed.
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Figure 8: Optimal reconstructions obtained from the LMLS method at noise level δ = 1%,
δ = 2% (above), δ = 3%, and δ = 4% (below).
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Figure 9: Evolution of the residual (left) and L1-error (right) in the second example for
different noise levels.
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