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Abstract

We utilize radial basis functions to construct numerical schemes for
Hamilton-Jacobi (HJ) equations on unstructured data sets in arbitrary
dimensions. The computational setup is a meshless discretization of the
physical domain. We derive monotone schemes on unstructured data sets
to compute the viscosity solutions. The Essentially NonOscillatory (ENO)
mechanism is combined with radial basis function reconstruction to obtain
high order schemes in the presence of gradient discontinuities. Numeri-
cal examples of time dependent HJ equations in 2, 3 and 4 dimensions
illustrate the accuracy of the new methods.

1 Introduction

In the numerical solution of time dependent conservation laws such as

ut + ∇ · f(u) = 0, (1)

a method for solving the PDE is by dividing the spatial domain into grid cells
and solving a Riemann problem for each cell forward in time. For Hamilton-
Jacobi equations of the form

ϕt + H(∇ϕ) = 0, (2)

we can think of our problem as being a conservation law such as (1) in the
variable u = ϕx in one spatial dimension. This becomes precise in one dimension
as we can see by taking the x derivative of (2). In this way there is a direct link
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between conservation laws and HJ equations, with the solution to (1) being a
derivative of the solution to (2). Although this analogy fails in multiple spatial
dimensions it guides us towards the numerical methods of conservation laws
when finding solutions to (2).

On uniform grids in any dimension [22] and [21] proposed extending the
essentially nonoscillatory (ENO) schemes of [26], [16] for conservation laws to
HJ equations by reconstructing locally smooth polynomial interpolants of ϕ in
each individual spatial dimension, xi, and then taking the derivative, ϕxi

of
that interpolant for use in H(∇ϕ). These methods have shown good results
on uniform grids, avoiding the oscillations typically associated with high order
methods in the presence of discontinuities.

On nonuniform grids in higher dimensions there has been work done on
extending the ENO type of smooth polynomial interpolant reconstruction, see
[1], [12], [31]. These methods have shown some success, but also have some
drawbacks. For example, when using divided differences as approximations
to the higher derivatives needed to obtain the Newton polynomial in 1D, we
see that each time the polynomial is raised by one degree, we need one extra
evaluation point. In 2D on an arbitrary triangulated grid there are no Newton
divided differences to aid us in reconstruction. If we would like to use polynomial

reconstruction we now have the added burden of needing at least (n+1)(n+2)
2

nodes to construct a degree n polynomial. In K dimensions we would need at
least

(

n+K
K

)

nodes, and even with this many nodes there may still be problems
resulting from the ill conditioning of the linear system for the coefficients if
the nodes are not well spaced [31], [17],[1]. Attempts have been made to rectify
these problems, but multidimensional polynomial reconstruction is still far from
being a ”black box” procedure.

In this work we propose a new evolution procedure based on reconstruction
using radial basis functions. Because of the discontinuites present in the gradient
of the solutions of HJ equations we will introduce monotone evolution schemes
and ENO interpolations. The dimension independent framework allows the
methods presented to be generalized to higher dimensions.

We will begin in section 2 by introducing radial basis function (RBF) inter-
polation. We then move in section 3 to a brief description of how we handle
neighbor access in a meshless computational framework. Next we cover the
construction of monotone schemes in section 4. We follow this in section 5 by
introducing a Roe with entropy fix scheme which minimizes artificial diffusion.
In section 6 we describe spatial discretization to achieve higher order accuracy,
followed by temporal discretization in section 7. Finally, we give a summary of
the implementation procedure in section 8.
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2 Function reconstruction using RBFs

Instead of using polynomial reconstruction for a function Φ, which has been
used successfully in 1-D, we will use a type of multidimensional spline [13],[28]

Φ(x) :=
M
∑

j=1

γjφ(x − yj) +

Q
∑

j=1

βjpj(x) (3)

where φ is a radial basis function (RBF), M is the number of cells in the
reconstruction stencil, and the second sum is over polynomials {pj} which form
a basis of the kernel of the seminorm [·, ·] of the native space in which φ lives
[18]. In general a spline, Φ, in a semi-Hilbert space, V , interpolating data, {ui},
satisfies |Φ|V = minu∈A |u|V where A = {v ∈ V |〈λi, v〉 = ui}. So in this norm
we are finding an optimal recovery function. The functions φ are assumed to
have radial symmetry. Φ is forced to have the property that on a given stencil
{xi}i=1:M ,

Φ(xi) = u(xi), and
M
∑

j=1

γjps(xj) = 0, s = 1, ...Q. (4)

So to find {γj}j=1:M we need to solve the linear system

A =

[

V N
N t 0(Q,Q)

] [

γ
β

]

=

[

u
0(Q,1)

]

,where

vi,j = φ(xi − xj), ni,j = pj(xi). (5)

For HJ equations of the form (2) we need to calculate ∇Φ(x), so we assume
the RBF φ(x) is well behaved and differentiate (3).

The RBFs φ can be compactly or globally supported, and because we must
solve (5) it is best if they are positive definite in some sense, implying unique
solvability of (5)[20]. In [20] it was shown that there is a direct relationship
between φ being positive definite and the function t → φ(

√
t) being completely

monotone, i.e. f(t) := φ(
√

t) is smooth and satisfies

(−1)mf (m)(t) ≥ 0,m ∈ N0, t > 0.

If a function is completely monotone, then it is positive definite, thus it does
not need to be augmented by any polynomials in (3). However, if we only
have that (−1)kf (k)(t) is completely monotone for some k > 0 then φ is said
to be conditionally positive definite of order k, and requires augmentation by
polynomials of degree k−1. Using these types of tools analysts have proven the
conditional positivity of many RBFs over the years, and so there are numerous
φ from which to choose. Table 1 shows some useful RBFs and their positive
definite order, k.

Wu has also constructed a family of positive definite, compactly supported
RBFs [30], [28]. All of these functions can be scaled by taking r → r

θ with θ
problem dependent. Because of its radial construction, if a basis function φ can
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RBF φ(r) k
polynomials rβ , β > 0, β /∈ 2N k > β/2
thin plate splines r2β log r, β ∈ N k > β

Gaussians e−αr2

, α > 0 k ≥ 0

multiquadrics (c2 + r2)β/2, β > 0, β /∈ 2N k > β/2

inverse multiquadrics (c2 + r2)β/2, β < 0 k ≥ 0

Table 1: Sample radial basis functions.

be used in n dimensions then it can be used just as well in any dimension less
than n. This allows for algorithms and theory to be developed and tested in
low dimensions with easy extension to problems in higher dimensions.

For our tests so far we have used the positive definite Gaussian and inverse
multiquadric RBFs of the form

e−αr2

and (r2 + α)−1/2,

respectively. These do not require augmentation by polynomials when solving
(3).

In order to achieve better reconstructions we will attempt to optimize the
parameter (e.g. α in e−αr2

) on each stencil. It has been shown that the accuracy
of a RBF interpolant is inversely related to the condition number of the linear
system in (5)[24]. Our optimization consists of choosing a maximum acceptable
condition number, κmax, and performing an iterative procedure to determine
the value of α that yields 0 < κmax−κα < ε for some tolerance ε. This need only
be done prior to evolution and allows for optimization on different parts of the
domain where mesh spacing may vary greatly. In the case of ENO interpolations
it is not feasible to test all possible stencils and store the optimal α on each,
so we only store a single α that will be acceptable for all the local stencils near
a given data point. As long as the mesh is well behaved this α should work
adequately on local stencils.

It should be noted that the procedure for choosing an optimal RBF pa-
rameter is an area of current research. There are other ways to optimize the
parameter of the radial basis function [8], [23], [13], and any of these can be
incorporated into our framework.

Example of Location Dependent RBF Parameter Optimization Let
us take an example to show both the accuracy and method of parameter opti-
mization. To keep things simple we will work on a 2 point stencil, {a, b} in 1D.
Obviously the best interpolation of our function, f(x), that we can hope for is
linear. In this case the best approximation to f ′(x) is

f(b) − f(a)

b − a
,

or 2 point finite differencing. Without loss of generality let a = 0 and f(a) = 0.
Using a general RBF interpolation with basis function φ(r) we would like to
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find a condition on its parameter α such that for our RBF approximation to
f ′(a), called app, satisfies

app = (φx(0) φx(−b))

(

φ(0) −φ(−b)
−φ(−b) φ(0)

)

/(1 − φ(−b)2)

(

0
f(b)

)

=
f(b)

b
,

using
(

φ(0) −φ(−b)
−φ(−b) φ(0)

)

/(1 − φ(−b)2) = A−1 from (5),

and differentiating (3). By multiplying we see that if we assume φx(0) = 0,
which it should for all smooth RBF basis functions, and scale φ so that φ(0) = 1,
then we have

app =
−y′y

1 − y2
f(b), (6)

where y′ = φx(−b) and y = φ(−b). Solving the ODE

−y′y

1 − y2
=

1

b
(7)

will give solutions y(b) = φ(b) that yield an equivalent RBF interpolation to 2

point finite differencing. If we let φ(b) = e−αb2 and let α → 0, then we have a
solution to (7). If we would like φ(r) = αr2, then we need

α =

√

1

3b4
.

Other basis functions will have different restrictions on α.
Note that for the Gaussian α does not depend on b, which makes its optimiza-

tion straightforward. In practice if we wanted to optimize α when φ = e−αr2

all
we would need to do is let α → 0 until we find that |κmax − κα| < ε. Even for
higher order approximations (with more nodes in the stencil) it can be shown

that letting α → 0 with φ = e−αr2

approaches the optimal solution.
For other φ whose optimal parameter may depend on the data locations,

(e.g. b above) we run a root finding method on the equation κmax − κα = 0
and iterate in α until |κmax − κα| < ε. For many basis functions there exist a
priori local error estimates in terms of α which clearly indicate limiting values
of α for which to strive during optimization [24], [25].

We also note that a given Φ(x) can be represented in a Lagrange type fashion

Φ(x) :=

M
∑

j=1

Ψj(x)uj . (8)

We can find the coefficient Ψi(x0) in (8) by setting uj = δi,j for j = 1, ...M and
solving

Φ(x0) =
M
∑

j=1

Ψj(x0)uj = Ψi(x0)ui. (9)
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3 Data Access in the Meshless Computational

Domain

In this section we present the way in which we give some structure to our
unstructured data set, allowing access of nodes in a reasonable amount of time.
If our data set, X, were to be stored as simply an unordered list of points, then
each time we needed to access a neighbor of a given node, xi, we would need to
search through the entire list giving a O(N) algorithm versus O(1) on a uniform
grid. Although the storage required for this method is minimal, the access time
is much too slow for practical use.

Instead, we use a binning method. This method divides the entire domain,
Ω ⊃ X, into a coarse, structured grid C. Then for each coarse gridcell cj ∈ C we
create a list of all the nodes of X that lie inside cj . When a neighbor of xi ∈ cj

needs to be accessed we only need to search the lists of the coarse neighbors of
cj . So the total neighbor access time is O(1) to access the coarse neighbor list
times O(listj) to search the list and find the neighbor. Of course this procedure
can be iterated over multiple coarse levels so that the list sizes are smaller, and
other optimizations can be done such as noting which coarse cells are nonempty.
Similar ideas have been explored in the context of local level set methods [29].

For the evolution procedure we can find all appropriate stencils prior to
time evolution if we would like, and then the problem of neighbor access is only
relevant in the preprocessing step and does not slow the evolution down. This
idea was used in [31].

4 Monotone Fluxes

4.1 Introduction to Monotone Schemes

In solving equations of the form (2) an important class of numerical methods
are monotone schemes [10]. When they are also consistent these schemes have
been shown to converge to the physically correct viscosity solution of (2).

For uniform data in 1D there are numerous schemes available [22], and these
schemes can be generalized for uniform data in higher dimensions. In 2D on
triangulated data there has been progress as well [2],[19],[9]. However, in higher
dimensions there has not been as much progress for scattered data. One draw-
back is that as the dimension grows, the triangulation becomes very complex
and storage consuming (O(Mdd/2e) simplices for M points in d dimensions),
and the number of neighbors of a given node grows very large.

In this section we will present some new monotone schemes for scattered
data in an arbitrary dimension that is not required to be triangulated. We will
also discuss some details on implementation.

6



4.2 Derivation of Schemes

Given a Hamilton-Jacobi equation of the form (2), i.e.

ϕt + H(∇ϕ) = 0 (10)

to be solved on a point set, we would like to derive a first order in time monotone
scheme. We will use 2 dimensions for simplicity here, and let i and j be 2d
multi-indices. The scheme will be of the form

ϕn+1
i = ϕn

i − dtĤi(ϕ
n) (11)

where ϕn
i is the numerical approximation to the solution of (2) at (t = tn, x =

xi1 , y = yi2), and Ĥi is the numerical Hamiltonian there. The requirement for
a method to be monotone [10] is that

un
i ≥ vn

i ∀ i, ⇒ un+1
i ≥ vn+1

i ∀ i.

For our scheme of the form (11) this means that if we fix an index i0, then at
xi0

∂Ĥi0

∂ϕj
≤ 0 and 0 ≤ dt ≤

(

∂Ĥi0

∂ϕi0

)−1

, ∀ j 6= i0. (12)

Thus our goal will be to find a numerical Hamiltonian satisfying (12).
Guided by the fact that some of the standard monotone schemes on uni-

form grids, such as Lax-Friedrichs, are approximations to solving the vanishing
viscosity equation

ut + H(∇u) = ε∆u as ε → 0,

we will construct our numerical Hamiltonian as an approximation of

H(∇u) − ε∆u.

The procedure will be to reconstruct u near a given point, xi, using an inter-
polation method and then differentiate the interpolant to get ∇u and ∆u. The
interpolation method we will use is radial basis function reconstruction.

Monotonicity If the basic time evolution procedure at node i can be written
as

un+1
i = un

i − dt
{

H(∇un) − εi∆un
}

= un
i − dtGi(uj1, . . . uNsten), (13)

where Nsten is the number of nodes used in the stencil approximating ∇un and
∆un, then we will need to find an εi that satisfies all the inequalities in (12).
Thus for each node i we should be able to calculate a minimal diffusion constant
εi that guarantees monotonicity there. If we decide to evolve our solution using
(13) with a unique εi at each node i then the method will be called a Local
Lax-Friedrichs scheme. If we decide to take εmax = maxi εi and evolve (13)
using εi = εmax ∀ i, then the scheme will be called simply Lax-Friedrichs.
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To find the appropriate size of εi we begin by writing our reconstructed
partial derivatives in the Lagrange form (8). If we know that

∂u

∂xk
(xi) ≈

Nsten
∑

j=1

ck,juj , k = 1, 2, and ∆u(xi) ≈
Nsten
∑

j=1

djuj

then
∂Gi

∂uj
= ∇H(Z) · (c1,j , . . . cNdim,j) − ε1dj

where Zk ∈
[

min(∇u)k,max(∇u)k

]

.

Note that in the construction of our stencil if we do not have that

dj > 0 ∀j 6= i, and di < 0, (14)

then we have a bad stencil which cannot yield a monotone scheme. In practice
we have many more restrictions than (14), because this restriction can allow
arbitrarily large diffusion terms which smear our solution. So we make sure
to enforce restrictions on the relative sizes of cj and dj to keep diffusion to a
minimum. Details of how this is done will be presented later.

We will now construct an ε1 that satisfies the first Nsten − 1 inequalities in
(12), and an ε2 that satisfies the dt inequality, then finally set εi = max(ε1, ε2).
Thus we need

( Ndim
∑

k=1

max
x∈Ω

|Hk(x)||ck,j |
)

− ε1dj ≤ 0, j 6= i.

The ε1 for the scheme at xi satisfies

max
j 6=i

[∑Ndim
k=1 maxx |Hk(x)||ck,j |

dj

]

≤ ε1, (15)

so to minimize the viscosity we choose ε1 to satisfy the equality in (15).
Next we find ε2 that satisfies

0 ≤ dt ≤
(

∂Gi

∂ui

)−1

(16)

where
∂Gi

∂ui
= ∇H(Z) · (c1,i, . . . cNdim,i) − ε2di.

So we need that ε2 satisfies
[∑Ndim

k=1 maxx |Hk(x)||ck,i|
−di

]

≤ ε2, (17)

as di < 0. As this must hold for all x we choose ε2 to satisfy the equality in
(17), and finally choose εi = max(ε1, ε2).

The CFL condition is then given by

dt ≤ 1
∑Ndim

k=1 maxx |Hk(x)||ck,i| − εidi

.
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Consistency and Convergence The consistency of schemes using RBF in-
terpolants has not been fully explored as of yet. There is a large amount of
research demonstrating the error bounds of RBF interpolants and their con-
vergence properties, but the strict definition of consistency where we require
that

Ĥ(p) = H(p) if u(x) ≡ p · x + c0

has not been proven for general basis functions φ. However, it is only machine
precision that limits us from getting an interpolant, Φ such that

|∇Φ − p| < δ1 and |Φxjxj
− 0| < δ2 for j = 1 : Ndim, (18)

for arbitrarily small δ1, δ2, given an underlying linear function u(x) ≡ p · x +
c0. Therefore our goal of finding a consistent scheme using RBFs may not be
attainable. In order to obtain a convergence estimate we could construct a
doubling-variable function and proceed along the lines of the proof in [10], [9],
[3]. However, we focus on the numerical implementation here.

4.3 Implementation Details of Schemes

We can see that there are some inequalities which must be satisfied by our RBF
reconstruction at a point xi before our scheme is deemed monotone. Firstly,
we must satisfy (14). Once this is done it is straightforward to calculate the
diffusion terms εi and CFL condition.

Thus we explain how we find a stencil at xi that satisfies (14). Actually we
will tighten the restrictions on (14) significantly, as it allows for diffusion terms
that are too large. What we require is that (14) holds, but also that εi < εmax

for a specified εmax which is usually dependent on the spacing of the local mesh.
Generally what this requires is that any Lagrange coefficient, lj , of ϕj in the
approximation to ϕxixi

will have magnitude ≈ cjdx, as it would if we were using
finite difference approximations.

Once we have decided on the bounds for ε and d we can begin searching for
acceptable stencils at a given node, xi. The problem that usually arises is that
for a given candidate stencil, SC , one or more of the coefficients dj of the ∆ϕ
approximation are too small in magnitude or the wrong sign because xj is either
collinear or almost collinear with another node in SC . Thus we will try to make
our stencil as isotropic as possible. To do this we will decide on a stencil size,
N + 1(the stencil will always include the node xi), define N equispaced rays,
xi +vkt, t > 0 emanating from xi and find the neighbor xj of xi that maximizes

xj − xi

‖xj − xi‖
· vk

‖vk‖
. (19)

For example in 2D the vectors vk are chosen as

(cos, sin)(θ0 + 2πk/N) for k = 0 : N − 1.
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We search over a few different orientations (θ0 in 2D) of the axes for a fixed
stencil size, and stop when we find an acceptable stencil that satisfies our con-
ditions on ε and d. As noted in section 2 we optimize the RBF interpolation
on each candidate stencil by trying to find the best function parameter for the
basis function. If none of the candidates satisfy our bounds for ε and d then we
change the stencil size and repeat the search until we find an acceptable stencil.
If we cannot find an acceptable stencil then our mesh is very bad and we must
use the best of the candidate stencils we have examined. However, this has not
yet occurred in our computations.

The only ambiguous point in the description above is the definition of a
neighbor of xi. Unless a triangulation of the data is constructed we do not have
a rigorous definition of what a neighbor is. One method is to search through the
coarse cells near xi for the M closest points, where M is arbitrary but on the
order of the stencil size. The neighbors of xi are then said to be these M closest
points. However, this may not work well for stencils with large discrepancies in
distances between nodes near xi. Therefore it is possible to adjust the stencil
choosing algorithm so that given an axis vk as described above we maximize a
function f(xj − xi, vk) instead of (19), where f could penalize ‖xj − xi‖ and
perhaps place increased weight on the value obtained in (19), which we can call
v, such as taking f ≈ v2 as ‖v‖ ≤ 1. This concept of defining and finding a
neighbor of a node on a meshless grid without creating a triangulation warrants
further research.

Another option is to create a local triangulation of the M closest points to
xi and use this to define neighbors. This method will take more time, but will in
general give a smaller number of neighbors and more compact candidate stencils.
As long as this local triangulation is not stored permanently this method is
acceptable. It is when triangulations of large data sets in high dimensions must
be stored that we exhaust memory restrictions.

Again it should be noted that this search for acceptable stencils need only
be done prior to evolution if we are willing to store the nodes of the stencil at
xi.

5 A Roe-Fix Scheme

Given that we are able to construct a prototypical Lax-Friedrichs scheme, we are
tempted to push further and find a monotone scheme with even less diffusion.
For uniform grids in 1d and even triangulated grids in higher dimensions there
are upwind schemes which can be proved to be monotone [5]. These are based
specifically on linear reconstructions (standard 2 point upwinding in 1d). When
upwinding is used at all non-sonic points, combined with a vanishing viscosity
approximation such as LF or LLF at sonic points we have a method known as
Roe-Fix or RF. This would be readily implementable were we to have a definition
of upwinding that applies to our RBF reconstructions, but unfortunately we do
not. However, we can construct a RF method using RBF interpolation and
make an argument as to its convergence properties.
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If we are advancing the solution at a node xi the first thing we must deter-
mine is whether or not we are at a sonic point. Assume we have constructed a
suitable stencil Si at xi, adhering to the constraints of Section 4.2. At each node
xj ∈ Si we calculate ∇H(∇ϕ(xj)) using the stencil Sj . If ∂H

∂ϕxk

≡ Hk changes

sign for any k = 1, . . . Ndim when searching over j = 1, . . . |Si| then we are at a
sonic point and we advance the solution using either LF or LLF schemes. If Hk

does not change sign then we are not at a sonic point, so we would like to use
upwinding. Since we do not have a triangulation of the nodes surrounding xi we
cannot choose a triangle, Tc, from which the characteristics are flowing and then
use the nodes of Tc to linearly reconstruct the function yielding a monotone,
upwind scheme. However, as long as the nodes of Si surround xi sufficiently
we have encompassed the domain of dependence for ϕn+1

i , assuming the CFL
condition is small enough. Here, surrounding xi means that the convex hull
of Si contains xi. Thus, if ϕ is smooth near xi then our RBF reconstruction
can be interpreted as a higher order reconstruction extended from the linear
interpolant ϕL on Tc. This reconstruction for ϕ should then only differ from
ϕL by terms of order O(dxp) where p ≥ 2. Using this interpolant for ϕ and
dropping the artificial diffusion terms of the LF and LLF schemes should then
give us a scheme that differs from a monotone scheme by O(dtdx), similar to
the argument given in [22] for high order ENO schemes. Because of the lack of
the artificial diffusion term we should see better resolution.

Note that we require ϕ to be smooth near xi for this argument to be valid.
This is usually the case when we are far away from sonic points, but will not be
the case when we are at a moving kink, which is a moving discontinuity in 1st

derivatives. In that case the RBF interpolant may extend over the discontinuity
and differ from ϕL significantly. So our scheme may differ from a monotone
scheme by more than O(dtdx) there. If a monotone method is desired at points
of this type then we can easily insert a check into our algorithm such that when
the jump in derivatives of ϕ near xi is too large it will trigger the use of LF or
LLF schemes even if the signs of Hk indicate upwinding.

6 High Order ENO Reconstruction

While the ability of monotone schemes to correctly converge to the viscosity
solution of Hamilton-Jacobi equations makes them desirable, they do have an
undesirable property: they are at most first order accurate [15],[11],[9]. In one
dimension on uniform grids this drawback is overcome by taking ENO polyno-
mial function reconstructions that avoid using interpolants which cross discon-
tinuities, causing spurious oscillations. The familiarity of polynomials and the
ability to simply construct their derivatives using divided differences made the
ENO methods for conservation laws and Hamilton-Jacobi equations very pop-
ular [16],[22],[26]. In multiple dimension on nonuniform grids there has been
some progress using polynomials [4],[31], and RBFs [18]. Here we present an
incremental stencil selection method which exploits the LU factorization of the
RBF coefficent matrix. We also introduce a self-similar smoothness indicator
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that allows the ENO stencil to be chosen.
Our ENO reconstruction will involve extending an existing reconstruction in

a smooth fashion. Assuming we have a reconstruction ΦM (x) on an existing M
point stencil SM = ∪M

i=1{Pi}, where Pi ∈ X, that has been constructed starting
with Sr 3 xk = P1 for r ≤ M , we want to extend it to M + 1 nodes in an ENO
fashion.

There are two pieces of information we need which are somewhat arbitrary.
One is the choice of nodes from which to choose PM+1, and the other is the
measure of smoothness of our reconstructed function, ΦM+1(x). A suggestion

for choosing the candidates {P candj

M+1 } for PM+1 is that we choose the N (again

arbitrary, but finite) nodes P
candj

M+1 ∈ X that make the center of gravity of the

stencil SM ∪ P
candj

M+1 closest to xk, or closest to the center of gravity of SM .
The number of choices we have for candidates depends on the surface area of
the existing stencil, SM , so in higher dimensions the potential cost incurred by

maximizing card({P candj

M+1 }) becomes prohibitive. There are many strategies to
extend stencils [31], [4], [14], [27], however, these are usually based on polynomial
reconstruction and take steps so as to ensure the interpolation coefficient matrix
has a good condition number. For RBF reconstruction the condition number
depends on φ and the stencil, and in practice we have not found any problems
with it. Since φ is radially symmetric there should not be any directional bias
which causes polynomials to have badly conditioned coefficient matrices, see [1]
for details about this problem.

For the measure of smoothness we use the self-similar indicator

β =
∑

2≤|α|≤s

∫

Pk

|Pk|
2|α|−N

N (DαΦ(x))2 dx, (20)

where |Pk|
2|α|−N

N makes β invariant under grid scaling in N dimensions when |Pk|
is the area of a grid cell containing Pk, α is a multi-index, and s is proportional
to the size of the stencil [31]. For polynomial interpolants, we can take s = the
order of the interpolant, but with RBFs Φ can be a weighted average of C∞

functions. Therefore we take s proportional to stencil size because we cannot
expect that Dαu is influencing DαΦ for derivatives of order ≥ |α| if we are using
far fewer than |α| points.

Once we have made the above decisions we can proceed systematically to
obtain the M + 1st stencil. When constructing the M th stencil it was necessary
to solve the system of equations (4), that we will write Aγ = ū which is usually
small enough to be done by Gaussian Elimination/LU factorization. Noting
that A is symmetric we have an M×M LLt factorization (here we assume that
Q = 0 in (3)). For the M + 1st cell we must solve a new Aγ = ū that can be
written as

A =

[

LLt α
αt d

]

=

[

ū
ūM+1

]

,

where α and d are found as in (5). To obtain LM+1 we compute the Schur

12



complement S = d − αt(LLt)−1α of LLt and get

LM+1 =

[

L 0(M,1)

αt(Lt)−1
√

S

]

.

Having the new LM+1 we can find the new set of {γj} and compute β for
each candidate stencil. The stencil with the smallest β is chosen as the M + 1st

stencil.
We note that in practice all L’s can be found and stored before the time

evolution begins as long as data point set doesn’t change during the calculation.
Thus, the above Schur complement procedure does not save as much time as
when it is applied to an adaptive mesh, where the linear system inversions
must be done at each timestep. However, for large fixed data sets in higher
dimensions the storage of the L matrices can become too large to be practical,
and any acceleration to the matrix inversion procedure is helpful.

7 Time Derivatives

We use total variation diminishing (TVD) Runge-Kutta (RK) methods for time
advancement [26]. The procedure is as follows: Given a node xi and function
values at time tn we define the operator

Li = −dtĤ(ϕn),

where Ĥ is the numerical Hamiltonian. We then advance the solution using a
Runge-Kutta procedure of the form

ϕ
(k)
i =

k−1
∑

m=0

[αkmϕ
(m)
i + βkmL

(m)
i ], k = 1, . . . r,

where ϕ
(0)
i = ϕn

i , ϕ(r) = ϕn+1
i . If the forward Euler version (i.e. r = 1, α1,0 =

1, β1,0 = 1) is TVD under the CFL condition

dt/dx ≤ λ0,

then the RK method can be proven to be TVD under the CFL condition

dt/dx ≤ Crλ0.

Coefficients for the popular 2nd and 3rd order TVD Runge Kutta methods are
shown in Table 2.

Together the ENO and TVD-RK methods give highly accurate solutions and
can be quickly adapted to almost any Hamiltonian H.

13



Order αkl βkl Cr

2 1 1 1
1/2 1/2 0 1/2

3 1 1 1
3/4 1/4 0 1/4
1/3 0 2/3 0 0 2/3

Table 2: TVD RK coefficients.

8 Outline of Evolution Procedure

In this section we will outline the procedure for solving (2) given initial values
ϕ0(xj) on a dataset X = {xj} of points contained in the computational domain,
Ω.

1. Construct a coarse mesh C over Ω and for each coarse gridcell ci ∈ C
create a list of all the nodes of X that lie within in ci. If C is uniform
then this should take O(|X|) time. An iterated coarse mesh can also be
constructed or any other mechanism which allows the user to determine
the M(� |X|) closest points to a given node in less than O(|X|) time.

2. For each xi ∈ X
do

• Construct a new candidate stencil Sc, using the guidelines of section
4.3.

• Optimize RBF parameter α on Sc.

• Determine if dj ’s and ε are acceptable for Sc.

while( dj ’s and ε are unacceptable).

Set the chosen stencil Si = Sc.
It is actually a matter of memory versus time as to what the user stores
here. If memory is abundant and its access is fast then for each stencil
all the Lagrange coefficients (cj ’s, dj ’s) and εi can be stored, making the
evolution procedure faster. If memory is scarce then just the nodes of the
stencil and the optimal RBF parameters α should be stored.

3. For tn = 0 : T ,
do

• Compute ∇ϕ at all nodes using stencil from step 2.

• If higher order accuracy of ∇ϕ is desired then use an ENO recon-
struction for ϕ as described in section 6.

• For each node, if using RF scheme determine if sonic fix is necessary
using ∇H. If so, or if the scheme is LF or LLF, then compute ∆ϕ
and diffusion weight ε.
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• For each node, advance solution one step in time using
ϕn+1 = αϕn − βdtĤ(ϕn).
If RK method is being used then go to beginning of this do loop as
many times as appropriate.

end do loop.

If adaptive grid is being used repeat stencil finding procedure in step
2, otherwise go to the beginning of this for loop.

9 Numerical Examples

Unless otherwise noted the examples are calculated on a domain of [−1, 1]d in
d dimensions.

We begin with a level set evolution of the form

ϕt − |∇ϕ| = 0,

calculated on a grid of points that lie on concentric circles as in figure 1. The
nodes used lie at the vertices of the triangulation shown. Note that this triangu-
lation is not necessary for our calculation and is only used in the visualization.
As the characteristics flow outward we use “upwind” reconstruction stencils at
the boundary consisting of nodes within the domain. Figure 2 shows how our
method captures the vanishing viscosity solution.

The accuracy and convergence order of this method are shown in table 3.
The error is measured using the data points that lie on the concentric circle
with radius = 0.4. Each reconstruction stencil used contains 6 nodes.

≈ dx L1 error L1 rate L∞ error L∞ rate
0.1 0.013637 − 0.020314 −
0.05 0.002740 2.315 0.006998 1.537
0.025 0.000425 2.686 0.002554 1.454
0.0125 0.000089 2.243 0.000971 1.395

Table 3: 2D convergence order analysis.

Figure 3 shows the solution of

ut + sin(ux + uy) = 0,

calculated on a uniform grid, but using our meshless method. Periodic BCs are
imposed in both directions. For this example the ENO reconstruction is used.
The initial stencil at xi,j is a 5 point centered stencil consisting of points

xi,j , xi±1,j , xi,j±1

and is extended in an ENO fashion by adding one of the diagonal points xi±1,j±1.
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Figure 1: 2d concentric grid.

In figure 4 the solution to Burgers’ equation

ut + 0.5(ux + uy + 1)2 = 0,

with periodic BCs, is shown.
In figures 6 and 7 we show level set solutions of

ϕt − |∇ϕ| = 0,

for initial conditions of a sphere and torus. Again characteristics flow outward
and boundary reconstructions use interior point stencils. The computational
domain consists of nodes that are approximately equispaced, lying on concentric
spheres as in figure 5.

Figures 8, 9, and 10 show evolution sequences of the level set of a 4 dimen-
sional hypertorus initialized as

ϕ(x, y, z, w) = r3 −
√

w2 + [

√

z2 + [
√

y2 + x2 − r1]2 − r2]2,

where r1 = 0.2, r2 = 0.4, r3 = 0.8, subject to the PDE

ϕt − |∇ϕ| = 0.

In each figure we take a 3d slice of the data keeping the coordinate xi fixed for
the indicated ith dimension, and then plot the level set {x|ϕ(x) = 0} as a surface
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Figure 2: H(p) = −|p|.
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Figure 3: H(ux, uy) = sin(ux + uy).
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Figure 6: H(p) = −|p|, multiple time views.
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Figure 7: H(p) = −|p|.
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Figure 8: Dimension 1 fixed slice.

in 3d. In the future we will implement a local level set framework allowing for
high dimensional computations of this type to be performed without storing
gridpoints that are far away from the interface. The storage for this method
would then be on the order of the size of the interface (an interface that is of
codimension ≥ 1 with respect to the dimension of the computational domain).
The speed would then be dependent on whether the user decided to precalculate
the Lagrange coefficents of ∇ϕ or decided to do this at each timestep. In the first
case the speed would be comparable to existing level set methods on uniform
grids, with a penalty for data access speed only. In the second case the speed
would be penalized by the need to invert the coefficent matrix at each data node
for each timestep. For small stenciled reconstructions this is not too slow, and
is unavoidable if the unstructured mesh is adaptive in time, no matter what
reconstruction procedure is used.
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Figure 9: Dimension 3 fixed slice.
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Figure 10: Dimension 4 fixed slice.
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10 Conclusion

The numerical solution of Hamilton-Jacobi equations on unstructured grids is
becoming increasingly important. As higher dimensional problems are encoun-
tered we would like to isolate the important features of the solution and resolve
them locally instead of globally. Examples such as local level set computations
are already pushing the computational boundaries on coarse grids in 5d [7].
Minimization and control theory problems on irregularly shaped domains also
call for scattered meshes to save space.

The methods presented here yield solutions which converge to the vanishing
viscosity solution of HJ equations of the form (2). Error estimates for RBF
interpolations and estimates on their partial derivatives have been proved, and
are an area of current research. Optimal node choice, RBF parameter choice,
and RBF basis function form are also areas that are being studied, and demand
further theoretical results and a more intuitive description.

It should be noted that the arguments made for monotonicity and conver-
gence of the LF and LLF schemes constructed in section 4 can be applied to
other interpolation schemes for meshless numerical methods such as moving
least squares, kernel based approximations, and partition of unity methods by
writing these methods in Lagrange form [6]. However, we cannot hope to ap-
ply our monotone construction to global interpolation schemes, as they will not
satisfy the restrictions on the signs of dj .

Other questions to be addressed concern the optimal way to handle neighbor
access on a meshless data set, and what is the best way to automate the stencil
selection process. We have addressed these problems here, but as they often
consume the bulk of the computational time we suggest further study.
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