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Dynamic Cluster Formation Using
Level Set Methods

Andy M. Yip, Chris Ding, and Tony F. Chan

Abstract— Density-based clustering has the advantages
for (i) allowing arbitrary shape of cluster and (ii) not
requiring the number of clusters as input. However, when
clusters touch each other, both the cluster centers and
cluster boundaries (as the peaks and valleys of the density
distribution) become fuzzy and difficult to determine. We
introduce the notion of cluster intensity function (CIF)
which captures the important characteristics of clusters.
When clusters are well-separated, CIFs are similar to
density functions. But when clusters become closed to
each other, CIFs still clearly reveal cluster centers, cluster
boundaries, and degree of membership of each data
point to the cluster that it belongs. Clustering through
bump hunting and valley seeking based on these functions
are more robust than that based on density functions
obtained by kernel density estimation, which are often
oscillatory or over-smoothed. These problems of kernel
density estimation are resolved usingLevel Set Methodsand
related techniques. Comparisons with two existing density-
based methods, valley seeking and DBSCAN, are presented
which illustrate the advantages of our approach.

Index Terms— Dynamic clustering, level set methods,
cluster intensity functions, kernel density estimation, clus-
ter contours, partial differential equations.

I. I NTRODUCTION

RECENT computer, internet and hardware ad-
vances produce massive data which are accu-

mulated rapidly. Applications include sky surveys,
genomics, remote sensing, pharmacy, network se-
curity and web analysis. Undoubtedly, knowledge
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acquisition and discovery from such data become an
important issue. One common technique to analyze
data isclustering which aims at grouping entities
with similar characteristics together so that main
trends or unusual patterns may be discovered. Clus-
tering is an example of unsupervised learning. There
is no provision of any training examples to guide
the grouping of the data. In the other words, cluster
analysis can be applied withouta priori knowledge
of the class distribution. We refer the reader to
[1], [2] for more detailed examples of the usage
of clustering techniques in a variety of context.

A successful clustering task depends on a number
of factors: collection of data, selection of variables,
cleaning of data, choice of similarity measures,
choice of a clustering algorithm, and interpretation
of clustering results. In this paper, we focus on
proposing a general-purpose clustering algorithm.
We assume that we are given a set of data in an
Euclidean space, i.e. each object is described by a
set of numerical attributes, and pair-wise dissimi-
larity is measured by Euclidean distance. We also
assume that preprocessing steps such as variable
selection, data cleaning, and missing value impu-
tation are treated separately. However, the proposed
algorithm is robust to noise and outliers. Thus it
can tolerate certain amount of imperfection in data
cleaning.

There are a number of paradigms to define clus-
ters. Our approach is density-based. The idea is
that clusters are high density regions separated by
low density regions. While this approach has a
number of desirable properties (detailed in§II), a
potential drawback common to all algorithms of
this type is over-fitting of density. For example,
density estimated from a set of samples drawn from
a uniformly distribution is generally not uniform.
A density-based clustering method must take this
effect into account. Otherwise, the clustering results
could be disastrous. We show experimentally that
several well-known density-based methods fail to
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comply with such a robustness requirement. As a
result, natural clusters are split into pieces due to
the artifactitious differential densities.

To remedy such a problem, we propose a partial
differential equation model to detect high density
regions. The model has a built-in mechanism, which
can be thought of adding surface tension to cluster
boundaries, to overcome the localized roughness of
the density landscape. To implement the dynamical
evolution of cluster boundaries, we employ the
Level Set Methods which allow moving boundaries
to split or merge easily. We further introduce the
concept of cluster intensity functions which clearly
reveals cluster structures. Partitioning data accord-
ing valleys of such functions provides an extra
degree of robustness.

The organization of the rest of the paper is as
follows. In the next subsection, we give a brief
review of clustering algorithms. Then, we highlight
some characteristics of density-based methods and
some related concepts in§II. In §III, we outline the
main steps of our methodologies. The initialization
steps of our method is presented in§IV. Followed
next in §V is the major step, which is to advance
cluster boundaries robustly. A novel concept, clus-
tering intensity function, for finalizing the clusters
is introduced in§VI. Experimental results are then
presented in§VII. Finally, some conclusion remarks
are given in§VIII.

A. A Review of Clustering Algorithms

To facilitate a better understanding of our density-
based method, we include a brief summary of
various classes of clustering algorithms so as to
contrast the different assumptions underlying each
class of algorithms. Pointers to the literature are also
given. A more thorough discussion of density-based
methods and relevant concepts is presented in the
next section. For more detailed reviews of clustering
techniques, we refer the reader to [1], [2], [3], [4].

(i) Optimization-based methods. They seek for a
partition of the dataset so as to optimize an objec-
tive. Usually, a measure of within-cluster similarity
is maximized and/or a measure of between-cluster
dissimilarity is maximized. Constraints such as
number of clusters or minimum separation between
clusters may be incorporated [5]. Perhaps the most
well-known algorithm of this type is the Lloyd’s
Algorithm [6] for optimizing thek-means objective

[7]. A generalization of thek-means objective and
Lloyd’s Algorithm to Bregman Divergence can be
found in [8]. Algorithms for optimizing thek-
medoids objective, a variant ofk-means which is
more robust to outliers, include PAM [3], CLARA
[3] and CLARANS [9].

(ii) Hierarchical methods. They aim at produc-
ing a hierarchical tree (dendrogram) which depicts
the successive merging (agglomerative methods) or
splitting (divisive methods) of clusters. Examples of
hierarchical methods include DIANA, Single Link-
age, Average Linkage, Complete Linkage, Centroid
and Ward’s methods [3]. Different agglomerative
methods differ by the way that the similarity be-
tween two clusters is updated. If the linkage satisfies
a cluster aggregate inequality, then the algorithm
can be implemented efficiently at a time complex-
ity of O(N2) only [10]. A more recent method
CHAMELEON [11] uses a sophisticated merging
criterion which takes the clusters’ internal structure
into account as well.

(iii) Density-based methods. They are based on
the idea that clusters are high density regions sep-
arated by low density regions. Methods of this
type include Valley Seeking [12], DBSCAN [13],
GDBSCAN [14], CLIQUE [15], DENCLUE [16]
and OPTICS [17]. Our approach is density-based.
We will further elaborate the pros and cons of this
paradigm in the next section.

(iv) Grid-based methods. The feature space is
projected onto a regular grid. Presumably, most non-
empty grid cells are highly populated. Thus, by
using a few representatives or summary statistics
for each grid cell, a form of data compression is
obtained. Such an approach is usually used for large
databases. STING [18] and WaveCluster [19] fall
into this category.

(v) Graph-based methods. Data points are rep-
resented by nodes and pair-wise similarity are de-
picted by the edge weights. Once a graph is con-
structed, graph partitioning methods can be used to
obtain clusters of data points. Examples of graph-
based methods are Spectral Min-Max Cut [20] and
Shared Nearest Neighbors [21].

(vi) Model-based methods. They are application-
specific. They assume the knowledge of a model
which prescribes the nature of the data. CLICK [22]
uses a finite mixture model [23] to model pair-wise
similarity between points in the same cluster and
points in different clusters.
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II. D ENSITY-BASED APPROACHES ANDLEVEL

SET METHODS

A. Density-based Approaches

Among various classes of clustering algorithms,
density-based methods are of special interest for
their connections to statistical models which are
very useful in many applications. Density-based
clustering has the advantages for (i) allowing ar-
bitrary shape of cluster and (ii) not requiring the
number of clusters as input, which is usually diffi-
cult to determine.

There are several basic approaches for density-
based clustering:

(A1) A common approach is so-called bump-
hunting: first find the density peaks or “hot
spots” and then expand the cluster boundaries
outward until they meet somewhere, presum-
ably in the valley regions (local minimums) of
density contours. The CLIQUE algorithm [15]
adopted this methodology.

(A2) Another direction is to start from valley re-
gions and gradually work uphill to connect
data points in low-density regions to clusters
defined by density peaks. This approach has
been used in Valley Seeking [12] (see below)
and DENCLUE [16].

(A3) A recent approach, DBSCAN [13], is to com-
pute reachability from some seed data and
then connect those “reachable” points to their
corresponding seed. Here, a pointp is reach-
able from a pointq (with respect toMinPts
and Eps) if there is a chain of pointsp1 =
q, p2, . . . , pn = p such that, for eachi, theEps-
neighborhood ofpi contains at leastMinPts
points and containspi+1. A variant, called
OPTICS, has been proposed in [17] which
orders the data in such a way that clusterings
at different density parameters are efficiently
obtained.

When clusters are well-separated, density-based
methods work well because the peak and valley
regions are well-defined and easy to detect. When
clusters are closed to each other, which is often
the case in real situations, both the cluster centers
and cluster boundaries (as the peaks and valleys of
the density distribution) become fuzzy and difficult
to determine. In higher dimension, the boundaries
become wiggly and over-fitting often occurs.

In this paper, we adopt the framework of bump-
hunting but with several new ingredients incorpo-
rated to overcome problems that many density-based
algorithms share. The major steps of our method are
as follows: (i) obtain a probability density function
(PDF) by Kernel Density Estimation; (ii) identify
peak regions of the density function using a surface
evolution equation implemented by theLevel Set
Methods (LSM); (iii) construct a distance-based
function called Cluster Intensity Function(CIF);
(iv) apply Valley Seekingon the CIF. In the next
subsections, we describe each of the above four
notions.

B. Kernel Density Estimation (KDE)

In density-based approaches, one must need to es-
timate the density of data. We particularly consider
the use of kernel density estimation [24], [25], a
non-parametric technique to estimate the underlying
probability density from samples. More precisely,
given a set of data{xi}N

i=1 ⊂ Rp, the probability
density function (PDF) is defined to be

f(x) :=
1

(Nhp)

N∑
i=1

K

(
x− xi

h

)
(1)

where K(x) is a positive kernel andh is a scale
parameter. Clusters may then be obtained according
to the partition defined by the valleys off . An
efficient valley seeking algorithm is reviewed below.

There are a number of important advantages of
kernel density approach. Identifying high density
regions is independent of the shape of the regions.
Smoothing effects of kernels make density estima-
tions robust to noise. Kernels are localized in space
so that outliers do not affect the majority of the data.
The number of clusters is automatically determined
from the estimated density function, but one needs
to adjust the scale parameterh to obtain a good
estimate. Whenh is chosen too large,f will be over-
smoothed and will become unimodal eventually as
h → ∞. On the other hand, whenh is chosen
too small,f may contain many spurious peaks and
will eventually contain one peak for each data point
as h → 0. Theoretically, an optimalh is the one
which minimizes the integrated squared error (ISE)∫
Rd(f(x) − ftrue(x))2dx or the expected value of

ISE whereftrue is the (unknown) underlying true
density. A common practice is to apply heuristics
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such as cross-validation to obtain a reasonably good
estimate of the optimalh [26].

Despite the numerous advantages of kernel den-
sity methods, there are some fundamental draw-
backs which deteriorate the quality of the resulting
clusterings. PDFs obtained through KDE are very
often oscillatory (uneven) since they are constructed
by adding many kernels together. Such an oscilla-
tory nature may lead to the problem of over-fitting,
whereas a smooth cluster boundary between the
clusters are usually preferred than an oscillatory
one. Last but not least, valleys and peaks of PDFs
are often very vague especially when clusters are
closed together.

C. Level Set Methods (LSM)

We recognize that the key issue in density-based
approach is how to advance the boundary either
from peak regions outward towards valley regions,
or the other way around. In this paper, we em-
ploy LSM, which are effective tools for computing
boundaries in motion, to resolve the boundary ad-
vancing problem. LSM have well-established math-
ematical foundations and have been successfully
applied to solve a variety of problems in image
processing, computer vision, computational fluid
dynamics and optimal design. LSM use implicit
functions to represent complicated boundaries con-
veniently. While implicit representation of static sur-
faces have been widely used in computer graphics,
LSM move one step further allowing the surfaces
to dynamically evolve in an elegant and highly
controllable way, see [27], [28] for details.

Advantages of LSM include: (i) the boundaries
in motion can be made smooth conveniently and
smoothness can be easily controlled by a parameter
that characterizes surface tension; (ii) merging and
splitting of boundaries can be easily done in a
systematical way. Property (ii) is very important in
data clustering as clusters can be merged or split in
an automatic fashion. Furthermore, the advancing of
boundaries is achieved naturally within the frame-
work of partial differential equation (PDE) which
governs the dynamics of the boundaries.

In LSM, a surfaceΓ(t) at time t is represented
by the zero level set of a Lipschitz functionφ =
φ(x, t), i.e., Γ(t) = {x : φ(x, t) = 0}. The value
of φ at non-zero level sets can be arbitrary, but a
common practice is to chooseφ to be thesigned

distance functionψΓ(t)(x) for numerical accuracy
reasons [27]. Our convention is thatφ < 0 inside
Γ(t) andφ > 0 outsideΓ(t).

In general, the signed distance function with
respect to a set of surfacesΓ is defined by

ψΓ(x) =

{ −min
y∈Γ

‖x− y‖2 if x lies insideΓ

min
y∈Γ

‖x− y‖2 if x lies outsideΓ,

(2)
where‖ · ‖2 denotes the Euclidean norm. To evolve
Γ(t) (whereΓ(0) is the initial data) with speedβ =
β(x, t), the equation is given by

∂φ

∂t
= β‖∇φ‖2 (3)

which is known as the level set equation [28]. Our
PDE also takes this form. The art is to design the
speed functionβ effectively to achieve one’s goal.

D. Cluster Intensity Functions (CIF)

We may use LSM strictly as an effective mech-
anism for advancing boundaries. For example, in
the above approach (A1), once the density peaks
are detected, we may advance cluster boundaries
towards low-density regions using LSM. This would
be a LSM-based bump hunting approach.

However, it turns out that utilizing LSM we can
further develop a new and useful concept ofcluster
intensity function. A suitably modified version of
LSM becomes an effective mechanism to formulate
CIFs in a dynamic fashion. Therefore our approach
goes beyond the three approaches (A1)–(A3) de-
scribed earlier.

CIFs are effective to capture important character-
istics of clusters. When clusters are well-separated,
CIFs become similar to density functions. But when
clusters become closed to each other, CIFs still
clearly describe the cluster structure whereas den-
sity functions and hence cluster structure become
blurred. In this sense, CIFs are a better representa-
tion of clusters than density functions.

CIFs resolve the problems of PDFs while ad-
vantages of PDFs are inherited. Although CIFs are
also built on the top of PDFs, they are cluster-
oriented so that only information contained in PDFs
that is useful for clustering is kept while other
irrelevant information is filtered out. We have shown
that such a filtering process is very important in
clustering especially when the clusters touch each
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other. On the other hand, it is well-known that when
the clusters are well-separated, then valley seeking
on PDFs results in very good clusterings. Since
the valleys of CIFs and PDFs are very similar, if
not identical, when the clusters are well-separated,
clustering based on CIFs is as good as that based
on PDFs. However, advantages of CIFs over PDFs
become very significant when the clusters are closed
together.

E. Valley Seeking

In a graph-based version described in [12], the
idea is to connect each point to another point nearby
having a higher density. In this way, we obtain a
forest where each tree is a cluster. Presumably, the
root node of each tree is located in a density peak
whereas most leaf nodes are in valley regions.

This method starts off with a density estimation
evaluated at each data point. The density can be
obtained using the PDF described in (1) or using the
k-nearest neighbor method [25]. In the experiments
below, we use the PDFf . For each pointxi,
denote byNr(xi) the set of neighboring points of
xi within a distance ofr, excludingxi itself. For
eachxj ∈ Nr(xi), the directional derivation off at
xi alongxj − xi is estimated bysi(j) = [f(xj) −
f(xi)]/‖xj−xi‖2. Let jmax = arg maxj si(j). Next,
if si(jmax) < 0, then i is set to be a root node. If
si(jmax) > 0, then the pointxj that maximizessi(j)
is set to be the parent node ofxi. If si(jmax) =
0 and if xi is connected to a root node, then
the root node is assigned to be the parent ofxi;
otherwise,xi becomes a root node. When all the
points are visited, a forest will be constructed and
each connected component (a tree) is a cluster.

In our method, once the CIF is obtained, cluster
labels can be easily assigned by applying the above
algorithm but with the density function replaced the
distance-based CIF.

III. A N OUTLINE OF OUR CLUSTER FORMATION

STRATEGIES

Our clustering method consists of several major
components. We here give a high-level description
of the method in order to provide a global picture.

We start by introducing some terminologies. A
cluster core contour(CCC) is a closed surface
surrounding the core part/density peak of a cluster at
which density is relatively high. Acluster boundary

refers to the interface between two clusters, i.e., a
surface separating two clusters. A CCC is usually
located near a density peak while a cluster bound-
ary is located at the valley regions of a density
distribution. Here, a pointx is said to belong to
a valley region off if there exists a direction along
which f is a local minimum. The gradient and the
Laplacian of a functiong are denoted by∇g and
∆g respectively.

Our method consists of the following main steps
which will be elaborated in details in the next
sections:
(1) initialize CCCs to surround high density re-

gions;
(2) advance the CCCs using LSM to find density

peaks;
(3) apply valley seeking algorithm on the CIF con-

structed from the final CCCs to obtain clusters.

IV. I NITIALIZATION OF CLUSTER CORE

CONTOURS(CCC)

We now describe how to construct an initial
cluster core contoursΓ0 effectively. The basic idea
is to locate the contours at whichf has a relatively
large (norm of) gradient. In this way, regions inside
Γ0 would contain most of the data points — we refer
these regions ascluster regions. Similarly, regions
outsideΓ0 would contain no data point at all and we
refer them asnon-cluster regions. Such an interface
Γ0 is constructed as follows.

Definition 1: An initial set of CCCsΓ0 is the set
of zero crossings of∆f , the Laplacian off . Here, a
point x is a zero crossing if∆f(x) = 0 and within
any arbitrarily small neighborhood ofx, there exist
x+ andx− such that∆f(x+) > 0 and∆f(x−) < 0.

We note thatΓ0 often contains several closed
surfaces, denoted by{Γ0,i}. The idea of using zero
crossings of∆f is that it outlines the shape of
datasets very well and that for many commonly used
kernels (e.g. Gaussian and cubic B-spline) the sign
of ∆f(x) indicates whetherx is inside (∆f(x) < 0)
or outside (∆f(x) > 0) Γ0.

Complete reasons for using zero crossings of∆f
to outline the shape of datasets are several folds: (a)
the solution is a set of surfaces at which‖∇f‖2 is
relatively large; (b) the resultingΓ0 is a set of closed
surfaces; (c)Γ0 well captures the shape of clusters;
(d) the Laplacian operator is an isotropic operator
which does not bias towards certain directions; (e)
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the equation is simple and easy to solve; (f) it
coincides with the “definition” of edges in the case
of image processing. In fact, a particular application
of zero crossings of Laplacian in image processing
is to detect edges to outline objects [29]; (g) the sign
of ∆f(x) indicate whetherx is inside (negative) or
outside (positive) of a cluster region.

Analytic formula for ∆f is often available. In
case of Gaussian kernels, we have

∆f(x) =
N∑

i=1

‖x− xi‖2
2 − h2p

Nhp+4(2π)p/2
K

(
x− xi

h

)
.

In Fig. 1(a) and (b), we show a dataset drawn
from a mixture of three Gaussian components and
the PDF f obtained by KDE respectively. The
dataset is generated so that the three clusters are
closed to each other whilst the Gaussian mixture
still has three distinct peaks theoretically. Such a
dataset is expected to be tough for most clustering
algorithms. We observe that the valleys and peaks
correspond to the two smaller large clusters of the
PDF are very vague or may even not exist. Thus,
the performance of PDF-based bump-hunting and/or
valley seeking could be poor. In Fig. 1(c), we show
the initial CCCs juxtaposed with the dataset. We
observe that the CCCs capture the shape of the
dataset very well.

V. A DVANCING CLUSTER CORE CONTOURS

Next, we discuss how to advance the initial CCCs
to obtain peak regions through hill climbing in a
smooth way. We found that this is a key issue
in density-based approaches and is also how ideas
from LSM come into play. More precisely, we
employ PDE techniques to advance contours in an
elegant way.

A. Evolution Equation

Since each initial CCCΓ0,i in Γ0 changes its
shape as evolution goes on, we parameterize such
a family of CCCs by a time variablet, i.e., thei-
th CCC at timet is denoted byΓi(t). Moreover,
Γ(0) ≡ Γ0.

Using a level set representation, themean curva-
ture κ = κ(x, t) (see [28]) ofΓ(t) at x is given
by

κ(x, t) = ∇ ·
( ∇φ(x, t)

‖∇φ(x, t)‖2

)
.

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

6

8

(a)

(b)

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

6

8

x
1

x 2

(c)

Fig. 1. (a) A mixture of three Gaussian distributions. (b) The PDF
f using Gaussian kernel with window sizeh = 1. (c) The initial
CCC. In (b), peaks and valleys corresponding to the two smaller
large clusters are very vague that the performance of applying bump-
hunting and/or valley seeking algorithm based on the PDF is expected
to be poor. Clusters obtained from our method are shown in Fig. 3. In
(c), we observe that the initial CCCs capture the shape of the dataset
and that the resulting boundaries capture the hot spots of the dataset
very well.
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Roughly speaking, the value ofκ at x indicates
how curve the surface{x : φ(x, t) = 0} is at
x. Moreover, if the surface is convex (respectively
concave) atx, thenκ > 0 (respectivelyκ < 0).

Given the initial CCCsΓ(0) represented by the
zero level set ofφ(x, 0) (which is chosen to be
the signed distance functionψΓ(0)(x)), the time
dependent PDE that we employ for hill climbing
on density functions is given by

∂φ

∂t
=

(
1

1 + ‖∇f‖2

+ ακ

)
‖∇φ‖2 (4)

φ(x, 0) = ψΓ(0)(x).

This equation is solved independently for each clus-
ter region defined according toΓ(t). During evolu-
tion, each contour and hence each cluster region
may split. For example, if an initial CCC encloses
two density peaks, then the CCC will eventually
split into two as it climbs uphill. Evolution is
stopped when no further splitting occurs.

The aim of the factor1/(1+‖∇f‖2) is to perform
hill climbing to look for density peaks. Moreover,
the factor also adjusts the speed of each point on the
CCCs in such a way that the speed is lower if‖∇f‖2

is larger. Thus the CCCs stay in steep regions off
where peak regions are defined better. In the limiting
case wheref has a sharp jump (‖∇f‖2 → ∞),
the CCCs actually stop moving at the jump. We
remark that in traditional steepest descent methods
for solving minimization problems, the speed (step
size) is usually higher if‖∇f‖2 if larger, which is
opposite to what we do. This is because our goal
is to locate steep regions off rather than local
minimums.

The curvatureκ exerts surface tension to smooth
out the CCCs[30]. In contrast, without exerting
surface tension, the CCCs could become wiggly
which may lead to the common problem of over-
fitting of PDFs. Therefore, we employ the termκ
to resolve such a problem. In fact, ifφ is kept
to be a signed distance function for allt, i.e.,
‖∇φ‖2 ≡ 1, then κ = ∆φ so thatφ is smoothed
out by Gaussian filtering. In the variational point
of view, the curvature term exactly corresponds to
the steepest descent of the length (in 2-dimensional
case) and surface area (inn-dimensional case where
n ≥ 3) of the CCCs. More precisely, under the
level set representation, the length/surface area of

the CCCs at timet can be expressed as (see [31]):
∫
|∇H(φ(x, t))|dx

whereH(x) is the Heaviside function defined by

H(x) =

{
1 if x ≥ 0
0 if x < 0.

Then the derivative of the length/surface area with
respect toφ gives the curvature ofφ.

B. Dynamic Adjustment ofα

The scalarα ≥ 0 controls the amount of ten-
sion added to the surface and will be adjusted
dynamically during the course of evolution. At the
beginning of evolution of eachΓi(0), we setα = 0
in order to prevent smoothing out of important
features. After a CCC is split into pieces, tension
is added and is gradually decreased to 0. In this
way, spurious oscillations can be removed without
destroying other useful features. Such a mechanism
is similar to cooling in simulated annealing. In our
implementation, the PDE (4) is solved at discrete
time tk = k∆t. The α for each component contour
Γi is dynamically adjusted as follows:

• Setα = 0 for eachΓi initially.
• At each time pointtk and for each component

Γi, if Γi is split into two contoursΓi1 andΓi2,
then set theα for both Γi1 andΓi2 to beαmax.
Otherwise, replace theα for Γi by γα where
0 < γ < 1 is a fixed constant.

In our experiments, we fixαmax = 1 andγ = 0.99.
Empirically, we found that the evolution is quite
robust to the choice ofγ. For example, one may
set γ to be any number between0.8 and 1.0. The
parameterα should be chosen to be small so that the
dominated motion is hill climbing. The purpose of
the curvature term is to regularize the way that the
contours climb up the hill. Ifα is set to be too large,
then the motion of the contours will have nothing
to do with the PDFf at all.

C. Termination of Evolution

If we do not stop the evolution, then the contours
will reach the peak regions, presumably one contour
for each peak. Eventually, since‖∇f‖ is never
infinity in practice (and hence the speed of the
contours is never0), each contour will shrink into a
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point and disappear in finite time. Ideally, we want
to stop the evolution when each contour encloses
one density peak. In this case, there will be no
further splitting of the contours. However, it is
generally difficult to determine in advance whether
the contours will split at a later time or not.

Our strategy is to let the contours evolve until
they disappear. But we keep in record the contours
right after each splitting. More precisely, ifΓi is
split into two contoursΓi1 and Γi2, then we store
Γi1 and Γi2 and deleteΓi from our record. In this
way, we can retain the earliest contours which will
not be split any further. Lett′ be the earliest time
so that no splitting will occur at a later time and
let t′′ be the time where all contours disappear.
In most situations, we havet′ À t′′ − t′ so that
the computation spent on the time interval[t′, t′′] is
small compared with that on[0, t′].

D. A Summary of the Evolution Equation

In summary, the PDE simply (i) moves the initial
CCCs uphill in order to locate peak regions; (ii)
adjusts the speed according to the slope of the PDF;
(iii) removes small oscillations of the CCCs by
adding tension so that hill climbing is more robust
to the unevenness of the PDF (c.f. Examples 1 and
2 in §VII). In addition to these, the use of LSM
allows the CCCs to change their topology easily.

In Fig. 3(a)–(c), we show the CCCs during the
course of evolution governed by (4). We observe
that the contours are attracted to density peaks.
When a contour is split into several contours, the
pieces are not very smooth near the splitting points.
Since tension is added in such cases, the contours
are straightened quickly.

Numerical implementation of our method is given
in the Appendix.

E. Some Remarks

Remark 1:Our evolution equation (4) resembles
some features of thegeometric active contoursfor
image segmentation [32]:

∂φ(x, t)

∂t
= g(‖∇u(x)‖2) [c + κ(x, t)] ‖∇φ(x, t)‖2.

Herec is a nonnegative constant,u(x) is the given
image andg(‖∇u(x)‖2) is an edge-detector which

is a decreasing function of‖∇u(x)‖2 and is zero at
an edge. If we defineg by

g(‖∇u(x)‖2) =
1

1 + ‖∇u(x)‖2

,

then we have

∂φ(x, t)

∂t

=
1

1 + ‖∇u(x)‖2

[c + κ(x, t)] ‖∇φ(x, t)‖2.

This equation is similar to our PDE (4) except
for the coefficient ofκ. Presumably, contours will
stop at the edges of the objects in the image. The
curvature term is used to regularize the motion so
that it is robust to the noise in the image.

Remark 2: While our approach dynamically
evolves a set of contours to detect density peaks,
another approach calledsupport vector clustering
[33] obtains a set of static surfaces where each
of them encloses one cluster. The idea is to first
use kernel methods to map the data to a high
dimensional feature space. Then, find the sphere
with the smallest radius which encloses most of the
data points in the feature space (a few outliers are
allowed). Finally, apply the inverse mapping to map
the sphere back to the original space. The sphere in
the original space becomes a set of surfaces where
each of them encloses one cluster. In this method,
there is no control over the smoothness of the back
transformed surfaces in the original space. Thus, it
can be clearly seen from their experiments that the
surfaces are very wiggly (for example, see Fig. 3 in
[33]).

VI. CLUSTER INTENSITY FUNCTIONS

In non-parametric modelling, one may obtain
clusters by employing valley seeking on PDFs.
However, as mentioned above, such methods per-
form well only when the clusters are well-separated
and of approximately the same density in which
case peaks and valleys of the PDF are clearly
defined. On the other hand, even though we use the
density peaks identified by our PDE (4) as a starting
point, if we expand the CCCs outward according to
the PDF, we still have to face the problems of the
PDF; we may still get stuck in local optimum due
to its oscillatory nature.

In this section, we further explore cluster inten-
sity functions which are a better representation of
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clusters than that by PDFs. Due to the advantages
of CIFs, we propose to perform valley seeking on
CIFs to construct clusters, rather than on PDFs.
Here, CIFs are constructed based on the final CCCs
obtained by solving the PDE (4).

CIFs capture the essential features of clusters
and inherit advantages of PDFs while information
irrelevant to clustering contained in PDFs is filtered
out. Moreover, peaks and valleys of CIFs stand out
clearly which is not the case for PDFs. The principle
behind is that clustering should not be done solely
based on density. Instead, it is better done based on
both density and distance. For example, it is well-
known that the density-based algorithm DBSCAN
[13] cannot separate clusters that are closed together
even though their densities are different and the
density-based algorithm OPTICS [17] cannot sep-
arate the clusters when they have similar densities.

CIFs, however, are constructed by calculating
signed distancefrom CCCs (which are constructed
based on density). Thus, CIFs combine both density
and distance information about the dataset. This is
a form of regularization to avoid over-specification
of density peaks.

The definition of a CIF is as follows.
Definition 2: Given a set of closed hypersurfaces

Γ (the final CCCs), the CIFϕ with respect toΓ is
defined to be

ϕ(x) = −ψΓ(x)

whereψΓ is the signed distance function in (2).
The value of a CIF atx is simply the distance

betweenx and Γ with its sign being positive if
x lies inside Γ and negative ifx lies outsideΓ.
Roughly speaking, a large positive (respectively
negative) value indicates that the point is deep inside
(respectively outside)Γ while a small absolute value
indicates that the point lies close to the interface
Γ. To illustrate the expressive power of CIFs, an
example based on the “C”-shape clusters is shown
in Fig. 2.

In Fig. 3(d), the CIF constructed from the CCCs
in Fig. 3(c) is shown. The peaks correspond to the
three large clusters can be clearly seen which shows
that our PDE is able to find cluster cores effectively.

Based on the CIF, valley seeking (c.f.§II) can
be easily done in a very robust way. In Fig. 3(e),
we show the valleys of the CIF juxtaposed with the
dataset and the final CCCs.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

(a)

(b)

Fig. 2. (a) Two “C” shape clusters juxtaposed with the zero crossings
of ∆f and the valleys of the CIF. (b) The CIF constructed from the
zero crossings of∆f . In (a), the valleys of the CIF clearly separate
the two clusters. This cannot be done effectively by distance-based
methods such ask-means.

We remark that the use of signed distance as CIFs
has a property that their valleys are nothing but the
equidistant surfaces between the CCCs. Moreover,
cluster core contours play a similar role as cluster
centers in thek-means algorithm [7]. Thus, our
method may be treated as a generalization of thek-
means algorithm in the sense that a “cluster center”
may be of arbitrary shape instead of just a point.

Under LSM framework, valleys and peaks are
easily obtained. The valleys are just the singularities
of the level set function (i.e. CIF) having negative
values. On the other hand, the singularities of the
level set function having positive values are the
peaks or ridges of the CIF (also known as skeleton).

VII. E XPERIMENTS

In addition to the examples shown in Figs. 1–
3, we give more examples to further illustrate the
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Fig. 3. Evolution of cluster core contours (CCC) using the bump hunting PDEs (4). The dataset is the one used in Fig. 1. (a) Initial CCC.
(b) Intermediate CCCs. (c) Final CCCs. (d) CIF constructed from the contours in (c). Peaks corresponding to the three large clusters are
clearly seen. (e) Valleys of the CIF. In (e), the three cluster cores are well-discovered.
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usefulness of the concepts introduced. Comparisons
with valley seeking [12] and DBSCAN [13] al-
gorithms (c.f. §II) are given in Examples 1 and
2. Clustering results of two real datasets are also
presented. For visualization of CIFs which is one
dimension higher than the datasets, two dimensional
datasets are used while the theories presented above
apply to any number of dimensions.

When applying DBSCAN, the parameter
MinPts is fixed at4 as suggested by the authors
in [13].

Example 1:We illustrate how the problem of
over-fitting (or under-fitting) of PDFs is resolved us-
ing our method. In Fig. 4, we compare the clustering
results of valley seeking using the scale parameter
h = 0.6, 0.7 and the DBSCAN algorithm using
Eps = 0.28, 0.29. The best result is observed in Fig.
4(a) but it still contains several small clusters due to
the spurious oscillations of the PDF. For other cases,
a mixture of many small clusters and some over-
sized clusters are present. In contrast, our method
(shown in Fig. 3) resolves these problems by (i)
outlining the shape of the dataset well by keeping
the CCCs smooth; (ii) using curvature motion to
smooth out oscillations due to unevenness of PDFs.

Example 2:A dataset with 4000 uniformly dis-
tributed points lying in two touching circles is con-
sidered. The dataset together with the zero crossings
of ∆f are shown in Fig. 5(a). The result of our
method is in Fig. 5(b). We observe that the final
CCCs adapt to the size of the clusters suitably. The
results of valley seeking on PDFs (h = 0.05, 0.06)
are shown in Fig. 5(c) and (d) where the unevenness
of the PDFs result in either 2 or 4 large clusters. The
results of DBSCAN withEps = 0.010, 0.011 are in
Fig. 5(e) and (f) which contain many small clusters.
In addition, this example also makes it clear that
density functions must be regularized which is done
implicitly by adding surface tension in our method.

Example 3:This example uses a dataset con-
structed from the co-expression patterns of the genes
in yeast during cell cycle [34]. Clusters of the
data are expected to reflect functional modules. The
results are shown in Fig. 6. We observe that the
valleys of the CIF in Fig. 6(c) are right on the low
density regions and thus a reasonable clustering is
obtained. We also notice that the clusters are very
close, if not overlapped, to each other, especially
the two clusters at the bottom.

Example 4:Our next example uses a real dataset

from text documents in three newsgroups. For the
ease of visualization, the dataset is first projected
to a 2-D space using principle component analysis
[35]. The results in Fig. 7 show that the clustering
results agree with the true clustering very well.

VIII. C ONCLUDING REMARKS

In the paper, we introduced level set methods
to identify density peaks and valleys in density
landscape for data clustering. The method relies on
advancing contours to form cluster cores. One key
point is that during contour advancement, smooth-
ness is enforced via LSM. Another point is that
important features of clusters are captured by cluster
intensity functions which serve as a form of regular-
ization. The usual problem of roughness of density
functions is overcome. The method is shown to be
more robust and reliable than traditional methods
that perform bump hunting or valley seeking on
density functions.

Our method can also identify outliers effectively.
After the initial cluster core contours are con-
structed, outliers are clearly revealed and can be
easily identified. In this method, different contours
evolve independently. Thus outliers do not affect
normal cluster formation via contour advancing.
Such a nice property does not hold for clustering
algorithms such as thek-means where several out-
liers could skew the clustering.

Our method for contour advancement given by (4)
is based on the dynamics of interface propagation
in LSM. A more elegant approach is to recast the
cluster core formation as a minimization problem
where the boundary advancement can be derived
from first principles which will be presented in a
later paper.

APPENDIX

NUMERICAL IMPLEMENTATIONS

To solve the PDE (4) numerically, we apply
standard finite difference schemes for level set equa-
tions. We refer the readers to [27], [28], [36] for ex-
cellent overviews of level set methods, evolutionary
equations and numerical implementations.

Consider a grid(i1∆x, i2∆x, . . . , ip∆x) where
i1, i2, . . . , ip are integers,∆x is the spatial step size.
We recall thatp is the dimensionality of the data.
The time variable is discretized tok∆t wherek is
an integer and∆t is the temporal step size. Let
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Fig. 4. Clusters obtained from applying valley seeking and DBSCAN to the dataset in Fig. 1. (a) Valley seeking withh = 0.6. (b) Valley
seeking withh = 0.7. (c) DBSCAN withEps = 0.28. (d) DBSCAN withEps = 0.29. In (a) and (c), many small clusters are present due
to unevenness of the density functions. These results are not as good as the results using our method as shown in Fig. 3

i = (i1, i2, . . . , ip). The sample ofφ(x, t) at the
grid point (i1∆x, i2∆x, . . . , ip∆x) at time k∆t is
denoted byφk

i .
To obtain the initial dataφ(x, 0) in (4), we need to

compute the signed distance from the initial cluster
core contours. This requires solving the Eikonal
equation

‖∇ψ‖2 = 1

with boundary conditionsψ(x) = 0 on Γ(0) which
can be done fast by the Fast Marching Method [27]
or Fast Sweeping Method [37]. Since the imple-
mentation is straightforward and has been detailed
in [27], we omit the details.

Let ej be the vector(0, . . . , 0, 1, 0, . . . , 0) whose
j-th entry is an1 and the other entries are0. Define
the forward difference operator in thej-th spatial
dimensionD+

j by:

D+
j φk

i :=
φk

i+ej
− φk

i

∆x
.

Similarity, define the backward difference operator
in the j-th spatial dimensionD−

j by:

D−
j φk

i :=
φk

i − φk
i−ej

∆x
.

A first order accurate upwind scheme for the level
set equation

∂φ(x, t)

∂t
= β(x, t)‖∇φ(x, t)‖2

is given by

φk+1
i − φk

i

∆t
= −[max(−βk

i , 0)∇++min(−βk
i , 0)∇−]

where

∇+ = [max(D−
1 , 0) + min(D+

1 , 0) + . . . +

max(D−
p , 0) + min(D+

p , 0)]1/2

∇− = [max(D+
1 , 0) + min(D−

1 , 0) + . . . +

max(D+
p , 0) + min(D−

p , 0)]1/2,
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Fig. 5. Comparisons of our method with valley seeking and DBSCAN. (a) Dataset with the zero crossing of∆f superimposed. (b) Final
CCCs (the closed curves in red and blue) and the valleys of the CIF (the line in black). (c) Valley seeking withh = 0.05. (d) Valley seeking
with h = 0.06. (e) DBSCAN withEps = 0.010. (f) DBSCAN with Eps = 0.011. The CCCs are able to capture the cluster shape while
valley seeking and DBSCAN seem to suffer from over-fitting and result in many small spurious clusters.
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Fig. 6. (a) DNA gene expression dataset. (b) Zero crossings of∆f . (c) The final CCCs and the valleys of the CIF. (d) The CIF. The cluster
cores are well-retrived and the valleys successfully separate the data into clusters of relatively high density.

see [36, p.80] and also [27, p.65]. In our PDE (4),
the speed is given by

β(x, t) =
1

1 + ‖∇f‖2

+ ακ

=
1

1 + ‖∇f‖2

+ α∇ ·
( ∇φ

‖∇φ‖2

)

which is approximated by central difference to ob-
tain βk

i . For higher order accurate schemes, see [27,
pp.66–67].

In level set methods, we are often only interested
in the evolving contours, which are located at the
zero-level set ofφ. Thus, there is no need to solve
the PDE on the whole grid. We apply the Narrow
Band Level Set Method [27] which updates the
grid points near the moving contours. In this way,
computational costs are greatly reduced.

Sparse grids techniques [38], [39] may be used to
further reduce the computational complexity. In the
original full grid, suppose each dimension hasn grid

points, then the number of grid points (in space) is
np. Using sparse grids, which are optimally chosen
subsets of grid points, we can reduce the number of
grid points toO(n(log n)p−1) with a fairly small loss
in accuracy. Indeed, sparse grids techniques have
already been successfully applied to a number of
data mining problems [40]–[42]. We have yet to
explore this direction.
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