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Abstract of the Dissertation

Numerical Methods for Partial Differential

Equations Involving Discontinuities

by

Thomas Christopher Cecil

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2003

Professor Stanley J. Osher, Chair

This thesis introduces numerical techniques for solving PDEs involving discon-

tinuities. These discontinuities arise in the form of jumps in solutions and their

derivatives, stiff time scale descrepancies, and nonhomogeneous forcing terms. We

begin with a new meshless method of resolving viscosity solutions of Hamilton-

Jacobi equations. We then move on to two applications of the level set method,

surface diffusion and topology preservation, formulating and numerically solving

PDEs associated with these concepts. Finally, we discuss the numerical solution

of a coupled elliptic/eigenvalue PDE system generated by the goal of constructing

isolated quantum bits within a semiconductor device.
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CHAPTER 1

Introduction to this Thesis

The underlying theme of this thesis is numerical methods for PDEs involving dis-

continuities in their solutions, the derivatives of these solutions, the time scales

involved or the forcing terms. Care must be taken to resolve these discontinuities

sufficiently and efficiently, without amplifying them so as to distort the approx-

imation of the true solution. We encounter hyperbolic, parabolic and elliptic

problems, each with its own difficulties and unique characteristics.

Before getting to the new material there is a short review of some of the

underlying techniques which are used repeatedly throughout the text. As each

section will have its own introduction and discussion of the current state of the

art in that specific area, we will end this introduction by simply listing the topics

to be covered.

The first section will present a new method of solving time dependent HJ

equations on scattered, meshless data sets using radial basis function reconstruc-

tion. This numerical solution will converge to the nonclassical vanishing viscosity

solution involving discontinuous derivatives. The second section proposes a vari-

ational formulation and subsequent minimization procedure of a surface energy

involving curvature. In this section we attempt to overcome the inherent stiffness

associated with the separation in time scales between the edge diffusion and edge

advancement. We then proceed to introduce a method of topology preservation

in the context of level set front evolution in the third section. There we must
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attempt to resolve the large discontinuities of a delta function. Finally, we dis-

cuss a highly accurate numerical method for solving a coupled eigenvalue and

potential PDE system in the context of semiconductor device modeling. In this

problem we encounter localized forcing terms and jumps in diffusivity which must

be resolved accurately.

1.1 Level Set Methods

The impetus for the development of the meshless Hamilton-Jacobi solver, as

well as the setting for the topology preserving and edge diffusion sections, is

the level set method. By this we mean the framework introduced by Osher and

Sethian for implicitly tracking dynamic surfaces [OS88]. The basic idea is to

embed an interface Γ, which lies in R
n−1 into a surface in dimension R

n. This

embedding is done by defining a suitable function ϕ such that {x|ϕ(x) = 0} = Γ.

If the interface divides R
n into multiple connected components then we can easily

distinguish the inside of one component from its exterior by a change in sign of ϕ.

If we are given a physical velocity v under which Γ moves then by differentiating

ϕ(t, x) with respect to t yields

ϕt + v · ∇ϕ = 0, (1.1)

for the evolution of any level set of ϕ.

A key advantage of this method over other front tracking methods [ZYK01],

[UT92], [TBJ01] involving marker particles on Γ is that topology changes are done

”without emotional involvement”, which is to say without any special treatment

within the algorithm evolving the front. Γ is handled implicitly and only found

explicitly when the user desires, which is usually done by a standard interpolation

and plotting routine built into the visualization software. However, the ease with
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which one can get results using the method have appealed to so many that now the

need to prohibit topological changes ”without emotional involvement” is being

explored. This is a topic on which we will give some initial results.

Writing (1.1) in terms of motion that is strictly in the direction normal to Γ

yields the equation

ϕt + vN |∇ϕ| = 0 (1.2)

where vN = v · ∇ϕ
|∇ϕ| . This is a Hamilton-Jacobi equation whose characteristics

follow
dxi

dt
= Hpi

,

where pi = ϕxi
and H = vN |∇ϕ|. Because of discontinuous derivatives, clas-

sical solutions to (1.2) do not always exist, so we would like to find numerical

methods that converge to the unique vanishing viscosity solution [CEL84] that is

physically relevant. On uniform Cartesian grids there has been much success in

both creating and analyzing numerical methods solving (1.2). Building from the

foundations of conservation laws (as H-J equations in one space dimension can be

thought of as conservation laws integrated once) high order explicit shock captur-

ing methods have successfully been employed [HOE86], [OS91] in the framework

of monotone schemes [CM80], [CL84]. Another important advancement was the

introduction of local level set (LLS) methods [PMO99] which evolved ϕ only

within a narrow band near Γ, making the storage and speed comparable to lo-

cally defined solvers. With the ever expanding list of problems to which level sets

being are applied there will always be someone pushing the computational limits

using the current methods. Our meshless method will hopefully bring some relief

to those computations that would benefit from escaping the restrictions of fixed

width, fixed orientation Cartesian grids.

With the growing interest in higher order variational problems involving inte-
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grals of curvature there is a demand to resolve the second order motions previously

dismissed from interface dynamics. For these types of problems we introduce a

surface diffusion approximation and solution technique that reduces the restric-

tive timestep normally encountered with these problems.

1.2 General Numerical Tools

Because of the emphasis on solving HJ equations in this thesis we will review

some standard numerical tools used repeatedly when solving (1.2). The types

of tools we will use are finite differences in space and Runge-Kutta explicit time

evolution.

Spatial Derivatives When calculating ∇ϕ in (1.2) we cannot use standard

finite differencing. The reason for this is that the discontinuities in ϕxi
will cause

nonphysical oscillations. Thus we employ compactly stenciled upwinded differ-

ences, following the characteristic directions mentioned above. In order to avoid

smoothing the solution unnecessarily we use high order essentially nonoscillatory

(ENO) reconstructions for ϕ which are constructed by beginning with a small up-

wind stencil, and then increasing the stencil size incrementally, selectively using

points which yield the smoothest solution [SO89]. Thus to calculate ϕx(xi) we

begin with a 2 point upwind linear interpolant for ϕ(x), and then compare the

2 possible 3 point stencils along the x direction that include the original stencil,

choosing the smoothest one. This process is repeated until sufficient accuracy is

reached, then the polynomial is differentiated and evaluated at xi. A clear under-

standing of this process is helpful when reading the section on ENO methods for

meshless evolutions later. Averages of the larger stencil reconstructions weighted

by smoothness yield a weighted ENO (WENO) scheme [JP00].
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In order to capture the viscosity solution we use a scheme known as Roe with

entropy fix (RF), which is basically upwinding when we are not at sonic points,

and a replacement of H by H −D, where D is an artificial viscosity term, when

we are at sonic points. This allows the correct solution to be found without

introducing extra diffusion [OS91].

In the section on topology preservation there is a PDE in conservation form

which we solve using the conservation law methods [HOE86] on which the Hamilton-

Jacobi ENO and RF schemes are based.

Time Derivatives We use total variation diminishing (TVD) Runge-Kutta

(RK) methods for time advancement [SO89]. The procedure is as follows: Given

a node xi and function values at time tn we define the operator

Li = −dtĤ(ϕn),

where Ĥ is the numerical Hamiltonian. We then advance the solution using a

Runge-Kutta procedure of the form

ϕ
(k)
i =

k−1∑

m=0

[αkmϕ
(m)
i + βkmL

(m)
i ], k = 1, . . . r,

where ϕ
(0)
i = ϕn

i , ϕ
(r) = ϕn+1

i . If the forward Euler version (i.e. r = 1, α1,0 =

1, β1,0 = 1) is TVD under the CFL condition

dt/dx ≤ λ0,

then the RK method can be proven to be TVD under the CFL condition

dt/dx ≤ Crλ0.

Coefficients for the popular 2nd and 3rd order TVD Runge Kutta methods are

shown in Table 1.1.
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Order αkl βkl Cr

2 1 1 1

1/2 1/2 0 1/2

3 1 1 1

3/4 1/4 0 1/4

1/3 0 2/3 0 0 2/3

Table 1.1: TVD RK coefficients.

Together the ENO and TVD-RK methods give highly accurate solutions and

can be quickly adapted to almost any Hamiltonian H.
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CHAPTER 2

Numerical Methods for Hamilton Jacobi

Equations Using Radial Basis Functions

2.1 Introduction

In the numerical solution of time dependent conservation laws such as

ut + ∇ · f(u) = 0, (2.1)

a method for solving the PDE is by dividing the spatial domain into grid cells and

solving a small Riemann problem for each cell forward in time. For Hamilton-

Jacobi equations of the form

ϕt +H(∇ϕ) = 0, (2.2)

we can think of our problem as being a conservation law such as (2.1) in the

variable u = ϕx in one spatial dimension. In this way there is a direct link

between conservation laws and HJ equations, with the solution to (2.1) being a

derivative of the solution to (2.2). Although this analogy fails in multiple spatial

dimensions it guides us towards the numerical methods of conservation laws when

finding solutions to (2.2).

On uniform grids in any dimension [OS91] and [OS88] proposed extending

the essentially nonoscillatory (ENO) schemes of [SO89], [HOE86] for conservation

laws to HJ equations by reconstructing locally smooth polynomial interpolants
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of ϕ in each individual spatial dimension, xi, and then taking the derivative, ϕxi

of that interpolant for use in H(∇ϕ). These methods have shown good results

on uniform grids, avoiding the oscillations typically associated with high order

methods in the presence of discontinuities.

On nonuniform grids in higher dimensions there has been work done on

extending the ENO type of smooth polynomial interpolant reconstruction, see

[Abg94], [Fri98], [ZS02]. These methods have shown some success, but have some

drawbacks to them. For example, when using divided differences as approxima-

tions to the higher derivatives needed to obtain the Newton polynomial in 1D,

we see that each time the polynomial is raised by one degree, we need one extra

evaluation point. In 2D on an arbitrary triangulated grid there are no Newton

divided differences to aid us in reconstruction. If we would like to use polyno-

mial reconstruction we now have the added burden of needing at least (n+1)(n+2)
2

nodes to construct a degree n polynomial. In K dimensions we would need at

least
(

n+K
K

)
nodes, and even with this many nodes there may still be problems

resulting from the ill conditioning of the linear system for the coefficients if the

nodes are not well spaced [ZS02], [HS99],[Abg94]. Attempts have been made to

rectify these problems, but multidimensional polynomial reconstruction is still

far from being a ”black box” procedure.

We will begin in section 2.2 by introducing radial basis function interpola-

tion. We then move in section to a brief description of how we handle neighbor

access on a meshless computational framework. Next we cover the construction

of monotone schemes in section 2.4 including a convergence proof and implemen-

tation details. We follow this in section 2.5 by introducing a Roe with entropy

fix scheme which minimizes artificial diffusion. In section 2.6 we describe spatial

methods of achieving higher order accuracy. Finally, we give a summary of the
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implementation procedure in section 2.7.

2.2 Function reconstruction using RBFs

Instead of using polynomial reconstruction for Φ, which has been used successfully

in 1-D, we will use a type of multidimensional spline [Har71],[Son98]

Φ(x) :=
M∑

j=1

γjφ(x− yj) +

Q
∑

j=1

βjpj(x) (2.3)

where φ is the radial basis function (RBF), M is the number of cells in the

reconstruction stencil, and the second sum is over polynomials {pj} which form

a basis of the kernel of the seminorm [·, ·] of the native space in which φ lives

[IS96]. In general a spline, Φ, in a semi-Hilbert space, V , interpolating data,

{ui}, satisfies |Φ|V = minu∈A |u|V where A = {v ∈ V |〈λi, v〉 = ui}. So in this

norm we are finding an optimal recovery function. The functions φ are assumed

to have radial symmetry. Φ is forced to have the property that on a given stencil

{xi}i=1:M ,

Φ(xi) = u(xi), and
M∑

j=1

γjps(xj) = 0, s = 1, ...Q. (2.4)

So to find {γj}j=1:M we need to solve the linear system

A =




M N

N t 0(Q,Q)








γ

β



 =




u

0(Q,1)



 ,where

mi,j = φ(xi − xj), ni,j = pj(xi). (2.5)

For HJ equations of the form (2.2) we need to calculate ∇Φ(x), so we assume

the RBF φ(x) is well behaved and differentiate (2.3).

The RBFs φ can be compactly or globally supported, and because we must

solve (2.5) it is best if they are positive definite in some sense, implying unique
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solvability of (2.5)[Mic86]. In [Mic86] it was shown that there is a direct rela-

tionship between φ being positive definite and the function t → φ(
√

(t)) being

completely monotone, i.e. f(t) := φ(
√
t) is smooth and satisfies

(−1)mf (m)(t) ≥ 0,m ∈ N0, t > 0.

If a function is completely monotone, then it is positive definite, thus it does

not need to be augmented by any polynomials in (2.3). However, if we only

have that (−1)kf (k)(t) is completely monotone for some k > 0 then φ is said

to be conditionally positive definite of order k, and requires augmentation by

polynomials of degree k− 1. Using these types of tools analysts have proven the

conditional positivity of many RBFs over the years, and so there are numerous

φ from which to choose. Table 2.1 shows some useful RBFs and their positive

definite order, k.

RBF φ(r) k

polynomials rβ, β > 0, β /∈ 2N k > β/2

thin plate splines r2β log r, β ∈ N k > β

Gaussians e−αr2

, α > 0 k ≥ 0

multiquadrics (c2 + r2)β/2, β > 0, β /∈ 2N k > β/2

inverse multiquadrics (c2 + r2)β/2, β < 0 k ≥ 0

Table 2.1: Sample radial basis functions.

Wu has also constructed a family of positive definite, compactly supported

RBFs [Wu95], [Son98]. All of these functions can be scaled by taking r → r
θ

with

θ problem dependent. Because of its radial construction, if a basis function φ can

be used in n dimensions then it can be used just as well in any dimension less

than n. This allows for algorithms and theory to be developed and tested in low

dimensions with easy extension to problems in higher dimensions.
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For our tests so far we have used the positive definite Gaussian and inverse

multiquadric RBFs of the form

e−αr2

and (r2 + α)−1/2,

respectively. These do not require augmentation by polynomials when solving

(2.3).

In order to achieve better reconstructions we will attempt to optimize the

parameter (e.g. α in e−αr2

) on each stencil. It has been shown that the accuracy

of a RBF interpolant is inversely related to the condition number of the linear

system in (2.5)[Sch95]. Our optimization consists of choosing a maximum accept-

able condition number, κmax, and performing an iterative method to determine

the value of α that yields 0 < κmax −κα < ε for some tolerance ε. This need only

be done prior to evolution and allows for optimization on different parts of the

domain where mesh spacing may vary greatly. In the case of ENO interpolations

it is not feasible to test all possible stencils and store the optimal α on each, so we

only store a single α that will be acceptable for all the local stencils near a given

data point. As long as the mesh is well behaved this α should work adequately

on local stencils.

It should be noted that the procedure for choosing an optimal RBF parameter

is an area of current research. There are other ways to optimize the parameter

of the radial basis function [CF91], [Rip99], [Har71], and any of these can be

incorporated into our framework.

Example of Location Dependent RBF Parameter Optimization Let

us take an example to show both the accuracy and method of parameter opti-

mization. To keep things simple we will work on a 2 point stencil, {a, b} in 1d.

Obviously the best interpolation of our function, f(x), that we can hope for is
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linear. In this case the best approximation to f ′(x) is

f(b) − f(a)

b− a
,

or 2 point finite differencing. Without loss of generality let a = 0 and f(a) = 0.

Using a general RBF interpolation with basis function φ(r) we would like to find

a condition on its parameter α such that for our RBF approximation to f ′(a),

called app, satisfies

app = (φx(0) φx(−b))




φ(0) −φ(−b)

−φ(−b) φ(0)



 /(1 − φ(−b)2)




0

f(b)



 =
f(b)

b
,

using



φ(0) −φ(−b)

−φ(−b) φ(0)



 /(1 − φ(−b)2) = A−1 from (2.5),

and differentiating (2.3). By multiplying we see that if we assume φx(0) = 0,

which it should for all smooth RBF basis functions, and scale φ so that φ(0) = 1,

then we have

app =
−y′y
1 − y2

f(b), (2.6)

where y′ = φx(−b) and y = φ(−b). Solving the ODE

−y′y
1 − y2

=
1

b
(2.7)

will give solutions y(b) = φ(b) that yield an equivalent RBF interpolation to 2

point finite differencing. If we let φ(b) = e−αb2 and let α → 0, then we have a

solution to (2.7). If we would like φ(r) = αr2, then we need

α =

√

1

3b4
.

Other basis functions will have different restrictions on α.

Note that for the Gaussian α does not depend on b, which makes its opti-

mization straightforward. In practice if we wanted to optimize α when φ = e−αr2
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all we would need to do is let α → 0 until we find that |κmax − κα| < ε. Even

for higher order approximations (with more nodes in the stencil) it can be shown

that letting α→ 0 with φ = e−αr2

approaches the optimal solution.

For other φ whose optimal parameter may depend on the data locations, (e.g.

b above) we run a root finding method on the equation κmax −κα = 0 and iterate

in α until |κmax − κα| < ε. For many basis functions there exist a priori local

error estimates in terms of α which clearly indicate limiting values of α for which

to strive during optimization [Sch95], [Sch97].

We also note that a given Φ(x) can be represented in a Lagrange type fashion

Φ(x) :=
M∑

j=1

Ψj(x)uj. (2.8)

We can find the coefficient Ψi(x0) in (2.8) by setting uj = δi,j for j = 1, ...M and

solving

Φ(x0) =
M∑

j=1

Ψj(x0)uj = Ψi(x0)ui. (2.9)

2.3 Data Access in the Meshless Computational Domain

In this section we present the way in which we give some structure to our un-

structured data set, allowing access of nodes in a reasonable amount of time. If

our data set, X, were to be stored as simply an unordered list of points, then

each time we needed to access a neighbor of a given node, xi, we would need to

search through the entire list giving a O(N) algorithm versus O(1) on a uniform

grid. Although the storage required for this method is minimal, the access time

is much too slow for practical use.

Instead, we use a binning method. This method divides the entire domain,

Ω ⊃ X, into a coarse, structured grid C. Then for each coarse gridcell cj ∈ C we
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create a list of all the nodes of X that lie inside cj. When a neighbor of xi ∈ cj

needs to be accessed we only need to search the lists of the coarse neighbors of

cj. So the total neighbor access time is O(1) to access the coarse neighbor list

times O(listj) to search the list and find the neighbor. Of course this procedure

can be iterated over multiple coarse levels so that the list sizes are smaller, and

other optimizations can be done such as noting which coarse cells are nonempty.

Similar ideas have been explored in the context of local level set methods [Str99].

For the evolution procedure we can find all appropriate stencils prior to time

evolution if we would like, and then the problem of neighbor access is only relevant

in the preprocessing step and does not slow the evolution down.

2.4 Monotone Fluxes

2.4.1 Introduction to Monotone Schemes

In solving equations of the form (2.2) an important class of numerical methods

are monotone schemes [CL84]. When they are also consistent these schemes have

been shown to converge to the physically correct viscosity solution of (2.2).

For uniform data in 1D there are numerous schemes available [OS91], and

these schemes can be generalized for uniform data in higher dimensions. In

2D on triangulated data there has been progess as well [Abg96]. However, in

higher dimensions there has not been as much progess for scattered data. One

drawback is that as the dimension grows, the triangulation becomes very complex

and storage consuming (O(M dd/2e) simplices for M points in d dimensions), and

the number of neighbors of a given node grows very large.

In this section we will present some new monotone schemes for scattered data

in an arbitrary dimension that is not required to be triangulated. We will also
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give a convergence result and discuss some details on implementation.

2.4.2 Derivation of Schemes

Given a Hamilton-Jacobi equation of the form (2.2), i.e.

ϕt +H(∇ϕ) = 0 (2.10)

to be solved on a point set, we would like to derive a first order in time monotone

scheme. We will use 2 dimensions for simplicity here, and let i and j be 2d

multi-indices. The scheme will be of the form

ϕn+1
i = ϕn

i − dtĤi(ϕ
n) (2.11)

where ϕn
i is the numerical approximation to the solution of (2.2) at (t = tn, x =

xi1 , y = yi2), and Ĥi is the numerical Hamiltonian there. The requirement for a

method to be monotone [CL84] is that

un
i ≥ vn

i ∀ i, ⇒ un+1
i ≥ vn+1

i ∀ i.

For our scheme of the form (2.11) this means that if we fix an index i0, then at

xi0

∂Ĥi0

∂ϕj

≤ 0 and 0 ≤ dt ≤
(
∂Ĥi0

∂ϕi0

)−1

, ∀ j 6= i0. (2.12)

Thus our goal will be to find a numerical Hamiltonian satisfying (2.12).

Guided by the fact that some of the standard monotone schemes on uniform

grids, such as Lax-Friedrichs, are approximations to solving the vanishing viscos-

ity equation

ut +H(∇u) = ε∆u as ε→ 0,

we will construct our numerical Hamiltonian as an approximation of

H(∇u) − ε∆u.

15



The procedure will be to reconstruct u near a given point, xi, using an inter-

polation method and then differentiate the interpolant to get ∇u and ∆u. The

interpolation method we will use is radial basis function reconstruction.

Once we have derived the conditions on our RBF reconstruction that guar-

antee monotonicity we will turn to the issues of consistency and convergence.

Monotonicity If the basic time evolution procedure at node i can be written

as

un+1
i = un

i − dt
{
H(∇un) − εi∆u

n
}

= un
i − dtGi(uj1, . . . uNsten), (2.13)

where Nsten is the number of nodes used in the stencil approximating ∇un and

∆un, then we will need to find an εi that satisfies all the inequalities in (2.12).

Thus for each node i we should be able to calculate a minimal diffusion constant

εi that guarantees monotonicity there. If we decide to evolve our solution using

(2.13) with a unique εi at each node i then the method will be called a Local

Lax-Friedrichs scheme. If we decide to take εmax = maxi εi and evolve (2.13)

using εi = εmax ∀ i, then the scheme will be called simply Lax-Friedrichs.

To find the appropriate size of εi we begin by writing our reconstructed partial

derivatives in the Lagrange form (2.8). If we know that

uxk
(xi) ≈

Nsten∑

j=1

ck,juj and ∆u(xi) ≈
Nsten∑

j=1

djuj

then
∂Gi

∂uj

= ∇H(Z) · (c1,j, . . . cNdim,j) − ε1dj

where Zk ∈
[

min(∇u)k,max(∇u)k

]

.

Note that in the construction of our stencil if we do not have that

dj > 0 ∀j 6= i, and di < 0, (2.14)
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then we have a bad stencil which cannot yield a monotone scheme. In practice

we are much more restrictive than just enforcing (2.14), because it can allow

arbitrarily large diffusion terms which smear our solution. So we make sure

to enforce restrictions on the relative sizes of cj and dj to keep diffusion to a

minimum. Details of how this is done will be presented later.

We will now construct an ε1 that satisfies the first Nsten − 1 inequalities in

(2.12), and an ε2 that satisfies the dt inequality, then finally set εi = max(ε1, ε2).

Thus we need
( Ndim∑

k=1

max
x∈Ω

|Hk(x)||ck,j|
)

− ε1dj ≤ 0, j 6= i.

The ε1 for the scheme at xi satisfies

max
j 6=i

[∑Ndim
k=1 maxx |Hk(x)||ck,j|

dj

]

≤ ε1, (2.15)

so to minimize the viscosity we choose ε1 to satisfy the equality in (2.15).

Next we find ε2 that satisfies

0 ≤ dt ≤
(
∂Gi

∂ui

)−1

(2.16)

where
∂Gi

∂ui

= ∇H(Z) · (c1,i, . . . cNdim,i) − ε2di.

So we need that ε2 satisfies

[∑Ndim
k=1 maxx |Hk(x)||ck,i|

−di

]

≤ ε2, (2.17)

as di < 0. As this must hold for all x we choose ε2 to satisfy the equality in

(2.17), and finally choose εi = max(ε1, ε2).

The CFL condition is then given by

dt ≤ 1
∑Ndim

k=1 maxx |Hk(x)||ck,i| − εidi

.

17



Consistency and Convergence The consistency of schemes using RBF inter-

polants has not been fully explored as of yet. There is large amounts of research

demonstrating the error bounds of RBF interpolants and their convergence prop-

erties, but the strict definition of consistency where we require that

Ĥ(p) = H(p) if u(x) ≡ p · x+ c0

has not been proven for general basis functions φ. However, it is only machine

precision that limits us from getting an interpolant, Φ such that

|∇Φ − p| < δ1 and |∆Φ − 0| < δ2 (2.18)

for arbitrarily small δ1, δ2, given an underlying linear function u(x) ≡ p · x +

c0. Therefore our goal of finding a consistent scheme using RBFs may not be

attainable, but that does not stop us from proving that our method converges.

All that is needed to be done is follow the proof in [CL84] where the authors

derive an estimate of the form

|ϕn
i − V (xi, tn)| ≤ c(

√
dt), (2.19)

where V is the exact viscosity solution. At the point where the consistency of Ĥ

is used in their proof we substitute a modified inequality. Namely, in [CL84] in

order to derive the estimate (2.19) the authors use a Taylor expansion to get

Ĥ(un
i,P ) ≤ H(∇u(xi, tn)) + C(

√
dt), (2.20)

where un
i,P is the numerical approximation of u(xi, tn) when a linear polynomial

reconstruction of u is differentiated, i.e. 2 point finite differencing. [In their proof

u is a multiple of a specifically chosen smooth cutoff function which is called βε.]

Given that for a linear reconstruction uP we can approximate ∇uP and ∆uP

as in (2.18), then we can attain a convergence proof when δ1, δ2 are small enough.
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In our case we use a triangle inequality of the form

|Ĥ(un
i,RBF )−H(∇u(xi, tn))| ≤ |Ĥ(un

i,RBF − Ĥ(un
i,P )|+ |Ĥ(un

i,P )−H(∇u(xi, tn))|,

where un
i,RBF is the RBF reconstruction at u(xi, tn). This yields

|Ĥ(un
i,RBF ) −H(∇u(xi, tn))| ≤ [‖∇H‖∞δ1 + εiδ2] + C(

√
dt),

where the last term is the identical estimate as in (2.20). If

‖∇H‖∞δ1 + εiδ2 ≤ C1(
√
dt), (2.21)

then this allows us to replace (2.20) with

Ĥ(un
i,RBF ) ≤ H(∇u(xi, tn)) + (C + C1)(

√
dt), (2.22)

yielding a convergence result analogous to (2.19). Here, as in [CL84], the locally

Lipschitz property of H must be used.

2.4.3 Implementation Details of Schemes

We can see that there are a few inequalities which must be satisfied by our RBF

reconstruction at a point xi before our scheme is deemed convergent. Firstly,

we must satisfy (2.14). Once this is done it is straightforward to calculate the

diffusion terms εi and CFL condition. Also, we must make sure (2.21) holds

as well. In practice it is (2.14) which is more difficult to satisfy using meshless

methods because the good interpolation properties of RBFs will yield estimates

of the form (2.21) without much problem.

Thus we explain how we find a stencil at xi that satisfies both (2.14) and

(2.21). Actually we will tighten the restrictions on (2.14) significantly, as it

allows for diffusion terms that are too large. What we require is that (2.14)
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holds, but also that εi < εmax for a specified εmax which is usually dependent

on the spacing of the local mesh. Generally what this requires is that for any

Lagrange coefficent, dj, of ϕj in the approximation to ∆ϕ has magnitude ≈ cjdx

as it would if we were using finite difference approximations.

Once we have decided on the bounds for ε and d we can begin searching for

acceptable stencils at a given node, xi. The problem that usually arises is that

for a given candidate stencil, SC , one or more of the coefficents dj of the ∆ϕ

approximation are too small in magnitude or the wrong sign because xj it is

either colinear or almost colinear with another node in SC . Thus we will try to

make our stencil as isotropic as possible. To do this we will decide on a stencil

size, N +1(the stencil will always include the node xi), define N equispaced rays,

xi + vkt, t > 0 emanating from xi and find the neighbor xj of xi that maximizes

xj − xi

‖xj − xi‖
· vk

‖vk‖
. (2.23)

For example in 2D the vectors vk are chosen as

(cos, sin)(θ0 + 2πk/N) for k = 0 : N − 1.

We search over a few different orientations (θ0 in 2D) of the axes for a fixed stencil

size, and stop when we find an acceptable stencil that satisfies our conditions on

ε and d. As noted in section 2.2 we optimize the RBF interpolation on each

candidate stencil by trying to find the best function parameter for the basis

function. If none of the candidates satisfy our bounds for ε and d then we change

the stencil size and repeat the search until we find an acceptable stencil. If we

cannot find an acceptable stencil then our mesh is very bad and we must use

the best of the candidate stencils we have examined. However, this has not yet

occured our computations.

The only ambiguous point in the description above is the definition of a
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neighbor of xi. Unless a triangulation of the data is constructed we do not have

a rigorous definition of what a neighbor is. One method is to search through the

coarse cells near xi for the M closest points, where M is arbitrary but on the

order of the stencil size. The neighbors of xi are then said to be these M closest

points. However, this may not work well for stencils with large discrepancies

in distances between nodes near xi. Therefore it is possible to adjust the sten-

cil choosing algorithm so that given an axis vk as described above we maximize

f(xj − xi, vk) instead of (2.23), where f could penalize ‖xj − xi‖ and perhaps

place increased weight on the value obtained in (2.23), which we can call v, such

as taking f ≈ v2 as ‖v‖ ≤ 1. This concept of defining and finding a neighbor

of a node on a meshless grid without creating a triangulation warrants further

research.

Another option is to create a local triangulation of the M closest points to xi

and use this to define neighbors. This method will take more time, but will in

general give a smaller number neighbors and more compact candidate stencils.

As long as this local triangulation is not stored permanently this method is ac-

ceptable. It is when triangulations of large data sets in high dimensions must be

stored that we exhaust memory restrictions.

Again it should be noted that this search for acceptable stencils need only be

done prior to evolution if we are willing to store the nodes of the stencil at xi.

2.5 A Roe-Fix Scheme

Given that we are able to construct a prototypical Lax-Friedrichs scheme, we are

tempted to push further and find a monotone scheme with even less diffusion. For

uniform grids in 1d and even triangulated grids in higher dimensions there are
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upwind schemes which can be proved to be monotone [BS98]. These are based

specifically on linear reconstructions (standard 2 point upwinding in 1d). When

upwinding is used at all non-sonic points, combined with a vanishing viscosity

approximation such as LF or LLF at sonic points we have a method known as

Roe-Fix or RF. This would be readily implementable were we to have a definition

of upwinding that applies to our RBF reconstructions, but unfortunately we do

not. However, we can construct a RF method using RBF interpolation and make

an argument as to its convergence properties.

If we are advancing the solution at a node xi the first thing we must determine

is whether or not we are at a sonic point. Assume we have constructed a suitable

stencil Si at xi, adhering to the constraints of Section 2.4.2. At each node xj ∈ Si

we calculate ∇H(∇ϕ(xj)) using the stencil Sj. If ∂H
∂ϕxk

≡ Hk changes sign for any

k = 1, . . . Ndim when searching over j = 1, . . . |Si| then we are at a sonic point

and we advance the solution using either LF or LLF schemes. If Hk does not

change sign then we are not at a sonic point, so we would like to use upwinding.

Since we do not have a triangulation of the nodes surrounding xi we cannot

choose a triangle, Tc, from which the characteristics are flowing and then use

the nodes of Tc to linearly reconstruct the function yielding a monotone, upwind

scheme. However, as long as the nodes of Si surround xi sufficiently we have

encompassed the domain of dependence for ϕn+1
i , assuming the CFL condition is

small enough. Here, surrounding xi means that the convex hull of Si contains xi.

Thus, if ϕ is smooth near xi then our RBF reconstruction can be interpreted as a

higher order reconstruction extended from the linear interpolant ϕL on Tc. This

reconstruction for ϕ should then only differ from ϕL by terms of order O(dxp)

where p ≥ 2. Using this interpolant for ϕ and dropping the artificial diffusion

terms of the LF and LLF schemes should then give us a scheme that differs from

a monotone scheme by O(dtdx), similar to the argument given in [OS91] for high
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order ENO schemes. Because of the lack of the artificial diffusion term we should

see better resolution.

Note that we require ϕ to be smooth near xi for this argument to be valid.

This is usually the case when we are far away from sonic points, but will not be

the case when we are at a moving kink, which is a moving discontinuity in 1st

derivatives. In that case the RBF interpolant may extend over the discontinuity

and differ from ϕL significantly. So our scheme may differ from a monotone

scheme by more than O(dtdx) there. Contact discontinuities have presented

difficulties to numerical methods before, so this is not a surprise. If a monotone

method is desired at points of this type then we can easily insert a check into our

algorithm such that when the jump in derivatives of ϕ near xi is too large it will

trigger the use of LF or LLF schemes even if the signs of Hk indicate upwinding.

2.6 High Order ENO Reconstruction

While the ability of monotone schemes to correctly converge to the viscosity

solution of Hamilton-Jacobi equations makes them desirable, they do have an

undesirable property: they are at most first order accurate [HHL76],[CM80]. In

one dimension on uniform grids this drawback is overcome by taking ENO poly-

nomial function reconstructions that avoid using interpolants which cross discon-

tinuities, causing spurious oscillations. The familiarity of polynomials and the

ability to simply construct their derivatives using divided differences made the

ENO methods for conservation laws and Hamilton-Jacobi equations very popu-

lar [HOE86],[OS91],[SO89]. In multiple dimension on nonuniform grids there has

been some progress using polynomials [AA00],[ZS02], and RBFs [IS96]. Here we

present an incremental stencil selection method which exploits the LU factoriza-

tion of the RBF coefficent matrix. We also introduce a self-similar smoothness
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indicator that allows the ENO stencil to be chosen.

Our ENO reconstruction will involve extending an existing reconstruction in

a smooth fashion. Assuming we have a reconstruction ΦM(x) on an existing M

point stencil SM = ∪M
i=1{Pi}, where Pi ∈ X, that has been constructed starting

with Sr 3 xk = P1 for r ≤ M , we want to extend it to M + 1 nodes in an ENO

fashion.

There are two pieces of information we need which are somewhat arbitrary.

One is the choice of nodes from which to choose PM+1, and the other is the

measure of smoothness of our reconstructed function, ΦM+1(x). A suggestion for

choosing the candidates {P candj

M+1 } for PM+1 is that we choose the N (again arbi-

trary, but finite) nodes P
candj

M+1 ∈ X that make the center of gravity of the stencil

SM ∪ P candj

M+1 closest to xk, or closest to the center of gravity of SM . The number

of choices we have for candidates depends on the surface area of the existing

stencil, SM , so in higher dimensions the potential cost incurred by maximizing

card({P candj

M+1 }) becomes prohibitive. There are many strategies to extend stencils

[ZS02], [AA00], [HC91], [Son96], however, these are usually based on polynomial

reconstruction and take steps so as to ensure the interpolation coefficient matrix

has a good condition number. For RBF reconstruction the condition number de-

pends on φ and the stencil, and in practice we have not found any problems with

it. Since φ is radially symmetric there should not be any directional bias which

causes polynomials to have badly conditioned coefficient matrices, see [Abg94]

for details about this problem.

For the measure of smoothness we use the self-similar indicator

β =
∑

2≤|α|≤s

∫

Pk

|Pk|
2|α|−N

N (DαΦ(x))2 dx, (2.24)

where |Pk|
2|α|−N

N makes β invariant under grid scaling in N dimensions when |Pk|
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is the area of a grid cell containing Pk, α is a multi-index, and s is proportional

to the size of the stencil [ZS02]. For polynomial interpolants, we can take s =

the order of the interpolant, but with RBFs Φ can be a weighted average of

C∞ functions, therefore we take s proportional to stencil size because we cannot

expect that Dαu is influencing DαΦ for derivatives of order ≥ |α| if we are using

far fewer than |α| points.

Once we have made the above decisions we can proceed systematically to

obtain the M + 1st stencil. When constructing the M th stencil it was necessary

to solve the system of equations (2.4), that we will write Aγ = ū which is usually

small enough to be done by Gaussian Elimination/LU factorization. Noting that

A is symmetric we have an M×M LLt factorization (here we assume that Q = 0

in (2.3)). For the M + 1st cell we must solve a new Aγ = ū that can be written

as

A =




LLt α

αt d



 =




ū

ūM+1



 ,

where α and d are found as in (2.5). To obtain LM+1 we compute the Schur

complement S = d− αt(LLt)−1α of LLt and get

LM+1 =




L 0(M,1)

αt(Lt)−1
√
S



 .

Having the new LM+1 we can find the new set of {γj} and compute β for

each candidate stencil. The stencil with the smallest β is chosen as the M + 1st

stencil.

We note that in practice all L’s can be found and stored before the time

evolution begins as long as data point set doesn’t change during the calculation.

Thus, the above Schur complement procedure does not save as much time as

when it is applied to an adaptive mesh, where the linear system inversions must
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be done at each timestep. However, for large fixed data sets in higher dimensions

the storage of the L matrices can become too large to be practical, and any

acceleration to the matrix inversion procedure is helpful.

2.7 Outline of Evolution Procedure

In this section we will outline the procedure for solving (2.2) given initial values

ϕ0(xj) on a dataset X = {xj} of points contained in the computational domain,

Ω.

1. Construct a coarse mesh C over Ω and for each coarse gridcell ci ∈ C create

a list of all the nodes of X that lie within in ci. If C is uniform then this

should take O(|X|) time. An iterated coarse mesh can also be constructed

or any other mechanism which allows the user to determine the M(� |X|)
closest points to a given node in less than O(|X|) time.

2. For each xi ∈ X

do

• Construct a new candidate stencil Sc, using the guidelines of section

2.4.3.

• Optimize RBF parameter α on Sc.

• Determine if dj’s and ε are acceptable for Sc.

while( dj’s and ε are unacceptable).

Set the chosen stencil Si = Sc.

It is actually a matter of memory versus time as to what the user stores

here. If memory is abundant and its access is fast then for each stencil
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all the Lagrange coefficients (cj’s, dj’s) and εi can be stored, making the

evolution procedure faster. If memory is scarce then just the nodes of the

stencil and the optimal RBF parameters α should be stored.

3. For tn = 0 : T ,

do

• Compute ∇ϕ at all nodes using stencil from step 2.

• If higher order accuracy of ∇ϕ is desired then use an ENO reconstruc-

tion for ϕ as described in section 2.6.

• For each node, if using RF scheme determine if sonic fix is necessary

using ∇H. If so, or if the scheme is LF or LLF, then compute ∆ϕ and

diffusion weight ε.

• For each node, advance solution one step in time using

ϕn+1 = αϕn − βdtĤ(ϕn).

If RK method is being used then go to beginning of this do loop as

many times as appropriate.

end do loop.

If adaptive grid is being used repeat stencil finding procedure in step 2,

otherwise go to the beginning of this for loop.

2.8 Numerical Examples

Unless otherwise noted the examples are calculated on a domain of [−1, 1]d in d

dimensions.
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Figure 2.1: 2d concentric grid.

We begin with a level set evolution of the form

ϕt − |∇ϕ| = 0,

calculated on a grid of points that lie on concentric circles as in figure 2.1. The

nodes used lie at the vertices of the triangulation shown. Note that this triangu-

lation is not necessary for our calculation and is only used in the visualization.

As the characteristics flow outward we use ”upwind” reconstruction stencils at

the boundary consisting of nodes within the domain. Figure 2.2 shows how our

method captures the vanishing viscosity solution.

Figure 2.3 shows the solution of

ut + sin(ux + uy) = 0,

calculated on a uniform grid, but using our meshless method. Periodic BCs are

imposed in both directions.
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Figure 2.2: H(p) = −|p|.
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Figure 2.3: H(ux, uy) = sin(ux + uy).
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Figure 2.4: H(ux, uy) = 0.5(ux + uy + 1)2.

In figure 2.4 the solution to Burgers’ equation

ut + 0.5(ux + uy + 1)2 = 0,

with periodic BCs, is shown.

In figures 2.6 and 2.7 we show level set solutions of

ϕt − |∇ϕ| = 0,

for initial conditions of a sphere and torus. Again characteristics flow outward and

boundary reconstructions use interior point stencils. The computational domain

consists of nodes that are approximately equispaced, lying on concentric spheres

as in figure 2.5.
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Figure 2.6: H(p) = −|p|, multiple time views.
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Figure 2.7: H(p) = −|p|.
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Figures 2.8, 2.9, and 2.10 we show evolution sequences of the level set of a 4

dimensional hypertorus initialized as

ϕ(x, y, z, w) = r3 −
√

w2 + [

√

z2 + [
√

y2 + x2 − r1]2 − r2]2,

where r1 = 0.2, r2 = 0.4, r3 = 0.8, subject to the PDE

ϕt − |∇ϕ| = 0.

In each figure we take a 3d slice of the data keeping the coordinate xi fixed for

the indicated ith dimension, and then plot the level set {x|ϕ(x) = 0} as a surface

in 3d. In the future we will implement a local level set framework allowing

for high dimensional computations of this type to be performed without storing

gridpoints that are far away from the interface. The storage for this method

would then be on the order of the size of the interface (an interface that is of

codimension ≥ 1 with respect to the dimension of the computational domain).

The speed would then be dependent on whether the user decided to precalculate

the Lagrange coefficents of ∇ϕ or decided to do this at each timestep. In the

first case the speed would be comparable to existing level set methods on uniform

grids, with a penalty for data access speed only. In the second case the speed

would be penalized by the need to invert the coefficent matrix at each data node

for each timestep. For small stenciled reconstructions this is not too slow, and

is unavoidable if the unstructured mesh is adaptive in time, no matter what

reconstruction procedure is used.

2.9 Conclusion

The numerical solution of Hamilton-Jacobi equations on unstructured grids is be-

coming increasingly important. As higher dimensional problems are encountered
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Figure 2.8: Dimension 1 fixed slice.
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Figure 2.9: Dimension 3 fixed slice.
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Figure 2.10: Dimension 4 fixed slice.
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we would like to isolate the important features of the solution and resolve them

locally instead of globally. Examples such as local level set computations are

already pushing the computational boundaries on coarse grids in 5d [BCM01].

Minimization and control theory problems on irregularly shaped domains also

call for scattered meshes to save space.

The methods presented here yield solutions which converge to the vanishing

viscosity solution of HJ equations of the form (2.2). Error estimates for RBF

interpolations and estimates on their partial derivatives have been proved, and

are an area of current research. Optimal node choice, RBF parameter choice,

and RBF basis function form are also areas that are being studied, and demand

further theoretical results and a more intuitive description.

It should be noted that the arguments made for monotonicity and conver-

gence of the LF and LLF schemes constructed in section 2.4 can be applied to

other interpolation schemes for meshless numerical methods such as moving least

squares, kernel based approximations, and partition of unity methods by writing

these methods in Lagrange form [BKO96]. However, we cannot hope to apply our

monotone construction to global interpolation schemes, as they will not satisfy

the restrictions on the signs of dj.

Other questions to be addressed concern the optimal way to handle neighbor

access on a meshless data set, and what is the best way to automate the stencil

selection process. We have addressed these problems here, but as they often

consume the bulk of the computational time we suggest further study.
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CHAPTER 3

Regularization of Certain Ill Posed Differential

Equations

3.1 Introduction

In the field of material science one often encounters laws governing the motion

of the growth of crystals in 2 dimensions that take the form of

min
Ω

∮

∂Ω

γ(θ)dS, (3.1)

where θ is the angle of the normal of the crystal boundary ∂Ω with respect to

some fixed vector[POM99][Gur93]. If we embed the boundary ∂Ω = Γ as a level

set of a function ϕ, then the equation governing the motion of ∂Ω is

ϕt = (γ(θ) + γ′′(θ))k, (3.2)

where

k = ∇ · ∇ϕ
|∇ϕ|

which is the curvature of the interface, see [POM99] for a derivation of the Euler-

Lagrange equation.

The PDE is ill posed when γ(θ) + γ′′(θ) < 0. It is known that [Gur93] one

can convexify γ in a way that will make γ(θ) + γ′′(θ) ≥ 0. This is known as the

Frank convexification of the Wulff problem defined by (3.1). When we add an
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additional constraint to (3.2) such that

area(Ω) = C,

where C is a fixed constant, then the asymptotic solution of (3.2) is the same as

the asymptotic solution of the convexified version of (3.2).

For example, if the surface tension is given by

γ(θ) = 1 + | sin(2θ)|,

we can see that

γ(θ) + γ′′(θ) =







1 − 3 sin(2θ), for θ ∈ [0, π/2] ∪ [π, 3π/2]

1 + 3 sin(2θ), for θ ∈ [π/2, π] ∪ [3π/2, 2π],

which changes sign. The Frank convexification is

ˆγ(θ) = | cos(θ)| + | sin(θ)|,

so

γ(θ) + γ′′(θ) =
3∑

i=0

δ(θ − iπ/2) ≥ 0

where δ(x) is a distribution function.

The asymptotic shape these surface evolutions yield is a square, but if we

were to numerically evolve the PDE given in (3.2) using γ we would quickly see

a blowup in the solution at all points where γ+γ′′ < 0. Even the evolution using

γ̂ would require some delicacy as the CFL condition would be restricted by the

magnitude of δ(x)k, which could become very large if |θ− iπ/2| ≈ 0 near corners

of Γ.

Inspired by the fact that there exist at the same time in nature both noncon-

vex interfacial energy gradients, γ, as well as physically stable crystal growths

governed by these energies, we will attempt to add a regularization term to (3.2)

41



in the form of surface diffusion which will allow the ill posed PDE to yield re-

sults whose behavior asymptotically approaches the expected solution. We note

that the intrinsic Laplacian of curvature found in surface diffusion evolutions can

be derived by taking the Euler-Lagrange equation of surface energies which are

functions of curvature. The physical relevance of this can be traced as far back

as [Gib78],[Her51],[Mul57], with more recent derivations in [Gur93],[DGP92]. In

[CL02] the authors derived a similar edge diffusion equation from atomistic prin-

ciples for crystal island dynamics in the context of epitaxial growth. See also

[CT94] for an overview.

Adding surface diffusion to a problem involving surface motion generally re-

sults in a stiff equation consisting of first or second order derivatives governing

the surface advection along with fourth order derivatives found in the surface dif-

fusion term. As these problems are nonlinear, an explicit numerical evolution is

usually used, but its CFL condition is determined by the highest order derivative

in the equation.

While little is known about the analytic properties of the PDE, there have

been some attempts to tackle the numerical solution. In [CS99] the authors

demonstrate many of the difficulties involved in modeling surface diffusion with an

explicit scheme, the most serious of which is the timestep restriction dt ≤ Cdx4.

Thus the attempts at numerical solutions are generally aimed at reducing the

CFL condition as the fourth order restriction makes it intractable. Smereka has

made some contributions to the subject, using a semi-implicit splitting method to

make the CFL condition second order, but at the same time reducing the spatial

accuracy to first order[Sme]. In [TWB02] the authors used a coupled system of

second order PDEs to smooth normals of a surface, but their method is slightly
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different from a true energy minimization of

∫

D

|k|2δ(ϕ)|∇ϕ|dx (3.3)

(whose Euler-Lagrange equation yields the intrinsic Laplacian of curvature) in

that it only minimizes this energy with respect to the normals of ϕ, not ϕ itself.

Here, we will present a new surface energy that is a function of both θ and

the level set function ϕ and is to be minimized with respect to both variables.

This yields a system of coupled second order PDEs (rather than fourth order)

that approximate the regularized version of (3.2) when it is ill-posed.

3.2 PDE System

Given an interface Γ ∈ R
2, which can be thought of as the boundary of a growing

crystal, we embed it as the zero levelset of a function ϕ(x, y). If we define

θ(ϕ) = arctan(ϕy

ϕx
), defined appropriately on [0, 2π), then our formulation of the

problem is to use a coupled set of PDEs derived from the energy

min
ϕ

∫

D

γ(θ(ϕ))δ(ϕ)|∇ϕ|dx+ min
ϕ,θ

A

∫

D

|∇sθ|2δ(ϕ)|∇ϕ|dx

+min
ϕ,θ

B

∫

D

(1 −−→n ϕ · −→n θ)δ(ϕ)|∇ϕ|dx, (3.4)

where

nϕ = normal of {ϕ = constant} =
∇ϕ
|∇ϕ| ,

and nθ = normal induced by θ, e.g. (cos(θ), sin(θ)).

The first term defines the Wulff motion, the second is the surface diffusion

with A << 1, and as B → ∞ the third term should force the normals of ϕ and

43



θ to align. We note that

|k| =∇ · ∇ϕ
|∇ϕ| =

ϕ2
xϕyy + ϕ2

yϕxx − 2ϕxϕyϕxy

|∇ϕ|3

=|∇sθ| =
|ϕxθy − ϕyθx|

|∇ϕ| .

This is the relation that shows us the equivalence of the second integral term in

(3.4) with (3.3).

It can be seen that because (3.4) is an integral equation of first order in both

θ and ϕ that when we take the Euler-Lagrange equation we get PDEs of second

order, rather than fourth order.

The Euler-Lagrange equations derived from (3.4) (see section 3.6) and imple-

mented with gradient descent are

ϕt = (γ(arctan(
ϕy

ϕx

)) + γ′′(arctan(
ϕy

ϕx

)))k|∇ϕ| (3.5)

− A∇ · ( 1

|∇ϕ|3 (ϕ3
xθ

2
y − 2ϕ3

yθxθy + 2ϕ2
yϕxθ

2
y − ϕ2

yϕxθ
2
x,

ϕ3
yθ

2
x − 2ϕ3

xθyθx + 2ϕ2
xϕyθ

2
x − ϕ2

xϕyθ
2
y))|∇ϕ|

+B∇ · ( ∇ϕ
|∇ϕ| − (cos θ, sin θ))|∇ϕ|

θt = A∇ · ( 1

|∇ϕ|2 (ϕ2
yθx − ϕxϕyθy, ϕ

2
xθy − ϕyϕxθx))

+B(− sin θ, cos θ) · ∇ϕ
|∇ϕ| ,

where the sign in front of the matching and smoothing terms depends on the

orientation of θ with respect to ∇ϕ. It can be seen that the first term was

differentiate with respect to ϕ only, while the A and B terms were differentiated

with respect to both θ and ϕ. Also, in order to allow all level sets to move we

have replaced the δ function in front of all terms and replaced it with |∇ϕ| which

has now become a standard practice. The B terms are normal matching terms,
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and the evolution term in ϕ,

ϕt = B∇ ·
( ∇ϕ
|∇ϕ| − (cos θ, sin θ)

)

|∇ϕ|

can be thought of as the difference in the curvatures of the actual level set function

ϕ and the curvature of a fictitious level set function whose normals are defined

by the vector (cos θ, sin θ).

The highly nonlinear A terms complement each other to approximate the

Laplacian of curvature term.

Another related approach is to remove the explicit dependence of θ upon ϕ

in the first integral, and then minimize over both ϕ and θ.

The surface energy term (the term with γ) becomes

ϕt = ∇ · (γ(θ) ∇ϕ
|∇ϕ|)|∇ϕ| = (γ(θ)k + ∇γ(θ) · ∇ϕ

|∇ϕ|)|∇ϕ|. (3.6)

The θ evolution also gets an additional term,

θt = −γ′(θ). (3.7)

3.3 Numerical Methods

We treat the PDEs using the method of lines. We leave ϕt PDEs of (3.5) in

divergence form and treat each of the three integral minimizations separately as

a Hamilton-Jacobi problem of the form

ϕt + vn|∇ϕ| = 0.

All of the derivatives within each vn (and explicitly stated in (3.5)) are calculated

using central differencing, and then we take the divergence (if indicated) using

central differencing to find vn. Thus the ϕt PDE is split into 3 steps using a
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different |∇ϕ| in each instance, depending on the sign of vn. Time advancement

is done using TVD Runge-Kutta solvers.

For the PDE involving θt we apply central differencing to all the explicity

shown derivatives in (3.5) and then take the divergence (if indicated) of this

using central differencing again. Time advancement is also done using TVD

Runge-Kutta.

There is one important step that is done when taking a spatial derivative of θ

at any point in the calculation. In order that we do not smear the discontinuity at

0 (and 2π) when taking finite differences we use the value at a point (θi) mod 2π

which minimizes the discontinuity between the neighboring points in the stencil.

For example if we would like to calculate θx using

θx(xi, yj) ≈
θi+1,j − θi−1,j

dx
,

then we would instead find k0 ∈ Z that minimizes

|(θi+1,j + 2πk0) mod (2π) − θi−1,j|

and then take

θx(xi, yj) ≈
(θi+1,j + 2πk0) mod (2π) − θi−1,j

dx
.

Of course for a surface with only one discontinuity we do not need to search over

all of Z, just the set {−1, 0, 1}.

Also, the asymptotic limit of these equations is for the interface to shrink to

a Wulff shape and then vanish, so we use a projected gradient method [Ros61]

to ensure that volume remains fixed in time. This is done by requiring that

|
∫

D

H(ϕ)dx− A0| < ε (3.8)
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at any given timestep. If this condition is not satisfied then we use Newton’s

method to find the Lagrange multiplier λ such that when we take the Euler-

Lagrange equation of (3.8), apply gradient descent to get

ϕt + λ|∇ϕ| = 0,

and then advance for one timestep we will satisfy (3.8), see [OS01] for details.

All of this is done within a local level set framework[PMO99].

3.4 Numerical Experiments

Figure 3.1 shows the evolution of the PDE system (3.5) with

γ(θ) = 1 + |sin(2θ)|.

The volume is forced to remain constant as well. The level set representing the

interface is shown on the left, as well as a plot of θ at the same time on the right.

In figure 3.2 we plot an interface initialized as a circle with r = 0.3, and at 3

different times after expanding under the surface energy where γ(θ) = −1. We

get first order convergence to the analytical solution which is a circle with radius

r(T ) =
√

2T + (0.3)2.

Figure 3.3 shows a circle after a few timesteps that has been evolved with

ϕt = −k|∇ϕ|

without the extra regularization terms. Note the expected instability quickly

occuring.

Figure 3.4 also shows backwards curvature evolution along with plots of θ

when the initial interface is a cosine wave. This represents an evolution that

attempts to maximize the length of a curve. Note that the discontinuities in θ at

{0, 2π} are not smoothed and do not cause oscillations.
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Figure 3.1: γ(θ) = 1 + |sin(2θ)|.
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Figure 3.2: γ(θ) = −1.
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Figure 3.3: γ(θ) = −1, no regularization.
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Figure 3.4: γ(θ) = −1.
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3.5 Conclusion

The applications of surface diffusion in material science are well documented. The

authors of [CL02] have recently demonstrated its presence in the theory of epi-

taxial thin film growth. We have implemented an explicit method within UCLA’s

thin film evolution code, which already includes an adaptive timestepping routine

that calculates the CFL condition at each step, and found the motion to require

expectedly small timesteps. Large timesteps are its main advantage over KMC

simulations, so it would be better to have a way of keeping the CFL condition as

unrestrictive as possible to keep this advantage.

We have implemented a coupled system of nonlinear PDEs exploiting the

relationship between curvature of level sets and the angle of their normals with

respect to a fixed vector. The analytic properties of these PDE is an area open to

further research, as is the instrinsic Laplacian of curvature, on which we currently

have few theoretical results.

Generalizing the method to 3d is a possibility, however it presents new prob-

lems arising from the singularities of the conjugate functions. Surface processing,

the 3d analogue of image processing, involves surface diffusion and would benefit

from the reduction in the CFL constraint.

3.6 Derivation of Euler-Lagrange Equations

Here we will go through the derivation of equation (3.5). The main idea is that

for solving

min
u

∫

D

f(u,∇u = p)dx
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we will use the Euler-Lagrange equation to tell us the method of descent towards

the solution of a convex problem. This method of gradient descent tells us that

we should use

ut = − ∂

∂u
f + ∇ · (∇pf), (3.9)

where ∇pG(p) ≡ (Gp1
, Gp2

, . . . Gpn
).

For the PDE ϕt = L(ϕ, θ) we note that the Euler-Lagrange equation of the

first integral

min
ϕ

∫

D

γ(θ(ϕ))δ(ϕ)|∇ϕ|dx

is derived in [POM99].

For the integral

min
ϕ

∫

D

( |ϕxθy − ϕyθx|
|∇ϕ|

)2

δ(ϕ)|∇ϕ|dx,

if we let

F =

( |ϕxθy − ϕyθx|
|∇ϕ|

)2

then to find the minimum we must have

δ′(ϕ)|∇ϕ|F =
∂

∂x

[
∂

∂ϕx

[Fδ|∇ϕ|]
]

+
∂

∂y

[
∂

∂ϕy

[Fδ|∇ϕ|]
]

. (3.10)

It should be noted that because |∇ϕ|F = G is homogeneous of degree 1 in

ϕxi
∀i then all the terms on the right hand side which will have δ′(ϕ) in them

will cancel with the left side of (3.10), as the right side of (3.10) is

∇ · [∇p(Gδ)] = δ[
n∑

i=1

Fpipi
(pi)xi

] + δ′[
n∑

i=1

Fpi
(pi)]

where pi = ϕxi
. This is because of Euler’s relationship g(x)x = g(x) for homoge-

neous functions of degree 1. Thus we need not worry about the terms with δ′(ϕ)

in them, and do not need to calculate them when they arise in taking the various

differentials in (3.10).
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Thus we need

0 = ∇ ·
[

∇p

(
p2

1θ
2
y + p2

2θ
2
x − 2p1p2θxθy

|(p1, p2)|
δ(ϕ)

)]

.

Performing ∇p and ∇·, discarding the δ′(ϕ) terms and leaving the answer in

divergence form we get

0 = δ(ϕ)∇ ·
[

1

|(p1, p2)|3
(p3

1θ
2
y − 2p3

2θxθy + 2p2
2p1θ

2
y − p2

2p1θ
2
x,

p3
2θ

2
x − 2p3

1θyθx + 2p2
1p2θ

2
x − p2

1p2θ
2
y)

]

. (3.11)

For the integral

min
ϕ

∫

D

(

1 − (cos θ, sin θ) · ∇ϕ
|∇ϕ|

)

δ(ϕ)|∇ϕ|dx,

if we let

F = 1 − (cos θ, sin θ) · ∇ϕ
|∇ϕ|

then use this F in equation (3.10), then after taking the partials ∂
∂ϕxi

we see that

the first term on the right hand side of (3.10) becomes

∂

∂x

(

δ(ϕ)(
ϕx

|∇ϕ| − cos θ)

)

= δ′(ϕ)

(
ϕ2

x

|∇ϕ| − (cos θ)ϕx

)

+ δ(ϕ)

(
∂

∂x

( ϕx

|∇ϕ|
)

+ (sin θ)θx

)

, (3.12)

and the second term becomes,

∂

∂y

(

δ(ϕ)(
ϕy

|∇ϕ| − sin θ)

)

= δ′(ϕ)

(
ϕ2

y

|∇ϕ| − (sin θ)ϕy

)

+ δ(ϕ)

(
∂

∂y

( ϕy

|∇ϕ|
)
− (cos θ)θy

)

. (3.13)

Here we can explicitly see that the δ′(ϕ) terms from (3.12) and (3.13) cancel with

the left side of (3.10), giving us

0 = δ(ϕ)∇ ·
( ∇ϕ
|∇ϕ| − (cos θ, sin θ)

)

.
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For the integral in theta,

min
θ

∫

D

( |ϕxθy − ϕyθx|
|∇ϕ|

)2

δ(ϕ)|∇ϕ|dx,

the procedure is as with the ϕ minimizations but where p ≡ (θx1
, . . . θxn

). Also,

we can alter the integral in order to treat all level sets the same,

min
θ

∫

D

( |ϕxθy − ϕyθx|
|∇ϕ|

)2

δ(ϕ)|∇ϕ|dx,⇒ min
θ

∫

D

( |ϕxθy − ϕyθx|
|∇ϕ|

)2

dx.

From here applying (3.9) is straightforward.

For the minimizations with respect to θ of the integrals for the normal match-

ing and surface tension energies we apply the same alteration and again apply

(3.9) in a straightforward manner.
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CHAPTER 4

Topology Preserving Level Set Motion

4.1 Introduction

The implicit framework of level set interface motion has yielded many advantages

over Lagrangian tracking methods, one of the most notable being its ability to

incorporate changes in topology of the front without requiring changes in the

algorithm being used to move it.

If this were the only benefit of using level sets for interfacial motion then

when the time arose that we did not want changes in topology to occur we would

probably decide to use a different method. However, there are other advantages

of level set motion which make it desirable[OF01], and the time has come to use

level sets to track interfaces whose topology remains fixed. Some examples of

this are from medical imaging, where tissues may fold upon each other without

joining their interiors[TT02]. Thus, in the spirit of the original level set motion

that was able to handle topological changes ”without emotional involvement,”

we would like to find a way for topology to be preserved in an unemotional way.

4.2 A Discrete Method

In [HXP01] the authors introduced a topology preserving method which monitors

the digital topology of an evolving interface and prohibits motion if it would in-
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troduce topological changes. Thus, at each timestep of discretized time evolution

the method computes the change, δϕ, in the level set function according to the

physical evolution equation, and then decides whether or not ϕ(xi, t) + δϕ would

result in a change in the local topology of the interface by examining the values of

the neighbors of xi. If it does change, then the method sets ϕ(xi, t+dt) → ϕ(xi, t)

and goes on to the next xi, otherwise it sets ϕ(xi, t+ dt) → ϕ(xi, t) + δϕ.

However, there are some drawbacks to the method of [HXP01]. The final

solution reached depends on the order in which the points are visited, and using

different topology connections will also give different answers. The method is

only applicable on lattice structures, not on arbitrary data sets. We can also see

that this type of evolution is beginning to stray away from the goal of the use

of a simple algorithm to evolve the interface that does not require specialized

conditions near points of topological change.

4.3 A PDE Based Method

For many applications the evolution of the level set defining the interface in

question can be defined in terms of a single PDE. This can be done when the

motion can be described in terms of intrinsic (solely geometry- or position-based)

properties. Topology is an example of a nonintrinsic property which requires more

than one PDE to describe. In [HO98] the authors presented a coupled system of

PDEs to evolve a class of models including the Cauchy-Riemann equations which

can be written in a Lagrangian way as:

(xt, yt) = −→v (t, x, y, xs, ys),

subject to periodic boundary conditions and initial conditions

(x(s, 0), y(s, 0)) = (x0(s), y0(s)), 0 ≤ s ≤ L.
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Where the parameter s, which may or may not be arclength, is the nonintrinsic

variable. In the Eulerian format the two evolution equations must include infor-

mation about the location of the front, as well as the value of the arclength. So

one could define ϕ(t, x, y), whose zero level set defined the interface, and

ψ(t, x, y) such that ψ(t = 0, x(0, s), y(0, s)) ≡ s,

which defines the arclength function. Note that ψ is conjugate to ϕ in the sense

that the two form an orthogonal coordinate system on the zero level set of ϕ,

∇ϕ · (∇ψ)∗ = ϕxψy − ϕyψx 6= 0

when t = 0.

The interface in question, Γ is evolved in time by requiring that

ϕ(x(s, t), y(s, t), t) ≡ 0 ∀ t > 0, (4.1)

and we require the arclength function to obey

ψ(x(s, t), y(s, t), t) ≡ s ∀ t > 0. (4.2)

The PDEs governing the motion of Γ can be found by differentiating (4.1) and

(4.2) with respect to t which yields

ϕt + −→w · ∇ϕ = 0, (4.3)

ψt + −→w · ∇ψ = 0. (4.4)

If we differentiate(4.1) and (4.2) with respect to s we find that

(xs, ys) = [(∇ϕ) · (∇ψ)∗]−1(−ϕy, ϕx), (4.5)

and note that

∇ϕ · (∇ψ)∗ = ϕxψy − ϕyψx = −J (4.6)
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must not vanish if (4.5 ) is to be well defined. The quantity −J is the Jacobian

of (ϕ, ψ), and we use −J in the definition so that J > 0.

Given this framework we can see that when an interface begins to change

topology we will have either that

J → 0 at merge points,

or

J → ∞ at pinch points.

Note that the definition of the interior of Γ as being {x|ϕ(x) > 0} or {x|ϕ(x) < 0}
will interchange merge and pinch points.

Thus if we could monitor J as it grows towards ∞ or shrinks towards 0 we

would be able to also monitor the topology changes of Γ. So we need to be able

to determine

J(t, x, y) ∀t > 0, (x, y) ∈ Γ.

One option would be to evolve ϕ and ψ using (4.3) and (4.4), and then form J

using (4.6). However, this is difficult in our Eulerian level set framework where ψ

is multivalued on closed curves and the exact location of Γ is implicitly defined.

Another way to find J(t, x, y) is to derive a PDE for its motion in time and

follow this evolution, thus capturing ψ implicitly. To obtain this PDE we follow

the method of [HO98]. We begin with Φ(t, a) ≡ (x(t, a), y(t, a)) which is the

trajectory of a point referenced by a ∈ [0, L], such that

ϕ(t,Φ(t, a)) = ϕ(0, a), ψ(t,Φ(t, a)) = ψ(0, a).

Differentiating with respect to a and taking the determinant we have






∂(ϕ, ψ)

∂(x, y)











∂(x, y)

∂a






=






∂(ϕ0, ψ0)

∂a





.
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Differentiating along the trajectory we obtain

DtJ






∂(x, y)

∂a






+ JDt






∂(x, y)

∂a






= 0.

A simple derivation often used in fluid mechanics[Mey82] is that

Dt






∂(x, y)

∂a






= (∇ · ~v)





∂(x, y)

∂a





,

thus giving

Jt + ∇ · (J~v) = 0. (4.7)

It should be noted that this derivation works in n space dimensions for a Jacobian

of φ and n− 1 conjugate functions.

We now have equations (4.3) and (4.7) that govern the variables in which we

are interested, and so it is left to determine how to use them to preserve the

initial topology of Γ.

If we write −→v in terms of the velocity normal to the interface, vn, we have

−→v = vn
∇ϕ
|∇ϕ| and we get:

Jt + −→v · (∇J) = J(∇ · vn
∇ϕ
|∇ϕ|). (4.8)

So if for example vn = 1, then by removing the advection in the equation we

see that J(t) = J0e
∫ t

0
kdt, where k is the curvature of Γ. This shows that (4.7) is

related to the evolution of the curvature along characteristics. This gives some

intuition as to why J approaching 0 or ∞ indicates a change in topology.

Therefore, we will force the motion of Γ to stop at (t, x, y) if J(t, x, y) is near

those extrema. Initially, J(0, x, y) will be set at 1. Forcing the motion of Γ to

stop is done by modifying the physical velocity of the problem, ~v, by multiplying

it by a function p(J) such that

p(J) → 0, as J → 0 or J → ∞,
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and p(1) = 1. An example is the linear hat function

p(J) ≡







J−1
δ

+ 1, δ < J ≤ 1

1−J
δ

+ 1, 1 < J ≤ 1 + δ

0 otherwise,

where 0 < δ < 1.

We can see that although topology changes occur when J → ∞, the above

p(J) stops the motion of Γ as J → 1+δ, which is relatively small. One remedy to

this situation would be to make a nonsymmetric p(J) such that p(J) > 0 ∀J <∞,

but still require that p(J) → 0 as J → ∞. Then the singularities at both extrema

{0,∞} would be treated similarly. However, this would lead to the necessity

to resolving a delta function in J , whose range is infinite, which is a problem

that cannot be handled numerically. Thus, if we perform a fractional linear

transformation (FLT) f(J) that takes

f(0) → 0, f(1) → 1, f(∞) → 2,

we can use a symmetric p(f(J)) as described above without worrying about the

numerical problems associated with resolving a delta function.

The FLT we use to scale J is

f(J) ≡ 2J

1 + J
. (4.9)

To follow the evolution of f if we note that

ft =
2

(1 + J)2
Jt and J =

f

2 − f

then we can derive the PDE

ft

2
(

2

2 − f
)2 + ∇ · (~v f

2 − f
) = 0. (4.10)

59



While this PDE is not in conservation form, if we apply the method of lines we

can solve the spatially dependent part of the equation as a conservation law and

then treat the ODE as a scaled version of

gt + L(g) = 0, where L(g) = ∇ · (~v g

2 − g
). (4.11)

4.4 Numerical Implementation

While the PDE framework of our method may be analytically clear, its numerical

implementation requires some finesse. Given an initial interface, Γ we form the

level set function ϕ such that ϕ|Γ = 0. In order to initialize J (which will be

used in this section to mean J or f , unless there is a difference in their treatment

which will be made clear) we need to extend it off Γ. The best way to extend

quantities known only on the interface into the domain near the interface is still

a problem that is being researched. One method is to extend the quantity, S,

along characteristics in the normal direction by solving a PDE of the form

St + sign(ϕ) ~N · ∇S = 0.

However, in our case in order to prevent topology change we need to know the

value of J in front of Γ if we are going to stop the motion of Γ prior to the change.

So extending J off the interface does not help us. Thus if Γ is defined as the set

of points where ϕ(x) = 0 then we need to follow J on level sets near 0. However,

we do not want to penalize the merging of all levelsets, otherwise our evolution

procedure would begin to freeze as soon as level sets far from Γ began to merge

or pinch. To fix this we adjust J by smoothing it by

J(x) → 1 + g(ϕ(x))(J(x) − 1), (4.12)
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where g(u) is a cutoff function such as

g(u) ≡







1, if |u| < β

(|u| − γ)2 2|u|+γ−3β
(γ−β)3

, if β < |u| ≤ γ

0 otherwise,

where 0 < β < γ determine the support of the cutoff. This smoothing will leave

J unchanged near the interface and taper it off to have value 1 away from the

front, thus allowing the level sets of ϕ which are away from the front to change

topology without any effect on the evolution of Γ.

After having initialized J and ϕ we set up the framework for a local level set

(LLS) calculation as described in [PMO99]. However, because J is very sensitive

to perturbations it is necessary to set up extra interior tubes in which J will be

calculated so that the discontinuity in ∇ϕ at the edge of the outer LLS tubes will

not cause problems if quantities involving second derivatives, such as curvature,

are involved in the evolution of J .

Once this LLS framework is established we begin to evolve the PDEs from

(4.7) (or (4.10)) and (4.3). After adjusting the physical velocity ~v to be ~vp(J),

the equation for ϕ is rewritten as ϕt + vn|∇ϕ| = 0 and solved using standard

ENO/WENO Roe-Fix Hamilton-Jacobi solvers such as those found in [OS91],

etc. with TVD Runge-Kutta timestepping. The equation for f is solved using

similar ENO/WENO Roe-Fix methods for conservation laws. The method of

lines applied to (4.10) results in using TVD Runge-Kutta timestepping with a

timestep scaled pointwise by the factor 2(2−f
2

)2 in solving (4.11). If J is to be

used then there is no timestep scaling.

After each timestep we resmooth J or f using (4.12), and periodically we

must reinitialize ϕ making sure not to move the interface (and possibly change

topology) when doing so.

61



In multiple dimensions the evolution procedure generalizes as noted above

and with PDEs to be solved are identical.

4.5 Numerical Examples

We begin with 2 examples of topology preserving level set motion applied to the

problem of image segmentation. We use the Chan-Vese minimization[CV01] of

the Mumford-Shah segmentation energy[MS89] to define the prepenalized evo-

lution velocity. Figure 4.1 shows the segmentation (zoomed in near the conclu-

sion) of 2 circles. Figure 4.2 we show the segmentation process without topology

preservation.

Figure 4.3 shows plots at different timesteps (after initialization as a small

circle) during the segmentation of an annulus with a small slit in it. In figure 4.4

we turn off the topology preservation and see that the slit is not identified by the

segmentation.

In figure 4.5 we track the motion of both a circle and a line under topology

preserving outward normal motion

ϕt − p|∇ϕ| = 0,

where p is the penalty function. We show the final plot of the Jacobian, J , in

figure 4.6, note the large magnitudes of J near points where topology is almost

changing. Figure 4.7 shows the same evolution without topology preservation.

Finally, in figure 4.8 we show the evolution of 2 hemispheres in 3d under out-

ward normal motion with topology preservation, and without topology preserva-

tion in figure 4.9.
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Figure 4.1: Segmentation of 2 circles with topology preservation.
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Figure 4.2: Segmentation of 2 circles without topology preservation.
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Figure 4.3: Slit annulus segmentation with topology preservation.
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Figure 4.4: Slit annulus segmentation without topology preservation.
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Figure 4.5: Circle and line under outward normal motion with topology preser-

vation.
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Figure 4.6: Final Jacobian of circle and line under outward normal motion.
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Figure 4.7: Circle and line under outward normal motion without topology preser-

vation.

4.6 Conclusion

The results of this topologically preserving level set method indicate its poten-

tial for various applications involving interacting, semi-rigid interface dynamics.

While the results are not a resolved as those of [HXP01], they do yield an accu-

rate estimate on the Jacobian of the interface function and its conjugates. This

Jacobian has both theoretical and physical signifigance, and it remains to be seen

how it can be used to gain further knowledge of the topological properties of the

interface. The local nature of this method as well as that in [HXP01] is the

real advantage over all global methods that may require information about the

integral of curvature over the interface, or other global properties whose precise

measurement may require resolving subgrid phenomena.

In the future we hope to extend our method to 3d applications of brain map-
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Figure 4.8: Hemispheres under outward normal motion with topology preserva-

tion.
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Figure 4.9: Hemispheres under outward normal motion without topology preser-

vation.
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ping where a cortex is deformed to a sphere without change in initial topology.

Also, this method could be incorporated into sphere or quasi-sphere packing

problems where multiple deformable objects are moved in a way that minimizes

a functional of volume or surface area.
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CHAPTER 5

Fast Numerical Solution to Poisson’s Equation

for Layered Semiconductor Devices

5.1 Introduction to the Problem

The development of quantum algorithms exploiting quantum parallelism and

solving some difficult problems such as prime factorization of large numbers and

allowing for rapid searches of databases has led engineers to begin the task of

constructing a quantum computer. Eli Yablonovitch’s group at UCLA and Mark

Gyure’s group at HRL have teamed with members of the UCLA math department

to work towards the goal of constructing a quantum repeater that can monitor

and manipulate the spin of an electron. This in turn will be used for quan-

tum communication. Using a semiconductor hetero-structure the group hopes to

build a device with electrostatically controlled potential wells; wells that will trap

a single electron and wells that will create 1d quantum wires that can be used

to monitor the spin of these electrons[VYW00]. Our job as the mathematicians

is to build a numerical simulation of the proposed device that will enable one to

determine designs yielding workable devices.

The required equations to be solved are a coupled system determining poten-
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tial energy φ and wavefunction ψ,

−∇ · (ε∇φ) = ρ (5.1)

−(}/2)∇ · (1/m)∇ψl) + (φ̃− El)ψl = 0, (5.2)

where ρ = f({Ej}, {ψj}) which represents a source doping term and a source

contribution due to the occupied states ψj and energies Ej of trapped electrons,

and φ̃ is the difference between φ and the band offset potential. Therefore an

elliptic potential problem (5.1) must be solved self consistently with an eigenvalue

problem (5.2).

An important part of the solution process is solving (5.1). This solution

presents a number of difficulties. Resolving discontinuous coefficients near the

very thin layers of the wells is a problem. To capture the behavior of the solution

accurately requires a dense set of data points near these wells. In 3d the number

of data points require becomes very large, slowing down the solution procedure.

Finally, there is the problem of infinite domain boundary conditions which must

be imposed within the context of a finite computation.

In section 5.2 we derive a high order solver for (5.1). This solver consists

of both standard Fourier methods combined with a new 1d nonhomogeneous

Helmholtz solver. The solver can be thought of as a finite element method where

the elements are exact solutions of the underlying PDE [SF73],[Cia02]. There

have been similar finite element-like methods constructed for homogeneous prob-

lems. These are known as partition of unity methods [MB96] or kernel approxima-

tions [LJZ95],[Mon82],[BKO96], and have a similar goal of adjusting the elements

used to closely match the analytic solution or exactly reproduce a specific class

of functions.

This solver will be shown to have arbitrarily high order accuracy (depending

only on the smoothness of the wavefunction ψ) in the L∞ norm, as opposed to
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the usual Sobolev norm estimates. The ability of this method to adapt to dif-

ferent boundary conditions and discontinuous material constants without losing

accuracy and without substantial change in derivation is also shown. Finally,

numerical examples of both the 1d solver and the coupled system (5.1) and (5.2)

will be shown, demonstrating the advantage over traditional finite element and

finite difference methods in both storage, time, and accuracy.

5.2 High Order Potential Solver

The general idea behind the method of solving (5.1) is to assume a separable

solution of the form

φ(x, y, z) = γ(x)η(y, z)

and then solve for φ by using a 2d Fourier method for η and a 1d solver for γ. In

the y and z directions of the device the dielectric constant ε is constant and the

solution is not localized as it is in the x direction, so we take a uniform grid in

those directions. Assuming an ansatz solution of the form

φ(x, y, z) =
∑

k1,k2

γk1,k2
(x)eik1yeik2z,

as well as a nonhomogeneous term that can be expressed in a 2d Fourier basis as

f(x, y, z) =
∑

k1,k2

fxk1,k2
(x)eik1yeik2z,

then applying (5.1) we get a decoupled system consisting of equations

−γ′′k1,k2
(x) − (k1

2 + k2
2)γ(x) = fxk1,k2

(x) (5.3)

for each pair of wavenumbers {k1, k2}. Note that f(x, y, z) ≈ ρ(x, y, z)/ε(x) now

contains the information about ε.
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Thus we have a 1d ODE (5.3) to solve for each pair of wavenumbers. If

we tried using finite differences to solve this we would reduce the accuracy of

the solver to the order of the largest mesh size in x. Away from the wells this

mesh size will be many orders of magnitude larger than the mesh size of x in the

refined areas inside the wells. Expanding on the ideas of Wachspress [Wac60] we

will treat each grid cell as a boundary value problem which can be solved exactly

on its interior and then coupled together with its neighbors through continuity

conditions. In this way our solver can be viewed as a finite element method using

exact solutions as basis functions.

For each grid cell [xi, xi+1] in x we set up a 2 point Helmholtz BVP derived

from (5.3)

d2γi
k1,k2

(x)

dx2
+ Ck1,k2

γi
k1,k2

(x) = f i
k1,k2

(x) for xi ≤ x ≤ xi+1 (5.4a)

with γi and γi′ given at xi, xi+1, (5.4b)

where Ck1,k2
depends on the Fourier modes in y and z. The homogeneous solution

of this Helmholtz problem consists of a sum of exponentials which can be coupled

using the boundary conditions (5.4b) to form a tridiagonal system of equations

giving analytic accuracy when solved.

5.2.1 Solution of the One Dimensional BVPs

In this section we will derive the general solution to a coupled system of linear

ODE BVPs of which (5.4a) is a second order Helmholtz example.

General Nonhomogeneous Solution Here we describe the 2 point BVP so-

lution to a nonhomogeneous linear ODE of the form

L(u) ≡
M∑

i=0

aiu
(i) = f(x). (5.5)
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Our goal will be to solve (5.5) for polynomial f , without worrying about the

homogeneous solution (which can be added later using superposition). First let

us rewrite (5.5) as

L(u) = u+
M∑

i=1

biu
(i) = u+ L̂(u) = f(x),

where bi = ai/a0. We assume a0 6= 0, but if it does then we simply make a change

of variables and let z = u(m), where m is the lowest order term with am 6= 0,

then proceed with z in place of u. Say we can approximate f(x) in terms of a

polynomial basis, then if we can solve

L(u) = xn,

then we can take a superposition of solutions for all n to solve for our polynomial

approximation to f .

We begin the trial solution by letting u = xn. If L(xn) = xn then we are done.

However, if L(xn) 6= xn then we must continue to search for a solution. The key

point is that L̂(xn) = O(xm<n), so if we alter u to be

u = xn − L̂(xn),

then we can test again to see if

L(u) = [xn + L̂(xn)] + [−L̂(xn) + L̂(−L̂(xn))] = xn + L̂(−L̂(xn)) = xn.

If this is not satisfied we repeat the process, setting

u = xn − L̂(xn) − L̂(−L̂(xn)).

We continue this process until we get a solution for u such that L(u) = xn, so

that the final solution can be written as

u(x) = xn +
∞∑

i=1

(−L̂)i(xn), (5.6)
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where

(−L̂)i(g) = (−L̂) ◦ · · · ◦ (−L̂)
︸ ︷︷ ︸

i times

(g).

Note that there exists an M > 0 such that (−L̂)i(g) = 0 for all i ≥M .

Thus the solution for (5.5) with polynomial f is just a superposition of these

monomial solutions.

For example, if

L(u) = au′′ + bu′ + u = x2,

then

L̂(x2) = 2a+ 2bx, and L̂(−L̂(x2)) = −2b2.

So

u(x) = x2 − (2a+ 2bx) − (−2b2).

In the next section we will use this technique applied to a coupled system of

Helmholtz BVPs.

Helmholtz Solution In this section we will specifically derive the solution to

the coupled system of Helmholtz BVPs of which (5.4a) is an example. For the

homogeneous case and the case with constant nonhomogeneous term we follow

the derivation in [Wac60].

For a given node xi we define 2 ODEs on cells adjacent to i. If we define

A ≡ [xi−1, xi], B ≡ [xi, xi+1]

then the ODE in A is

−pi−1y
′′ + qi−1y = fi−1, (5.7)

and in B

−piy
′′ + qiy = fi. (5.8)
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Note that for the variable v = p, q, or f , the notation vi does not indicate a

pointwise value v(xi), but rather a function vi(x) on the interval (xi, xi+1). For

our application we will have p, q ≥ 0 and constant on intervals [xj, xj+1], but allow

the nonhomogeneous term f to vary. However, for the solution to the ODE, y,

we will use the notation that yi ≡ y(xi).

The boundary conditions are

y(xi−1) = yi−1, y(xi) = yi, y(xi+1) = yi+1. (5.9)

Let us examine the problem in region B. First we will make the transforma-

tion,

z = qy − f,

so that

z′ = qy′ and z′′ = qy′′,

assuming that f is constant. Setting q/p = γ, (5.8) becomes

−z′′ + γz = 0. (5.10)

This ODE has solutions of the form

zB(x) = ae
√

γx + be−
√

γx. (5.11)

If f ′′ 6= 0 then we need to adjust z as (5.10) now reads

−(z′′ + f ′′) + γz = 0. (5.12)

If we make another substitution of

w = z − f ′′

γ
, so w′′ = z′′ − f iv

γ
,

and plug this into (5.12) then we get

−
(

[w′′ +
f iv

γ
] + f ′′

)

+ γ(w +
f ′′

γ
) = 0.
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If f iv = 0 then we solve (5.10) with w in place of z. If f iv 6= 0 then we repeat

the substitution step again and continue the process until we have that for the

M th derivative, fM = 0 ∀M > M0 > 0. Substituting back to get the solution in

terms of y we have

ζ = qy −
∞∑

n=0

f (2n)

γn
, (5.13)

where ζ solves (5.10). For notational simplicity we will name

f̂i(x) ≡
∞∑

n=0

f
(2n)
i (x)

γn
i

.

Note that in practice the infinite sum will be truncated as long as we use a

finite basis of polynomials to represent f(x). It is this iterative substitution and

cancelation of terms that allows us to attain a high order solver by interpolating

f using a high order interpolant.

If we let xi = 0 and xi+1 = hi then by matching BCs with (5.11) as our

solution for ζ we have

ζB(x) = (ζi −
ζi+1 − ξ+ζi
ξ− − ξ+

)e
√

γix + (
ζi+1 − ξ+ζi
ξ− − ξ+

)e−
√

γix, (5.14)

where ξ± = e±
√

γihi and γi = qi/pi. The solution in region A is found similarly.

Applying the condition of continuity of py′ (using py′ = p
q
(ζ ′ + f̂ ′)) at xi we

get

limx→xi−
pi−1

qi−1

(ζ ′A(x) + f̂ ′
i−1(x)) = limx→xi+

pi

qi
(ζ ′B(x) + f̂ ′

i(x)). (5.15)

Letting hi−1 = xi − xi−1 and writing (5.15) in terms of hyperbolic functions

we have

−
√
pi

qi
ζ+
i coth(

√
qi
pi

hi) +

√
pi

qi
ζi+1 csch(

√
qi
pi

hi) +
pi

qi
f̂ ′

i(xi)

=

√
pi−1

qi−1

ζ−i coth(

√
qi−1

pi−1

hi−1) −
√
pi−1

qi−1

ζi−1 csch(

√
qi−1

pi−1

hi−1) +
pi−1

qi−1

f̂ ′
i−1(xi).

(5.16)
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Plugging in

ζ+
i = qiyi − f̂i(xi), ζ

−
i = qi−1yi − f̂i−1(xi),

ζi−1 = qi−1yi−1 − f̂i−1(xi−1), ζi+1 = qiyi+1 − f̂i(xi+1), (5.17)

and collecting terms we get

yi−1

(√
pi−1

qi−1

qi−1 csch

(√
qi−1

pi−1

hi−1

))

+ yi+1

(√
pi

qi
qi csch

(√
qi
pi

hi

))

+yi

(

−
√
pi

qi
qi coth

(√
qi
pi

hi

)

−
√
pi−1

qi−1

qi−1 coth

(√
qi−1

pi−1

hi−1

))

= −
√
pi

qi
coth

(√
qi
pi

hi

)

f̂i(xi) +

√
pi

qi
csch

(√
qi
pi

hi

)

f̂i(xi+1) −
pi

qi
f̂ ′

i(xi)

−
√
pi−1

qi−1

coth

(√
qi−1

pi−1

hi−1

)

f̂i−1(xi)

+

√
pi−1

qi−1

csch

(√
qi−1

pi−1

hi−1

)

f̂i−1(xi−1) +
pi−1

qi−1

f̂ ′
i−1(xi). (5.18)

It should be noted that if we are on a uniform mesh and f is constant, then by

taking the first order Taylor series approximations to the hyperbolic functions we

attain the second order central finite difference approximation to the solution.

5.2.2 Boundary Conditions

An added benefit of this type of solution method is the ease with which boundary

conditions of varying types can be imposed. The case of infinite BCs is especially

relevant for our particular physical problem, a case that can cause difficulty to

finite difference approximations.

For infinite BCs if we have the lower domain boundary as xi = 0 with an

infinite boundary for x < xi, then the solution to (5.10) is

ζ−∞ = ζie
√

γx (5.19)

where γ = q−∞/p−∞.
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Writing an equation that is analogous to (5.15) in terms of hyperbolic func-

tions we have

−
√
pi

qi
ζ+
i coth(

√
qi
pi

hi) +

√
pi

qi
ζi+1 csch(

√
qi
pi

hi) +
pi

qi
f̂ ′

i(xi+)

=

√
p−∞
q−∞

ζ−i +
p−∞
q−∞

f̂ ′
−∞(xi−). (5.20)

In the same way we derived (5.18) by matching py′ at xi we can derive

yi+1

(√
pi

qi
qi csch

(√
qi
pi

hi

))

+yi

(

−
√
pi

qi
qi coth

(√
qi
pi

hi

)

−
√
p−∞
q−∞

q−∞

)

= −
√
pi

qi
coth

(√
qi
pi

hi

)

f̂i(xi) +

√
pi

qi
csch

(√
qi
pi

hi

)

f̂i(xi+1)

−pi

qi
f̂ ′

i(xi) −
√
p−∞
q−∞

f̂−∞(xi) +
p−∞
q−∞

f̂ ′
−∞(xi). (5.21)

The boundary equation for infinite BCs at the right side are derived similarly

but with (5.19) replaced with

ζ+∞ = ζie
−√

γx, (5.22)

where γ = q+∞/p+∞.

For Robin BCs (which include Neumann and Dirichlet) we proceed along

similar lines. Given left side BCs at xi = 0,

α1yL − α2pLy
′
L = α3, (5.23)

where y′L = limx→xi+ y
′(x), then in the region [xi, xi+1] we have

α1yi − α2
pL

qi
(ζ ′i + f̂ ′

i)|x=xi
= α3
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as y = ζ+f̂
q

. Substituting and rearranging yields

yi

[

α1 + α2
pL

qi

√
pi

qi
qi coth

(√
qi
pi

hi

)]

+yi+1

[

− α2
pL

qi

√
pi

qi
qi csch

(√
qi
pi

hi

)]

= α3 − f̂ ′
i(xi) + α2

pL

qi

√
pi

qi
f̂i(xi) coth

(√
qi
pi

hi

)

−α2
pL

qi

√
pi

qi
f̂i(xi+1) csch

(√
qi
pi

hi

)

. (5.24)

Robin BCs for the right side boundary are derived similarly.

5.2.3 Accuracy

Locally we are exactly solving an ODE of the form

L(unum) = g(x),

where g is an approximation to the actual nonhomogeneous term f(x), and unum

indicates the numerical solution. Thus to get an estimate on ‖u− unum‖ we can

look at

L(u(x))−L(unum(x)) = −(u′′(x)− u′′num(x)) +α(u(x)− unum(x)) = f(x)− g(x).

Say that on a given interval D = [x0, x1] we have that w(x) = u(x)−unum(x) for

x ∈ D, with BCs given by w = h(x), and that |f − g|∞ is of order ε. Then we

have that

w′′ − αw = g − f in D.

As long as α ≥ 0 and w is sufficiently smooth on D then we have an a priori

bound on the error [McO95],

max
x∈D

|w(x)| ≤ max
x∈∂D

|h(x)| + Cmax
x∈D

|(g − f)(x)| ≤ ε(1 + C), (5.25)
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where C depends only on the domain, D.

Thus it is only the interpolation error that dictates the error of our method,

and this is in turn dictated by the smoothness of f . For our particular quantum

modeling problem f represents the Fourier transform of the wave function, ψ,

which should be smooth. Also, in regions where f = 0 we see that no mesh

points are needed to resolve the solution.

5.2.4 Implementation Details

To solve the potential equation we can assume that we have been given the

nonhomogeneous term, ρ in (5.1), at all data points. We then take the Fourier

transform of (5.1) giving a 1D system of coupled Helmholtz problems of the

form (5.4a) for each set of paired wave numbers {k1, k2} on a set of data points

X ≡ {xj=1:N}.

We will then solve the system on X with BCs specified as in either infinite or

as in (5.23). We will set up a tridiagonal system of equations defined by (5.18)

for interior points, and either (5.21) or (5.24). To determine f̂i(x) we will use

polynomial interpolation over points {xj} where the diffusivity constant ε(xj) is

the same as ε(xi). Any suitable polynomial basis can be used.

5.3 Numerical Examples

We begin by showing some results from the full 3d solution to (5.1) and (5.2).

Figure 5.1 shows a sample quantum wire position within the well in layer C, as

well as the mesh on which we compute the solution. Note the coarse grid in

regions A and B away from the well. In figure 5.3 we show a sample level set

of the potential φ, and in figure 5.2 we show level sets of the wavefunction ψ in
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Figure 5.1: 3d quantum wire and sample mesh.

2 different wells, one which will hold the quantum dot and the other which will

hold the quantum wire. Figure 5.4 shows a slice of the potential for fixed y and

z through the center of the device.

For the 1d Helmholtz solver we will show both error results and convergence

order estimates, as well as some sample solutions. The computational domain

will be [0, 1] with a uniform grid of 101 points unless noted otherwise.

Problem 1 Figure 5.5 shows the computed and exact solution to the BVP

−y′′ + y = 0, y(0) = 0, y(1) − y′(1) = 1.

The exact solution is

y(x) =
e

2
(e−x − ex).

Note that the approximation and exact solution are indistinguishable, and in fact

the L∞ error ≈ 10−12 which is approaching machine ε.

Problem 2 Figure 5.6 shows the computed and exact solution to the BVP

−y′′ + y = sin(2πx)(1 + (2π)2), y(0) = 0, y(1) = 0
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Figure 5.2: Level sets of ψ in the upper and lower wells.

Figure 5.3: Potential level set.
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Figure 5.4: 1d potential slice for fixed y and z.
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Figure 5.5: Problem 1 computed and exact solution.
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Figure 5.6: Problem 2 computed and exact solution.

using different order polynomial approximations to the nonhomogeneous term.

The exact solution is

y(x) = sin(2πx).

In figure 5.7 we magnify the region where there is the largest difference in the

2nd and 3rd order solutions to show their accuracy.

Problem 3 Figure 5.8 shows the computed solution using 1601 grid points to

the BVP

−p(x)y′′ + q(x)y = f(x), y(0) = 0, y(1) = 1,
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Figure 5.7: Problem 2 computed and exact solution magnified.

where

p = 1, q = 10 on [0, 0.3], (5.26)

p = 1, q = 1 on (0.3, 0.7], (5.27)

p = 20, q = 1 on (0.7, 1], (5.28)

f(x) = 100 cos(6πx) on [0, 1]. (5.29)

Using Richardson extrapolation we can estimate the rate of convergence of the

approximations when using different polynomial orders interpolating f . Figures

5.9, 5.10, and 5.11 show the pointwise convergence order estimate when 1st, 2nd

and 3rd order interpolation is used, respectively. For smooth regions of f the

methods indicate 1st, 2nd and 3rd order convergence. Note that in regions where

f is not smooth Richardson extrapolation does not yield a good estimate on

the convergence rate. This can be seen in figure 5.12 which shows the 3rd order

convergence estimate along with p, q and f(x)/5. It becomes obvious that both
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Figure 5.8: Problem 3 exact solution.

the magnitudes and discontinuities of p and q, as well as the nonsmooth regions

of f , contribute to losses in accuracy.

5.4 Conclusion

As indicated earlier there is still much work to do on the full coupled system (5.1)

and (5.2) as well. The requested design of the devices also changes often and new

problems such as 3d gate geometry and curvature effects are being introduced on

a regular basis giving the model greater complexity.

The success of the 1d nonhomogeneous solver begs the question of whether

other ODE problems can be solved in the same way. ODEs with spatially varying

coefficients can also be examined, but their particular solutions for specific non-

homogeneous terms will become more complex and will not always be solvable in
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Figure 5.9: Problem 3 Richardson extrapolation, 1st order.
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Figure 5.10: Problem 3 Richardson extrapolation, 2nd order.
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Figure 5.11: Problem 3 Richardson extrapolation, 3rd order.

closed form. For hyperbolic conservation laws the Godunov solvers for Riemann

problems are an example of a similar concept, except that the characteristics

travel at finite speeds allowing for explicit solvers. The generalization to higher

dimensions needs to be explored further, presenting nonhomogeneous boundary

value PDE problems to be solved exactly, again calling for analytical manipula-

tion. Also, applying this technique to the eigenvalue problem (5.2) may yield a

more accurate solution.
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