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Abstract

This paper is devoted to piecewise-constant segmentation of images, using a curve
evolution approach in a variational formulation. The problem to be solved is also called
the minimal partition problem, as formulated by Mumford and Shah [26]. The proposed
new models can be viewed as extensions of the techniques previously introduced in [10],
[11], [35]. In this present paper, we represent the set of boundaries of the segmentation
implicitly, by a multilayer of level-lines of a continuous function. In the standard
approach of front propagation, only one level line is used to represent the boundary.
The multilayer idea is inspired from previous work on island dynamics for epitaxial
growth [5], [13]. Using a multilayer level set approach, the computational cost is
smaller. Also, in some applications, a nested structure of the level lines can be useful.

Keywords: functional minimization, free boundary problem, multilayer implicit repre-
sentation, level sets, image segmentation, partitioning.
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1 Introduction

We model here images by functions f : 2 — IR, where {2 is an open and bounded domain in
IR". In particular, n = 1 corresponds to signals, n = 2 corresponds to planar images, while
n = 3 corresponds to volumetric images, such as MRI data.

An important problem in image analysis is the segmentation or the partition of an image
f into regions and their boundaries, such that the regions correspond to objects in the scene.
Here, we deal with the case where we look for an optimal piecewise-constant approximation
of the function f, our starting point being the minimal partition problem, as formulated by
D. Mumford and J. Shah [26]. The general problem is, given a function f in L*°(Q2) (induced
by the L2?-topology), find a set of disjoint open regions €2;, such that u = ¢; in each ); is a
minimizer of [26]

F.0) =Y [ 1f = efde + p = (D), 1)

where I' = U0SY;, Q = UQ;UT, u > 0 is a scale parameter, and H" ! is the Hausdorff (n—1)-
dimensional measure in IR". The existence of minimizers has been proved by Mumford-
Shah for continuous data f [26], and later by Congedo-Tamanini [14] and independently by
Morel-Solimini [24], for data f € L*°(Q2). Elliptic convergent approximations of the minimal
partition problem in the weak formulation (and also of the full Mumford and Shah model)
have been proposed by Ambrosio-Tortorelli [2], [3], where the minimizer u is approximated
by smoother functions, and the unknown set of discontinuities is also approximated by a
smooth function v, essentially supported outside I'. A constructive convergent algorithm
for solving (1) has been proposed by Koepfler-Lopez-Morel [18], based on region merging (a
piecewise-constant minimizer u is obtained, and not only a smooth approximation).

Also, it has been proved by Mumford-Shah [26] that a minimizer u of (1) has a finite
number of regions €2; and of constant intensities c;.

Curve evolution techniques and implicit representations [28], [27] have been proposed to
solve particular cases of the minimal partition problem, where the number of regions 2; or
an upper bound are assumed to be known. Thus, in [10], [11], [35], [36], restrictions of the
energy (1) to piecewise-constant functions taking a finite number of regions and intensities,
in a variational level set approach, have been considered. The energy has been minimized
for restrictions to {u(z) = c;H(¢(x)) + coH(—p(x))}, or {u(x) = c11H(¢p1(z))H (P2(x)) +
c1oH (¢1(2))H (—=2(x)) + corH(—¢1(2))H(2(2)) + cooH(—¢1(2))H(—2(z))}, and so on,
where ¢, ¢; : 0 — IR are Lipschitz continuous functions, and H denotes the Heaviside
function. The variational level set approach from [37] has been used, together with the level
set method [28]. The boundaries were represented by zero level lines of ¢;.

The multiphase formulation from [37] has been used in [32], [33] for computing the bound-
aries 0€); in the case of a finite and known number of regions, and where the corresponding
intensity averages c; where given.

The advantage of the multiphase method in [35] is that triple junctions can be represented,
as in [37], [32], [33], but the regions Q; are disjoint and covering of €2 by definition. In addition,
a smaller number of level set functions ¢; was needed to represent the partition, for the same
number of distinct intensities ¢;.



In the above mentioned work, together with other related work, the unknown boundaries
0€); are represented by the zero level line of a Lipschitz continuous function ¢. In general,
such function ¢ : Q — IR, as used for active contours [6], [19], [7], [17] partitions the domain
2 in at most two open regions {z € 2 : ¢(z) > 0} and {z € Q: ¢(x) < 0}, with a common
boundary given by the zero level line of ¢, {z € Q: ¢(x) = 0}. For image partition, active
contours, and image segmentation, such functions ¢ are thus used to represent boundaries
of regions of different characteristics. In order to represent more than two regions, several
functions ¢; can be combined and used, as we have mentioned in [37], [32], [33], [35]. For
instance, in [35], only two functions ¢;, i = 1,2 were used to represent up to four disjoint
regions making up €2, and only three functions ¢;, i+ = 1,2,3 were used to represent up to
eight disjoint regions.

Here, we continue the approaches from [10], [11], [35], and we show that we can use
even fewer level set functions to represent disjoint regions making up 2. The applications
illustrated in this paper include active contours for object detection, image segmentation and
image partition, image denoising. The main idea is to use more than one level of the Lipschitz
continuous function ¢ to represent the discontinuity set of u. Thus, the computational cost is
decreased, due to less expensive storage. The idea is inspired from a different application of
implicit curve evolution and free boundaries, introduced in [5], [13], where island dynamics
for epitaxial growth is modeled. A first layer of islands is represented by {z : ¢(z) = 0},
then a second layer of islands, growing on the top of the previous one is represented as
{z: ¢(x) =1}, etc.

In summary, here we combine the techniques from [10], [11], [35] for image partition,
with the multilayer technique for modeling epitaxial growth from [5], [13], to obtain new and
improved curve evolution models for image segmentation. A recent independent work for
image segmentation is presented in [20], where the authors propose an interesting and effi-
cient multi-phase image segmentation model, following [35], but different than the methods
proposed in the present work.

The proposed minimization methods are non-convex, and with no uniqueness for global
minimizers (these theoretical properties are inherited from the Mumford and Shah model).
Moreover, we do not guarantee that our multilayer formulation computes a global minimizer
of the energy. It is possible sometime to obtain only a local minimizer by the computational
algorithm. Also, the final result may depend on the choice of the initialization. However, in
practice, we have obtained very satisfactory results; the numerical algorithm is stable and
the computed energy is decreasing function of iterations, to a local or global minimizer.

Related prior work for region based segmentation using the level set method is by
Paragios-Deriche [29], [30], [31], and by Tsai, Yezzi and Willsky [34], among other work
mentioned in [35].



2 Description of the proposed models

2.1 The case of one function

We consider in this subsection the case when the contours in the image f can be represented
by level lines of the same level set function ¢.

2.1.1 Two levels

Let us consider a Lipschitz continuous function ¢ : 2 — IR. Using for instance two levels
[y =0and I, =1 > 0, the function ¢ partitions the domain into three disjoint open regions,
making up 2, together with their boundaries:

R, = {z€Q: ¢(x) <0},
Ry, = {z€Q: 0<o(z) <},
Ry = {z€Q: ¢(z) >1}.

We can thus extend the binary piecewise-constant level set segmentation model from [10],
[11], to the following model, again as an energy minimization algorithm, in a level set form:

_inf Fler,c,ca,0) = /Q f(@) — &1 2H(~¢())da (2)
+/Q f(z) = o ?H (¢(z))H (Il — ¢())dz
+ [ /(@) = es H(6(2) = O
[ [ 1VHE@) + [ 1VHG-1)]],

where H is the one-dimensional Heaviside function, and p > 0 is a weight parameter. The
terms [ |[VH(¢)| and [, |[VH (¢ —1)| correspond to the length of the boundary between R,
Ry and Ry, R, respectively.

The segmented image in this case will be given by

u(z) = crH(=¢(x)) + coH(p(2))H(l — ¢(2)) + csH (d(x) — ).

To minimize the above energy, we approximate the Heaviside function by a regularized
version H,, as ¢ — 0, such that H, — H pointwise and H, € C*(IR). We denote by 4. := H_.
Examples of such approximations, that we use in practice, are [10], [11]:

€

1 2 z 1
H.(2) = 5(1 + —aTctcm(—)), bc(2) = P ’ 82_,_722

™ 9

Minimizing now the corresponding approximate energy F. alternately with respect to
the unknowns, yields the associated Euler-Lagrange equations, parameterizing the descent



direction by an artificial time ¢ > 0:

¢(0,$ = ¢0($), (3)
)

)
_ I J@H(=6(t )
o = ot .

o (t) — I S H (O 1) H{I— (1, ))da )
JfoaH(o(t,x))H(l — ¢(t,z))dr
_ Jo f(@)H(¢(t z) — l)dz
“O = G - s o
9¢
E = (7)
0:(O)[|f — el = |f — caPH (I - 6) + udw(‘w‘)]
+.(0=D[H@ =l | — af + piv( G5
(5s(¢) + 65(¢ _ l))v¢ -1=20 on 8Q, t> O, (8)

Vol

where 77 is the exterior unit normal to 0f). At steady state, a local or global minimizer of
the energy (2) will be obtained.

We will show in the Appendix that the energy F'(ci(t),ca(t),c3(t), d(t,-)) is decreasing
in time, under the flow (3)-(8). Also, existence and approximation results and the numer-
ical discretization are also given in the Appendix. Note that the energy (2) is non-convex
and it may have more than one global minimizer, these being properties inherited from the
Mumford and Shah model. In practice, we do not guarantee that our computational algo-
rithm converges to a global minimizer. Therefore, sometime only a local minimizer may be
obtained, but close to a global minimizer, and this may also depend on the choice of the
initialization of the algorithm.

2.1.2 m levels

More levels {l; < Iy < ... < l,} can be considered, instead of only two {l; = 0 < ly = [}.
The energy in this more general case will be:

inf F(ei, ey ey Cmg1, @) =
€C1,C2,...,Cm+1,

[ 17@) = eiPH (b = 6(@)do

#3° [ 17) = e H(6(e) = Lo H (L = 8(a)
+ [ 17@) = enia PH(G() = bn)de
+ui§;/QIVH(¢—lZ-)\
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Figure 1: Left: the level lines {z € Q : ¢(z) =0}, {x € Q: ¢(z) = 10} partition the domain
Q into 3 disjoint regions. Right: the level lines {x € Q: ¢(z) = 0}, {z € Q: ¢(x) = 10},
{r € Q: ¢(x) =20} partition the domain € into 4 disjoint regions.

The associated Euler-Lagrange equations in this more general case, can be expressed in a
similar way, as follows: in a dynamical scheme, starting with ¢(0,z) = ¢o(x), solve for ¢t > 0

) = @~ o)

JoH(lh — ¢(t,z))dx
Jo f(@)H (¢, 2) — Li1)H (L — (¢, 2))d
JoH(p(t,x) —l; 1)H(l; — é(t,x))dz
oy o B f@HG(D) L)
m Jo H(@(t,x) — lm)dz

AA/—\/—\

e X (T
+ Y [0~ t)H (- 9)If il
1=2

+ 0.(li— Q) H (¢ — i) f — il
— 0e(d = ln)If = cmps[?

m v¢
+ u l;)div
3 5.0 (2]
together with the corresponding boundary conditions on 0f2, for ¢ > 0.
We show in Figure 1 examples of partitions of the domain 2, using two and three level
lines of a Lipschitz continuous function ¢.

2.1.3 Experimental results

We show in this section experimental results applied to synthetic and real images. In each
figure, we show the evolution over time of the segmented image u of averages (left column),
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and the evolving set of curves superposed over the initial image f (right column). We also
give the main parameters used in the calculations and the CPU times, together with the
evolution of the energy versus iterations. We have used here a finite differences semi-implicit
numerical discretization, and the details are given in the Appendix.

In Figures 2-4, we illustrate how the model works on synthetic images (including noisy
images), in the case m = 3, where m is the number of the nested level lines of the function
¢ used to partition the domain 2. In Figure 2 we illustrate both the segmentation and
denoising properties of the model, while in Figures 3 and 4 we illustrate the change of
topology.

In Figures 5-6, we illustrate how the models work on real noisy images of poor resolution,
representing blood cells. Here, the model with two level lines of the function ¢ has been ap-
plied, producing very satisfactory results. In Fig. 7, application to brain data segmentation
is illustrated.

We note that in all these cases, in the piecewise-constant segmentation models from
[32], [33], and [35], we would have needed more than one function ¢ for the segmentation,
therefore more computational storage is required. In practice, we do not impose that ¢ is
Lipschitz continuous. The parameter levels [1, lo, ... are here kept constant and fixed for all
our different experimental calculations. These can also be specified by the user. We have
not implemented an automatic procedure of selection of these parameter levels. Sometimes,
these could be estimated if a statistical prior exists about the contours or level lines of
the data. We note that the algorithm is not sensitive with respect to the change of these
parameter levels /;. As in the model from [35], only an upper bound of the phases is needed.
For instance we can segment an image into 2 regions, using the model with one level set
function and 2 levels (therefore with 3 regions in theory, but only two regions will appear in
practice). Note that in all cases, the energy reaches a minimum (local or global) very fast,
only after a small number of iterations. The only varying parameter in this set of results is
the coeflicient of the length term, which has a scaling role. Note that in Fig. 3, during the
evolution, two distinct level lines of the same function ¢ can become very close in position,
almost like for a triple junction, but without overlap.

2.2 The case of two functions

As in [35], we can extend the multilayer model from the previous section to the case of more
than one level set function. This may be needed for instance for images with triple junctions
and with more complex structure. Here, we will use only two level set functions, to represent
up to nine distinct regions of different intensities, making up 2. We will work with the
functions ¢; and @9, and with two levels {0, (}, with [ > 0.

The nine regions defined by the two level set functions and two levels are:

Ry = {2€Q: ¢1 <0, ¢y <0},
Ry, {zeQ: 0< ¢ <, ¢y <0},
Ry = {z€Q: ¢1>1, ¢ <0},
Ry = {2€Q: ¢1 <0, 0< ¢y <},



Figure 2: Segmentation of a noisy synthetic image using one level set function ¢ and 3 levels.
Parameters: [; = 0, ly = 25, I3 = 35, At = 0.1, u = 0.0217 x 2552, 30 iterations, cpu time

0.41 sec.
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Figure 3: Segmentation of a synthetic image of several objects with a nested structure, using
one level set function ¢ and 3 levels. Parameters: I; = 0, I, = 25, I3 = 35, At = 0.1,
= 0.0000511 x 2552, 200 iterations, cpu time 4.015 sec.
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Figure 4: Segmentation of a synthetic image of several objects with a nested structure, using
one level set function ¢ and 3 levels. Parameters: I; = 0, I, = 25, I3 = 35, At = 0.1,
= 0.0101 * 2552, 100 iterations, cpu time 1.586 sec.
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Figure 5: Segmentation of a noisy real blood cells image using one level set function and two
levels. Parameters: [; = 0, Iy = 25, At = 0.1, p = 0.03 x 2552, 200 iterations, cpu time 2.51
sec.
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Figure 6: Segmentation of another noisy real blood cells image using one level set function
and two levels. Parameters: [; = 0, I, = 25, At = 0.1, u = 0.043 * 2552, 200 iterations, cpu
time 2.493 sec.
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Figure 7: Segmentation of a brain image using one level set function with two levels. Pa-

rameters: [; = 0, I, = 25, At = 0.1, u = 0.1 % 2552, 1500 iterations, cpu time 183.544
sec.
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Ry = {2€Q: 0<¢1 <, 0<¢po <},
Ry = {2€Q: ¢1>1, 0< ¢y <},
Riz = {r€Q: ¢1 <0, ¢ > 1},

Ryy = {2€Q: 0< ¢ <, ¢ >1},
Ryzs = {2z €Q: ¢ >1, ¢ >1}.

Following the previous section and [35], the associated energy for image segmentation is:

inf F(&,®) = [ [1f(z) = cul"H(=61(@) H(~ga(x))

Hf (@) = e PH (1 (2)) H(l = 61 (2)) H (= ()

(@) - e PH6:(@) — DH(-a(a)

Hf (@) = cro?H (=61 (2)) H (9 (2)) H (I — ()

H1f(2) = e H(1()) H (L — 1)) H (d(x)) H (I — do(x))
HF(2) = e H () — D) H (¢o(w)) H(I — ()
HF(2) = cs2H (=1 (2)) H (s (x) — 1)

+1f (@) = cxsH (61 (2)) H (L — 6 () H () — 1)

+f(2) = e3sH(61(x) — DH (da(2) — )] da
[ [ IVH(@)|+ [ [VH (g1 —D)|
+ [IVH©)| + [ IVH(6: - 1],

where & = (c¢11, €21, €31, C12, C22, C32, C13, C23, C33) is the unknown vector of averages, and & =
(¢1, ¢2) is a vector-valued unknown function.

Embedding the minimization in a dynamical scheme, and starting with ¢, (0, z) = ¢1,0()
and ¢2(0,2) = ¢o(x), we have that the unknown constants ¢y, ca1,... are given by the
averages of the data f on their corresponding regions R;, Rs, ..., as follows:

Jo fH(—=¢1)H(—¢o)dzx

en(?) Jo H(=¢1)H(—¢2)dz’

en(t) = Jo fH(¢)H(l — ¢1)H(=¢o)dz
JoH(p)H(l — ¢1)H(=p2)dz

() = JnfHG = DH(=g)da
JoH(¢pr — DH(—¢2)dz ’

() = 12 fH(=¢1)H(d2) H(l = ¢o)dw
Jo H(=¢1)H(do)H(l — ¢o)dax’

en(t) = Jo FH(¢1)H(d2)H(l — ¢1)H(l — ¢9)dx
JoH(¢1)H(d2)H(l — ¢1)H(l — ¢2)dx’

cao(t) = Jo f(x)H (¢ — 1) H(po)H (Il - ¢2)d33’

Jo H(é1 — 1) H(¢2)H(l — ¢2)dx
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Jo fH(=¢1)H(¢s — )dx

aslf) = Jo H(=¢1)H(¢y — l)dz’

elt) = Jo FH(1)H(l — ¢1)H (¢ — l)dz
JoH(o)H(l — ¢1)H (¢ — l)dx’

() — JnTHG = DH(; ~ i

Jo H(¢1 = )H(¢2 — l)dz

The unknown functions ¢; and ¢, are solutions of the following equations:
$1(0,z) = ¢10(2),
$2(0,2) = da,0(),

0

5/11 = 0¢ (¢1)[|f—011| H(—¢2)

¢

—|f = cn?H(l = ¢1)H(—¢2) + |f — cra|"H(d2) H(l — ¢2)
—|f — e’ H(l — ¢1)H (o) H(l — ¢
+|f—013\2H(¢2—l) — |f—623|2H(l—¢1) ( —

+/Ldiv( Vo )

)

)

]

+8.(d1 = D[|f = can"H($1)H(=2) — | f — c1PH (=)
+|f — coaPH(d1)H (o) H(l — 2)

—|f — ¢ *H (¢2) H(l — ¢2)

+|f — o3P H(¢1)H (g2 — 1) — | f — c33/°H (2 — 1)

Vo
+,ud1v(‘v¢1|)],

02

5 = 0:(62)[If — enPH(=¢1)
—|f = coPH(=¢1)H(l — ¢2) + |f — ca"H (1) H(l — ¢1)
—|f — oo H(¢p1)H(l — ¢1)H(l — ¢o)
+|f —es1PH (¢ — 1) — |f — e’ H (1 — )H ( ¢2)
+MdiV(|V¢2 )]
+0:(2 — D)[|f = coPH(=¢1) H (o) — | f — c13"H (=)
+|f = coo?H(¢1)H(l — ¢1)H(¢2)
—|f — cosP H (1) H(l — 1)
+|f — cs2|PH(¢y — 1)H(da) — |f — cs3|*H(¢1 — 1)
Vo
,udlv(|v¢2|)].

We show in Figure 8 an example of partition of the domain €2, using two level lines
corresponding to l; = 0, [, = 10, and two continuous functions ¢y, ¢s.
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Figure 8: The level lines {z € Q: ¢;(z) =0} and {z € Q: ¢;(x) = 10}, i = 1,2, partition
the domain €2 into 9 disjoint regions.

The corresponding theoretical results can be obtained in the same way as in the previous
section. Note that, as in the multi-phase models from [35] and [36], when two level set
functions are used to represent the contours, as in this subsection, then it is possible that
two level lines of the different functions ¢; and ¢, may partially overlap, and therefore by
the above formulation the length of the common contour will be counted more than once
and will have a different weight. This is different from the Mumford and Shah energy [26].
This is not a problem in practice, as seen in the numerical approximations. Moreover, this
can also be simply avoided, as explained in [36].

We show next a few experimental results using this case, where only two level set functions
¢1, ¢ are used, to represent up to nine disjoint regions, making up 2.

2.2.1 Experimental results and comparisons

We show now numerical results on images with junctions, using our proposed new model
with two functions ¢, ¢ and two levels.

We present in Figure 9 a numerical result of segmentation and partition of a noisy syn-
thetic image, composed of 5 regions of distinct intensities. All regions and corresponding
intensities are correctly detected and represented. The model uses 9 phases in theory, but at
steady state only 5 appear. We also present in Fig. 10 a comparison with the multi-phase
model introduced in [35]. Note that the new multilayer model reaches faster the steady state,
only after 40 iterations. By the previous model [35], the energy has not yet reached a steady
state after 300 iterations. The CPU time comparison shows that the new model produces
faster results. There is no difference in the quality of the segmentation (the RMSE’s are
practically the same) between the two models.

In Figure 11 we present numerical results obtained for segmentation and partition of
another blood cell image. In Figure 12 we have a numerical result of a noisy synthetic color
image consisting of 9 regions of distinct intensities.

We note again that in Fig. 2 the following situation appeared: two level lines of the same
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level set function became
cannot overlap.

Appendix

very close in position, almost like for a triple junction, but these

Energy decrease We assume here that the differentiation under the integral sign can be
done and that the functions that appear are sufficiently smooth (possibly by substituting H,
d by H.,d.), so that the differentiations and all integrals are well defined.

Theorem 1: If (¢ (t),

ca(t), cs(t), d(t, -)) satisfies the system of equations (3)-(8), for a

given initial data ¢g and t > 0, then t — F.(c1(t), co(t), c3(t), o(t,-)) is decreasing.
Proof. We formally have

d
%F(Cl( ), ca(t), cs(t), p(t,-)) =

_/Q2|f—61(t)|c'1(t) — dx—/n|f—01(t)|25(¢)¢tdx

— [ 2f — @O H)H{ - 6)ds

)
+ [ 1f = ex)P0(0)auH (1 — 9)d
)
)

S

— [ 1f = ex®)I%5(6 — DéH(9)d
— [ 21f = es(OIh W H(@ — Dda

+ [ 1 = ealt)5(6 — gude
VoV,

S

+ [ 0@0oldn + [ 6(0)= S da
| VoV,
+ [, 86 = Dalvoldr+ [ 56 - )G da.

We note that [ [f — ci1(t)|H(=¢)dz =0, [o [f — c2(t)|[H(¢)H(l - ¢)dx = 0, and [y |f -
cs3(t)|H(¢ — l)dx = 0 by definition of ¢y, ¢y, and c3. Therefore,

_|_
S~ 5~ 5—~5—§&[=

F(Cl(t)’ CQ(t)’ 03(t)1 ¢(t’ ))
3(8)oe( = |f — 1 (®)* + | f — o) PH (L — @) )da
5(¢—De( — |f — c2(OPH(9) + |f — es(1) %) da

5 (8)Volda+ [ 5(0) e s
6’(¢—l)¢t|V¢|dm+/ﬂé(¢— Vé';'@dx.
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Figure 9: Segmentation of a noisy synthetic image with triple junctions, using two functions

$1, @2 and two levels. Parameters: [; = 0, I, = 25, At = 0.4, u = 0.023 %2552, 200 iterations,
cpu time 13.985 sec, RMSE=52.3226.
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Figure 10: Segmentation obtained using the model from [35], using 3 level set functions
(8 phases), each zero-level-line of ¢; representing a curve. Parameters: | = 0, At = 0.4,
p = 0.06 * 2552, 350 iterations, cpu time 30.967 sec, RMSE=52.70172.
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Figure 11: Segmentation of a real blood cells image with junctions,
¢ and two levels. Parameters: [; = 0, I, = 25, At

cpu time 10.814 sec.
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Figure 12: Segmentation of a noisy synthetic color image with junctions, using two functions
é1, ¢ and two levels. Parameters: [, = 0, l, = 25, At = 0.01, u = 0.335 * 2552, 160

iterations, cpu time 10.975 sec. Note that the image contains nine different regions, all
correctly detected and segmented in an efficient approach.
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Note also that

V¢V¢t

/5’( )¢t|V¢\dx+/ ¢| dz
= - [, Syt
/Q(S’(¢—l)¢t|V¢|dac+/ - ?@Z?dx
= - J, 30~ Doin(T L
Then,
SF@0), (0, es(0), 610, )
= [ 20)¢ (—|f—cl()|2+|f—02(t)|2H(l—¢))dx
+ [ 8o - |f—c2<)PH(¢)+|f—c3<t>\2)dx
- [ S5y — [ 66— Nadiv( T
Let
A = |f-a@®P-1f - aPHI- ),
B = HQ)f - ) -1f - a®P
- div(;Z').
Then ¢, = 6(¢)(A+ K) + 6(¢p — I)(B+ K), and
d

T (et); ea(t), es(t), o2 )
- —/A(S [6(6)(A+ K) +6(6— )(B + k)] da

- /35 ~D[5(@)A+ K) +5(¢ — ) (B + K)|da

_ /K6¢ J(A+ K) +8(¢ = )(B + K)]dx
- /QKéqb—l 9)(A+ K) +5(¢— )(B + K)|dx,
d



- —/52 (A+k 2dm—/62(¢>—l)(B+K)2dx
— 2/ ¢ —1)(AB + AK + BK + K?)dx
—/Q(52(¢)(A+K)2+62(¢—l)(B+K)2

+ 20(¢)8(¢ — )(A + K)(B + K))dx

—/ J(A+K) +8(¢ — )(B+K)) dz < 0.

Description of the numerical algorithm Let h be the space step, /At be the time step,
and ¢ = h. Let (z;,y;) be the discrete points, for 1 < 4,7 < M, and f;; ~ f(z;,y,),
ni R (nAt,z;,y;), with n > 0. We present the details of the numerical algorithm for the
case of one function with two levels given in (3)-(8). Set n = 0, and start with ¢}, given
(defining the initial set of curves). Then, for each n > 0 until steady state:
1) compute the averages ¢} = ¢;(nAt), ¢ = co(nAt), and ¢§ ~ cs(nAt).

2) compute qﬁ?j , derived from the finite differences scheme:

At G )[hQ(N( Z+|1%¢”

¢n—|—1 n—|—1
1

)
)
Hfig = P = i — SPH — 6]y)
)
)

n+1
+0: (075 — 1) [h2 (Aw ( ZT%JPMM

ron(® ﬁpw )

_‘fi,j — C??;L|2 + |fi,j — G |2H€( i,j)]'

Let
G = ! ;
() s (o)
Cy = ! ;
Cs = ! :
C, = 1

\/(‘15?4-1,]‘—1%‘15?—1,]'—1)2 + (‘z’?,j*h?,j—1)2'
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Let my = 2£(6.(67;) + 6-(6; — D)), C =14+ my(Cy + Co + C3 + Cy),

61" = G605 + ma(Cidtry + Cob s+ Osdl,
FOUT 1) + D) (— (s — (1 — H(67, — D)
(g — ) + D82, — D= (s — )P

+(fij — &) He( ?,j))]-

Existence of minimizers For simplicity of notations, we show the existence of minimizers
for the case of one function with two levels. Assume f € L*(Q), that Q is open, bounded,
connected and with Lipschitz boundary 99. Let us denote by x1 = H(9), x2 = H(¢ — 1),
where now x; and x, have to be characteristic functions of two sets E; and F», with Fy, C F;
(this means that if xo(z) = 1 at some point z € €2, then x;(x) = 1 also). This will guarantee
that in the new formulation: 1 — x1(z) + x1(2)(1 — x2(x)) + x2(z) =1 for all z € Q, i.e. a
perfect partition.
Then the problem (2) can be reformulated as

inf Flxxe) = [ (F = a(a)’(1—x)de ©)
+/Q(f — (X1, x2))xa (1 — x2)dz

+/Q(f — 03(X2))2X2d$+/i/Q Vxi| +M/Q Vxal,

. o F@)(1—x1)da _Jo F@)xa(1—x2)da o f@)xada
Wlth Cl(Xl) - QfQ(lf)(l)dw I CQ(XI?XQ) - QfQ X1(17X2)d$ I 03(X2) - Qfg dew .

This minimization is among characteristic functions xi, xo of sets of finite perimeter,
i.e. on the set {Xi € BV (Q),xi(z) € {0,1} almost everywhere, i = 1,2}, and such that
X1 > Xo2- The energy F from (9) satisfies F > 0, and also we can find two characteristic
functions x1 = xg, and x2 = xm, with Ey C E;, Ey, E; both with finite perimeter in (2
or finite total variations in Q, such that F(xi, x2) < 0o. These two conditions on F will
guarantee that the infimum is finite and that there is a minimizing sequence x*, x% defined
by infy, v, F(x1, X2) = limg_,e F(XF, X5).-

Taking such a minimizing sequence (x%,x%) of F, as k — oo, among characteristic
functions of sets of finite perimeter in € (i.e. with boundary of finite length), based on the
lower semi-continuity of the total variation (Evans and Gariepy 1992) [16], we can extract a
subsequence, still denoted by (x*, x%), such that each x¥ converges to x; € BV (2) strongly
in L'(Q2), and such that [, |Vx;| < liminfy_,o [, [VX¥|. Moreover, the functions x;, i = 1,2
have to be equal to 0 or 1 almost everywhere, therefore these are characteristic functions of
sets of finite perimeter in €2, and also x; > xa2.

We also have that ¢; are continuous function of ;, therefore limy_, o ¢; (X%, X5) = ¢ (x1, X2)-
Then, we deduce that

F(x1, x2) < liminf F(xF, x3),

therefore existence of minimizers among characteristic functions x1, x2 of sets of finite perime-
ter in  and with y; > xs.
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Convergence of the approximation of the length term Following (Samson et al.

1999) [32], (Samson et al. 2000) [33], we can also show that our approximating functional

L.(¢) = [o|VH.(¢)|dx = [, 6:(¢)|Vo|dx converges to the length |C| of the zero-level line

C ={z € Q: ¢(x) = 0}, under the assumption that ¢ : Q@ — IR is Lipschitz. The same

result holds for the case of any [-level curve of ¢, and not only for the 0-level curve.
Lemma: According to the previous definitions, let us define

L(9) = [ [VH(9)dz = [ 5.(6)|Volda.

Then we have

lim L. (¢) = /{¢:O} ds = |C],

e—0

where C = {¢ = 0}.
Proof: Using the Coarea formula (Evans and Gariepy 1992) [16], we have:

L(@) = [ [ [ o0ds)do= [ [5:00) [ ds]dp.

By setting h(p) = [, ds, we obtain

L(0) = [ lohlo)dp = [ %j—pzh(mdp.

By the change of variable 6§ = £, we obtain
2

. . 1 €
lig Le(9) = 1ty [~ g (02)10

e—0
. 1 1
=i [ i (0
11 1 .
= h(O) /R ;md& = h(O); arctan 0|_00

—h(0)= [ ds=|C]|,
$=0

which concludes the proof.

In general, this convergence result is valid for any approximations H., J., under the
assumptions that lim, o H.(z) = H(z) in IR\ {0}, 6. = H!, H. € CY(IR), [*2 6,(x)dz = 1.
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