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Abstract

We propose a local level set method for constructing the geometrical optics term in
the paraxial formulation for the high frequency asymptotics of 2-D acoustic wave equa-
tions. The geometrical optics term consists of two multivalued functions: a traveltime
function satisfying the eikonal equation locally and an amplitude function solving a
transport equation locally. The multivalued traveltimes are obtained by solving a level
set equation and a traveltime equation with a forcing term. The multivalued ampli-
tudes are computed by a new Eulerian formula based on the gradients of traveltimes
and takeoff angles. As a byproduct the method is also able to capture the caustic
locations. The proposed Eulerian method has complexity of O(N2LogN), rather than
O(N*) as typically seen in the Lagrangian ray tracing method. Several examples in-
cluding the well known Marmousi synthetic model illustrate the accuracy and efficiency
of the Eulerian method.

1 Introduction

Geometrical optics is the branch of optics which is characterized by the neglect of the wave-
length, i.e. that corresponding to the limiting case (wavelength) going to zero (“short wave-
length”), or equivalently for the wave number near infinity (“high frequency”), since in this
approximation the optical laws may be formulated in the language of geometry [5]. This
definition is based on short wavelength assumption of light and can be generalized to deal
with other wave phenomena as well. The linear or nonlinear partial differential equations
describing these wave propagations involve a parameter, such as the wavelength A, which is
small compared to all other lengths in the problem [43]. The asymptotic method is for the
asymptotic solution of PDEs governing these wave propagations.

Consider the linear acoustic wave equation. According to the Debye procedure, inserting
the high frequency asymptotic ansatz into the wave equation reduces the resolution of the
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PDE into the resolution for a sequence of ODEs. Among all the terms in the asymptotic
ansatz, the most important term is the zeroth order term, the so-called geometrical optics
term [21]. The geometrical optics term consists of two functions, a phase function satisfying
the eikonal equation, a first-order nonlinear PDE, and an amplitude function solving a
linear transport equation with the phase gradient as coefficients. Thus to construct the
geometrical optics term the eikonal equation has to be solved first for the phase function;
then the transport equation for amplitude might be integrated afterwards.

Conventionally, the eikonal equation was solved by the method of characteristics, a.k.a.
the ray tracing method in the seismology and optics; thus the method inherits the intrinsic
shortcoming of the Lagrangian method, i.e. the non-uniform resolution in the desired com-
putational domain. In this setup, the amplitude function could be obtained by solving an
ODE system as well, and it has the similar shortcoming. Certainly it is possible to overcome
this drawback by introducing complicated interpolation and bookkeeping data structures
[41]. However, in the late 80’s Vidale [40], and van Trier and Symes [39] introduced direct
discretizations of the eikonal equation based on finite difference schemes, which are Eulerian
approaches and yield uniform resolutions of the solution in the computational domain. As
pointed out in [39], the obtained solution should be understood as the minimum phase or
the first-arrival traveltime in the viscosity solution sense for Hamilton-Jacobi equations [22].
Once the traveltime is obtained, the transport equation for amplitude might be integrated
[44, 37, 31]. Since a viscosity solution usually develops kinks, the gradient of the phase func-
tion is discontinuous. Therefore, the resulting solution for the transport equation has to be
understood in the measure sense [12]. The difference between the ray tracing solution and
the finite difference solution of the eikonal equation is that one is multiple-valued and the
other single-valued [3, 10]. Although the viscosity concept and related numerical methods
provide a natural Eulerian framework for geometrical optics, the drawback is that it provides
only first arrivals while some applications may require all arrival times. Moreover, White
[42] proved that there is a high probability for so-called transmission caustics to occur in an
inhomogeneous medium. Beyond transmission caustics, more than one ray pass over each
point in space so that the phase is multivalued. Therefore, it is important to design Eulerian
methods for multivalued solutions of the eikonal equation, in general, the Hamilton-Jacobi
equation.

In the last decade or so, there are a lot of efforts in this direction: geometrical domain
decomposition type methods [2], slowness matching method [35, 36], dynamic surface exten-
sion method [33, 32|, segment projection method [11], level set method [25, 29, 9, 19, 8, 30],
phase space method [13]. See [3, 10] for up-to-date reviews of the above methods and
moment-based methods [15, 18].

In this work we present a local level set method for paraxial geometrical optics. By
paraxial we mean that the wave propagation has a spatial orientation so that one of the
spatial directions may be viewed as an evolution direction. This criterion may be quantified
by assuming a sub-horizontal condition for the eikonal equation [36]. In [30], we presented
a global level set method for the paraxial eikonal equation in the 2-dimensional case, and
the computed multivalued traveltime matched the ray tracing solution very well even in
the difficult synthetic Marmousi model. Therefore we proceed along the same line and
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design a fast local level set method for both multivalued traveltimes and amplitudes, thus
constructing the geometrical optics term. This construction will be useful for modern high
resolution seismic imaging [14, 16, 34, 7, 24]. Our formulation for computing the multivalued
amplitude is based upon a level set formulation and an extension of the Eulerian amplitude
formulation used in [31], which is different from the one used in [25]. As a by-product,
our formulation also yields the cuspoid caustic curves (As type) [38], which is related to
the catastrophe theory; thus it suggests that the level set theory can be used to study the
catastrophe development. See [4] for another Eulerian method for capturing caustics. The
overall complexity of our level set method is O(N?LogN) rather than O(N?) as typically
seen in the ray tracing formulation.

The rest of the paper is organized as follows: Section 2 introduces the paraxial formulation
for the high frequency asymptotics of 2-D acoustic wave equations; Section 3 presents the
level set formulation for wavefront locations, traveltimes, amplitudes and caustics; Section 4
gives implementation details of the local level set method; Section 5 shows some numerical
examples to illustrate the efficiency and accuracy of the Eulerian method and Section 6
indicates some possible future works.

2 Paraxial Formulation for Eikonal Equation

Consider the acoustic wave equation

1
AU — ——Uy =0 1
2(x) * (1)
where the velocity ¢(x) > 0 is given. We are interested in the leading singularity of the wave
field which is characterized by the following asymptotic solution:

U(x,t) = B2 A;(x) S (t — 75(x)) (2)

where S is a given waveform function, and A; and 7; are smooth functions to be determined;
the number M of the terms in the sum depends on the velocity ¢(x) and must be determined
in the process of constructing the solution [20]; 7; and A; in ansatz (2) should be regarded
as different branches of two multivalued functions 7(x) and A(x); each branch is defined on
its own domain D;.

Inserting one term of ansatz (2) into the wave equation and using the Debye procedure,
omitting the subscripts, we have the following two equations from the coefficients of S” and

S’ [34):
Vol =+ (3)
V- (A*VT) = 0. (4)

Eq. (3) is the so-called eikonal equation for traveltime, and Eq. (4) is the transport equation
which says that A2 is conserved along the ray.
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Under appropriate conditions pairs of branches of the solution 7; are joined along the
caustic curves. Therefore the direct resolution approach proposed in [2] first locates these
caustic curves, then solves eikonal equations in the corresponding geometrical domains, and
finally glues different branches together to obtain multivalued solutions. To avoid the com-
plicated process for locating the caustic curves, we start from the method of characteristics
and derive a level-set based Eulerian approach to constructing the geometrical optics term.

Consider a point source condition for the eikonal equation defined in an open, bounded
domain 2 C R2. To emphasize the point source condition the eikonal equation is rewritten
as follows,

VT (x,%5)| = TX) (5)
) T(x,x,) 1 .
limy k—x| ~ cx) >0, (6)

where x; is the given source point.
By the method of characteristics for the eikonal equation (5) with the point source con-
dition (6), we have a ray tracing system,

Cfi—f = c¢sinf (7)
dz
A 8
o ccosf (8)
do . 0c dc
i s1n0£—cosé’% 9)
with initial conditions
x‘t:() = Ty (].O)
Zli=o = 2s (11)
9|t:0 = 05 (12)

where x = (z,2), x; = (xs,2s) and s varies from —7 to 7. In this system, t has the
dimension of time. This is a multivalued Lagrangian formulation because even though the
rays in the phase space (z, z,0) may never intersect, the projected rays in the physical space
(z, z) may intersect.

Next we extend the traveltime function 7(z,z) to the reduced phase space {(z, z,0)},
denoted as T'(z, z, 6), and consider the t-wavefront expanding from the source point:

T(z,z,0) = t. (13)
Differentiating this identity with respect to ¢ we have

Oc Jc
i N2 —cosOo )T, = 1. 14
csmOTw—FCCOSHTZ—i-(SlnHaZ cosOax)Tg (14)
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In addition, we have the boundary condition
T(xs,25,05) =0, —m<80;<m. (15)

Since Eq.(14) is a linear advection equation, one may be tempted to solve it directly
with the condition (15). However, for a given (z,z) # (zs, 25), T'(z, 2, -) is not necessarily
well defined for every 6. In other words, Eqs. (14) and (15) are not well-posed. To obtain
an efficient well-posed problem, we will assume the paraxial condition and use the level set
formulation.

In some applications, for example, wave propagation in reflection seismics, the traveltimes
of interest are carried by the so-called sub-horizontal rays [16, 31], where sub-horizontal
means “oriented in the positive z-direction”. A convenient characterization for sub-horizontal
rays is that

d

d—'z > ¢COSOmax > 0 (16)

for some 0 With 0 < 0. <

vertical satisfying 6| < Omax <
To be specific, consider

%r . This inequality holds for rays making an angle § with the
2

Q = {(l', Z) : Tmin S X S xmaxao S 4 S Zmax} (17)

and assume that the source is located on the surface: Ty < =5 < Tmax and z; = 0. By
the sub-horizontal condition we can use depth z as the running parameter so that we have
a reduced system

Z—z = tanf (18)
do 1 (0c oc
with
$|z:0 = Ts (20)
0|Z:0 = 03 (21)

where now 6, varies from —0na. < 0 < Oy < 5. In addition, the traveltime is computed
by integrating
dt 1

- 22
dz ccosf (22)

with

they = O. (23)
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This ray tracing system (18-21) is a multivalued Lagrangian formulation defined in the
reduced phase space (z;x,6). Actually, the ray tracing system can be obtained by applying
the method of characteristics to the paraxial eikonal equation

or or 1 o\’ cos? Ormax
& =H (.’E,Z, %) = max (E — (a) ,T>, (24)

which in turn comes from enforcing the sub-horizontal condition in the eikonal equation (5);
see [36] for a theoretical justification. In this equation, 7 has the dimension of time too;
therefore it is identical to t.

As we will see, since the ray tracing system (18), (19) is formulated in a reduced phase
space, we may use a level set motion equation to move the initial curve deduced from the
initial condition and the curves moved will not self-intersect because they are defined in the
reduced phase space.

3 Level Set Formulation

3.1 Level set equation for wavefronts

By the paraxial assumption, we treat z as an artificial time variable. Now, if we define
¢ = ¢(z,z,0) such that the zero level set, {(x(z2),0(z)) : é(z,x(2),0(z)) = 0}, gives the
location of the reduced bicharacteristic strip (z(z),60(z)) at z, then we may differentiate the
zero level set equation with respect to z to obtain

(,bz + u¢$ + U¢0 = 0, (25)
with
dx do
u=—_ andv—@, (26)

which are given by the ray equations (18-19). In essence, we embed the ray tracing equations
as the velocity field, u = (u,v), into the level set equation which governs the motion of the
bicharacteristic strips in the phase space.

The initial condition for the level set motion equation (25) is taken to be

¢|z:0 = (]5(0,5[1, 0) =T — s, (27)

which is obtained from initial conditions (20) and (21). This is a signed distance function,
satisfying |V, 9| = 1, to the initial phase space curve

{(.’L’,H) =T, _Hmax < 0 < emax} (28)
in the reduced phase space

QP = {(SC, 0) * Tmin S z S Tmax, _omax S 9 S gma,x} (29)
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The initial curve partitions €2, into two sub-domains represented by {(z,6) : ¢(0,-,-) < 0}
and {(z,0) : #(0,-,-) > 0}. Afterwards, the level set motion equation takes over and moves
this initial curve as z varies, and the zero level set of ¢ at z gives the location of the new curve
which still partitions €2, into two sub-domains. Since the initial curve defines an implicit
function between z and 6, where 6 is a (possibly multivalued) function of z, the new curve
shares the same property. As the curve moves under the given velocity, it may develop
overturning. Therefore, for a fixed z, for some x’s we may have more than one 6* such that
¢(z,x,6%) = 0. This essentially tells us where the solutions are multivalued. On the zero
level set, when ¢y #0, there exists local unique projection on to the z-space; when ¢y=0,
the corresponding singularities or catastrophes of the implicit function § = 0(z, z) for fixed
2’s are identified as caustics [38].

3.2 Traveltime

To determine the traveltime of the ray from the above level set equation, we now derive
a corresponding equation governing the evolution of the traveltime. By the sub-horizontal
condition in the paraxial formulation and the ray equation (22), let Fy(z, 6;2) be the flow
generated by the velocity field u in the phase space (z,6) along the z-direction. Thus we
can write

dr 1

—(z, F, : = )
dz (2 Fu(z,6;2)) ccosf (30)

Therefore, having ¢t = T'(z, z,0) we get the following advection equation

dt ar
= = = = = ) 1
dz dz Lt ulz +vly ccosf (31)
This equation can also be derived from Eq. (14) directly.
The initial condition for T is specified according to the initial condition (23):
T|l,—o = T(0,2,0)=0, (32)

which is consistent with the initial condition (27).

3.3 Amplitude

The amplitude of the ray can be computed according to the formula given in [44, 31]:

~ 1 = =
A, 2530 2) = oo [SVIVT x VI (33)

where T and 1) are, respectively, the traveltime and the take-off angle of a ray reaching (z, 2)
from (x, z5). Traveltimes and takeoff angles are well defined on each solution branch in the
physical space (x, z). To compute this quantity in the reduced phase space, we consider T

as the extension of 7' to the phase space; furthermore, we may also extend 1Z and A to ()
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and A in the (z,z,0) space, respectively. Since the takeoff angle is constant along a given
ray in the phase space, we have

¢z + U’¢m + U¢0 =0. (34)
Moreover, we have
oT 0
= - roaT
833 z Hax 3
oT 00
bt LI il
8z~ 2t 982 3
oy 00
5_35 - Tﬁx + w@a_m ;
oy 00
It follows that
- ~ 00 06 1 00
VT x Vij| = ‘(waa — o) (—v s+ 5) R (ww - waa—m)‘ . (36)

Since ¢(z, z,0(x, z)) = 0 on the zero level set and eq.(19), we have

o0 osjor 00 o0
o~ aejon M 5 T T gy (37)
Finally we have
, _ 1 /e Ve Pp — Vo Pa
Alz;2,0) = 2 20050\” Po ' (38)

To compute the amplitude, we need the derivatives of the level set function at different
z’s. However, as illustrated in [30], reinitialization of the level set function is necessary and
unfortunately, this process would only keep the location of the zero level set unchanged.
This means the derivatives of ¢ cannot be computed directly from the level set function
by differentiating the function ¢ itself after the regularization procedure. Therefore, to
compute the derivatives of the level set function on the zero level set, we need to advect
those derivatives as well. We first let & = ¢, and n = ¢y. Differentiating the advection
equation for ¢ with respect to x and 6 respectively, we have

&+ uly +vép +ugE+v,m = 0,
Ny + ung +vng + ug +ven = 0. (39)

We might apply the same idea to the advection equation for takeoff angles as well so
that the derivatives of takeoff angles could be determined. Once those ingredients are in
place, the amplitude could be obtained. However, we will not use this approach because
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computationally this is not efficient and numerically it is difficult to reconcile the accuracies
of four different derivatives.
Instead, defining

A= YePo — Vodz (40)

and differentiating it with respect to z, we have the advection equation
A, 4+ V- (uA) =0, (41)

and the amplitude can then be computed by

Az z,0) = . (42)

1 c A
21\ |2 cos @ ¢y

Therefore, we can simply solve the advection equations for ¢,, ¢y and A in order to get
the amplitude. We need the advection equation for ¢, because it is coupled with the one for
Do

In general, A is a bounded quantity and ¢y may approach zero. When ¢, goes to zero,
A goes to oo and we are approaching caustics.

3.4 Caustics

Mathematically, caustic surfaces are envelops of the family of rays. In the geometrical optics,
at a caustic the amplitude of the asymptotic expansion becomes infinite, so that the usual
asymptotic expansion is no longer valid at caustics, and some special expansions have been
introduced to construct wave fields near the caustics [23, 6].

In the current level set formulation, the caustic curves correspond to

{(z,2) : &(z,2,0(x,2)) =0 and ¢y(z,z,0(x,2)) = 0}.

4 Implementation

4.1 Boundary Conditions

When solving the advection equations for ¢, ¢., ¢y, A and T, we have to specify suitable
boundary conditions.

Because the level set equation is a homogeneous advection equation, a non-reflective
boundary condition is used for the level set equation, meaning d¢/0n = 0, where n is the
outward normal along the boundary of 2,. This ensures the information outside the domain
2, will not interfere with the zero level set inside the computational domain. Similarly,
non-reflective boundary conditions are enforced on the advection equations for A, ¢, and
0. These in turn can be easily implemented in the upwind schemes used here.

However, since the traveltime equation is a hyperbolic equation with a forcing term, we
need to specify normal derivatives of the traveltime along the boundary according to the
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characteristic system. In general, there are two types of characteristics, i.e., outgoing and
incoming characteristics. By using upwind numerical schemes, those boundary conditions
can be taken care of automatically if some appropriate normal derivatives are imposed on
the boundary so that the outside information will not propagate into the computational
domain. To obtain such normal derivatives, we use the information from the characteristics
system. We first invert equation (7) and (9) locally and get

oT 1
- - - 4
ox csinf’ (43)
which is used for boundaries £ = Tmin and £ = Tmay, and
oT . Oc dc\
% = <sm 9& — COS 98_x> y (44)
which is for boundaries 0 = —0p.x and 0 = 0.

The above conditions essentially specify the normal derivatives of traveltime along the
boundaries. Then the values of 7" on the boundaries will be obtained by applying the Adams’
Extrapolation formula to equation (43), where 6 is considered as fixed, and to equation (44),
where z is considered as fixed.

In equation (43), when 6 = 0, it seems that there is a singularity. However, in that case,
u = 0 as well, the singularity is canceled eventually. The purpose for enforcing boundary
conditions on 7' is to avoid outside information propagating into the domain. In practice,
we have found that the above strategy works well.

4.2 Regularizations and a global level set method

Initially at z = 0, we have a signed distance function satisfying |V¢é| = 1, so that the level
sets, i.e., contours, of ¢ are equally spaced. However, as z varies the level set equation is
solved and the level set function is updated; in general the level set function is no longer
equally spaced because of the underlying inhomogeneous velocity field, even though the zero
level set of ¢ at z, the curve that we are interested in, is moving at the correct velocity. This
implies that ¢ may develop steep and flat gradients at or near the zero level set, making
the computed curve locations and further computations inaccurate, which does happen in
practice.

Therefore, the following regularization procedure consisting of reinitialization and or-
thogonalization was proposed in [30].

To restore the equally spaced property for the level sets, the usual way is to make ¢ a
signed distance function without moving the zero level set of ¢ appreciably. This can be
achieved through the so-called reinitialization by solving the following equation to steady
state ¢oo [45, 28, 26]:

99

5+ SO(ve-1) = 0 (45)

¢|E=0 = ¢(Z,,) (46)
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Here S(¢) could be the smoothed signum function [26]

. ¢
R GE NN

S(¢) (47)

where Az and A are the mesh sizes along z- and 6-directions, respectively.

The steady state ¢ has the same zero level set as ¢(z,-,-) within a certain accuracy
since ¢ does not move on the zero level set of ¢. Moreover, at the steady state ¢, is a
signed distance function since \quoo| = 1. The reinitialization step is to use ¢ instead of
¢(z,-,-) as the initial condition at z for solving the level set motion equation to the next
stage. To achieve the steady state we usually need to evolve equation (45) for a few steps
only. How often we should invoke the reinitialization step is a subtle issue; see [28, 26] for
some discussions.

Because we are only interested in the values of 7" where ¢ = 0, we propose the following
orthogonalization procedure

oT Vo )
% + sgn(o) (W : VT) =0, (48)
T|§:0 = T(z,,) (49)

which, theoretically, preserves the values of T" where ¢ = 0 but changes them elsewhere
so that the new T will not vary too much near the desired region. At the steady state,
Vé - VT = 0. Equation (48) may also be viewed as an extension procedure; namely, we
extend the values of 7" on the zero level set of ¢ along the normals of the zero level set of ¢.
This generally makes T discontinuous since lines normal to the zero level set will eventually
intersect somewhere away from the zero level set. Even if the location of the zero level set
may be shifted, the effect to the interpolation will still be acceptable.
The following algorithm first appeared in [30].
Algorithm 1:

I. Initialization.

1. Given N, and Ny, determine

T — Tmi 20
A — max min d Ae — max .
TN, -1 ™ Ny —1

2. Initialize ¢ and T at z = 0.

II. March in z until 2z = z..

1. Determine Az from the CFL condition.
2. March one Az step by solving the level set equation (25).
3. Reinitialize the level set function by solving (45).
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4. March one Az step by solving the traveltime equation (31).
5. Orthogonalize T and ¢ by solving equation (48).

ITI. Output. For each z; with ¢ =1,..., N,

1. Determine all root 6 such that ¢(zmax, i,0k) =0 (K =1,---).
2. Determine T'(zmax, i, 0x) (K =1,---) by interpolation.

In Step I, the level set equation and the traveltime equation are decoupled and thus
can be solved separately. The spacial derivatives are approximated by a fifth-order WENO-
Godunov scheme [17] while a third-order TVD-RK method [27] is used for the time marching.
Since both the level set equation (25) and the traveltime equation (31) are linear, the CFL
step Az can be chosen by

min(Az, Af)
max(vuZ + v2)’

where Az and Af are mesh sizes along x and 6 directions, respectively, and 3 is the CFL
number taken to be 0.6. For the root-finding and the interpolation in Step III, we can simply
use any non-oscillatory interpolation scheme, for example, a linear interpolation or an ENO
reconstruction.

Az

(50)

4.3 Detecting Caustics

Because passing through a caustic implies overturning of the zero level set in the x-6 space,
the number of §’s satisfying ¢(z, z,0(x, z)) = 0 will increase or decrease by two when z varies
monotonically. Therefore, a simple way to detect caustics is first enumerating the number of
roots 6;’s for every x;, then checking where those numbers have sudden jumps, and finally
approximating locations of caustics by taking the mid-point of two adjacent x;’s which have
different numbers of 6. The resulting approximation of the caustics locations is of first-order
accuracy.

Let x7 be the exact location of a caustic at some fixed z*. Assume that . is the computed
caustic location obtained from the level set formulation, i.e. solving

o(z%,x,0(x,2%)) = 0, (51)
oo(2",2,0(z,2%)) = 0. (52)

Let z! be the approximate caustic location computed using our mid-point approximation.
We have at least z. = x* + O(Ax?) which is delivered by the second order scheme used here.
Because the distance between z. and z, is less than Az/2, we have 2! = z. + O(Ax) and,
therefore, 2!, = 2* + O(Axz).

In terms of multivalued traveltimes, passing through a caustic implies that the number
of traveltimes increases or decreases by two as we will see in numerical examples.
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4.4 Local Level Set Method for Traveltime and Amplitude

The computational complexity of the above algorithm can be improved dramatically by
implementing a narrow banding [1] or PDE based version [28] of the local level set method.
In this work we adopt a version similar to the one proposed in [28].

The updates in Algorithm 1 require computations for all grid points in the domain. But
this is not necessary because the only information we will extract from the data is the zero
level set defined by ¢ = 0. This means the cost of the above algorithm can be reduced by
updating the level set function, ¢, the traveltime function, 7', and the quantities ¢,, ¢y and
A locally around only the zero level set of ¢. Because we are only interested in the zero
level set, all the updates can actually be done in a tube centered at ¢ = 0. The radius of
this tube, 7, is picked to be 5Az, due to the fact that 5 grid values are needed for the fifth
order WENO scheme when solving the advection equations. Therefore, by only considering
the grid points within this tube, the complexity of the above algorithm can be reduced by a
factor of N to O(N%LogN).

Next we have to initialize the quantities that we are going to advect. At z = 0, we can
set ¢, and ¢g equal to 1 and 0 respectively. However, 1, is singular at the source and it is
better to start computing ¢, and 1y at some z = dz > 0 close to zero. Assuming that the
velocity ¢ can be approximated by a constant near the source, we have

2
v O)a = 0
Vo(2,2,0)] =g, = 1. (53)
Thus at small z = dz >0,
#(z,2,0)|,2q, = v — tan(f) - dz, (54)
and A(dz,z,6) = —2, which is independent of the dz as long as the velocity can be well

approximated by a constant near the source. This makes the computation of amplitude
stable.

Hence we have a new algorithm for computing the geometrical optics term.
Algorithm 2:

1. Initialization.

1. Given N, and Ny, determine

Tmax — Lmin 20max
Ay = ——— A = .
z N, 1 and A6 Ny 1
2. Initialize ¢, T, ¢, and ¢y at z = 0.

3. For each (z;,0;), where i =1,..., Ny and j = 1,..., Ny, check if any of |¢(z;, 0;)|,
|¢(.’L‘i_1,9j)|, |¢(.’L‘i+1,9j)|, |¢(.’L‘i,9j_1)| or |¢($ia0j+1)| is less than Y- Collect all
these points into the set I'.
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II. March in z until 2 = z..

Determine Az from the CFL condition.

March one Az step by solving the level set equation (25) in I'.

Reinitialize the level set function in I" by solving (45).

March one Az step by solving the traveltime equation (31) in I'.

If z # Az, update A by solving equation (41).

Orthogonalize T, ¢, and ¢y to ¢, respectively, in I' by solving equation (48).
If z # Az, orthogonalize A to ¢ in I'. Otherwise, initialize A.

Update the tube I'.

Detect caustics by checking if there is a change in the number of 6;’s which gives
&(z;x;,0r) = 0 for two adjacent points z;.

© 0N e O W N

ITI. Output. For each z; with ¢ =1,..., N,

1. Determine all roots 0 such that ¢(zmax; i, 0k) =0 (k=1,---).
2. Determine T'(zpax; i, 0x) (K =1,---) by interpolation.

3. Determine @y (Zmax, i, Ok ), Po(Zmax; Ti, Ok) and A(zmax; i, 0k) (K = 1,---) by in-
terpolation, and then compute A(zmax; Zi, Ok)-

To determine Az in step 1.1, we only need to scan through the grid points in the
computational tube I' in order to determine the maxima of velocity fields v and v, and this
takes O(N LogN) steps.

Unlike the global level set method, the reinitialization step in II.3 is used not only to make
the level set function more regular but also to ensure the location of the tube in Step II.8
more accurate. This step is necessary here and the number of iterations is to be determined
so that the information of the location of the zero level set is propagated by a distance larger
than ~, the radius of the tube. Numerically, one or two steps per iteration in z would be
enough to get a reasonably good solution. However, formally, let 5 be the CFL number used
in the reinitialization and my,;, be the minimum number of iterations of reinitialization; then

we have
y

Bmin(Az, Af)
Because 7 = O(Azx), muyin = O(1). The overall complexity of the reinitialization step for
each Az advancement is equal to the number of grid points within the tube and is given by
O(NLogN).

On the other hand, there is no need to extend the traveltime, the derivatives of ¢ and
the quantity A from the zero level set throughout the whole tube because the purpose of the
orthogonalization is to reduce the error generated in the interpolation step I11.2 and III.3 as
mentioned before. Therefore, one or two iterations per marching step are sufficient.

Next issue is how to update the computational tube I'. A simple way is to scan all grid
points in the domain and to apply the same procedure as that in I.3. The complexity of the

(55)

Mmin =
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Ax {1 error {1 order Iy error [, order lo error | Iy, order
0.20000 | 0.01044350 0.01077493 0.01504211
0.10000 | 0.00580110 | 0.8482 | 0.00540664 | 0.9948 | 0.00678677 | 1.1482
0.05000 | 0.00193626 | 1.5830 | 0.00251217 | 1.5640 || 0.00251217 | 1.4337
0.02500 | 0.00050419 | 1.9412 | 0.00047756 | 1.9369 | 0.00069198 | 1.8601
0.01250 | 0.00011634 | 2.1156 | 0.00011220 | 2.0895 | 0.00017029 | 2.0227
0.00625 | 0.00002791 | 2.0592 | 0.00002721 | 2.0435 | 0.00004292 | 1.9882

Table 1: Accuracy and convergence order of traveltimes in Example 1 at z = 1 km.

resulting method will be O(N?). However, because the motion of the zero level set is purely
advective, zeros will not be generated outside the tube. We can, therefore, update the tube
by only scanning through the boundary of I', and this requires only O(NlogN) operations.

As a result, each substep in II can be done within O(N LogN) calculations. Therefore, for
each iteration in z-direction, the complexity is O(N LogN). Because of the CFL condition,
the number of iterations in z is of O(N). Overall the complexity of this algorithm is only
O(N?LogN). Comparing to O(N*) as typically seen in the Lagrangian ray tracing method,
this Eulerian method is highly efficient and attractive.

5 Numerical Examples

For the first three examples, we put a point source at the origin and velocity functions ¢(z, 2)
are all C*°. The fourth example, the synthetic Marmousi model, is a challenging one where
the velocity function is given only as gridded values. Unless specified, the computational
domain we use in the following examples is chosen to be

QP = {(.7),9) c—1 S x S 1aemax S 0 S emax} . (56)

where O, = 97/20. The Marmousi velocity will be rescaled to the above computational
domain accordingly.

5.1 Constant model

The simplest case one can imagine is the constant velocity model with ¢(z, z) = 1. Figure 1
shows the exact and computed traveltimes and amplitudes of the constant model. The solid
lines are the exact solutions. The numerical solutions match well with the true values.

Tables 1 and 2 show the convergence results for this test case. Convergence history for
traveltimes is shown in Table 1, while Table 2 contains that of the amplitudes. The results
show second-order convergence for both traveltimes and amplitudes at z=1.

In this simple case, we can also compute the solution by assuming that the boundary
T = Tmay 18 reflective. When the zero level set hits the boundary x = xna, in the z-0 space,
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Ax {1 error {1 order Iy error [, order lo error | Iy, order
0.20000 | 0.00093010 0.00091941 0.00123784
0.10000 | 0.00052955 | 0.8126 | 0.00049836 | 0.8835 | 0.00061722 | 1.0039
0.05000 | 0.00016404 | 1.6907 | 0.00015484 | 1.6863 | 0.00020976 | 1.5570
0.02500 | 0.00004076 | 2.0086 | 0.00003870 | 2.0000 | 0.00005544 | 1.9195
0.01250 | 0.00000970 | 2.0709 | 0.00000930 | 2.0568 | 0.00001391 | 1.9944
0.00625 | 0.00000261 | 1.8924 | 0.00000253 | 1.8735 | 0.00000382 | 1.8623

Table 2: Accuracy and convergence order of amplitudes in Example 1 at z = 1 km.

it will not leave the domain; instead, a new ray will be generated in the computational space
at the same location £ = zma, and with 6 having opposite sign to the original ray.

For the traveltime, we have to determine boundary conditions for the incident and the
reflected rays separately. We can use the same boundary condition as in the non-reflective
case for the incident ray. The reflective ray has the same traveltime as the incident ray at
the boundary x = x,ax-

Therefore, we have the following boundary condition on x = x,y,

Qs(xma.xa 0) = d)(xmaxa _0)
¢w (xmaxa 0) = ¢w (xmaxa _0)
¢0 (zmaxa 0) - ¢9 (xmaxa _0)
A(l‘max, 0) A(-T/Imaxa _0)
TG §) = { from (43) if u(Zmax, @) >0 (57)

T(ZTmax, —0) if u(ZTmax,d) <0

Similar boundary conditions can be used on the other side z = z,;, and will not be fully
discussed here. For the other two boundaries 6 = 0,,,, and @ = —0,,.,, We can use the same
boundary conditions as in the non-reflective case detailed in the previous section.

Figures 2 and 3 show solutions obtained at z=1 using the proposed method with reflective
boundary conditions imposed on both boundaries x = +1. Figure 2 shows seven segments
of zero level set curves; they correspond to seven branches of traveltimes and amplitudes
in the physical domain. Multiple reflections are captured clearly as shown in Figure 3 for
traveltimes and amplitudes using 120 grid points in both x and € directions.

5.2 Wave guide model

The velocity function is given by
c(z,2z) = 1.1 —exp(—0.52%). (58)

The function is symmetric with respect to x = 0, and we also expect the same type of
symmetry in both the traveltime and the amplitude.
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Figure 1: Traveltimes and amplitude at z = 1 (km) in the constant model using a 120-by-120
grid. Solid line: the exact solution. Circles: the solution using the local level set method.

Traveltime ®

Figure 2: Contours of the traveltime and the zero level set at z = 0.75km in the constant
model using a 120-by-120 grid with reflective boundary conditions.
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Traveltime Amplitude

Time (s)
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Figure 3: Traveltime at z = 0.75km with reflective boundary conditions in the constant
model.

Figure 4 shows the zero level set overlaying the traveltime field at z = 1.6 using a
120x120 grid in the z-6 space. The dashed line is the location of the zero level set and the
solid lines are contours of the traveltime field 7. There are discontinuities in the traveltime
field coming from the update within the computational tube. However, since we only use the
information near the dashed line, the jumps in 7" will not interfere with the interpolation as
long as these jumps are at least one grid distance away from the zero level set. Theoretically,
to resolve the zero level set itself on a given mesh, two parallel level set segments should
be greater than one Ax distance away from each other so that they can be resolved. In
our computation here, we need to perform the orthogonalization procedure, and the normals
from the two parallel level set segments intersect in the middle so that discontinuities appear
in the traveltime field. To avoid discontinuities interfering with our computation, we have to
keep discontinuities away from the zero level set at least one Ax away. This in turn requires
that the computational mesh resolve the parallel segments of the zero level set greater than
2Az distance away. At the tip of the zero level set, the traveltime is continuous along
the zero level set, so discontinuities in the traveltime field will not hurt the computation.
Computationally, due to the smearing of discontinuities, the required mesh may be finer.

Notice also that the contours are perpendicular to the zero level set as designed. As z
varies, the zero level set is advected so that it has more turnarounds and the number of
traveltime arrivals increases from 1 to 3.

The solutions in Figures 5 and 6 show traveltimes, amplitudes and some intermediate
quantities at z =1.6 using 120-by-120 and 240-by-240 grid points, respectively. The solid
lines in the traveltime and amplitude plots are obtained using a ray tracing method. The
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Traveltime [0}

Figure 4: Contours of the traveltime and the zero level set in the waveguide model using a
120-by-120 grid at z = 1.6km.
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Figure 5: Traveltime, amplitude, A and ¢y at z = 1.6km in the waveguide model using a
120-by-120 grid.
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Figure 6: Traveltime, amplitude, A and ¢y at z =

240-by-240 grid.

16

1551

151

1451

141

Time (s)

1351

131

12
-1

Time (s)

0 0.5 1

Traveltime

20
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Figure 7: Traveltime at z = 1.6km in the waveguide model using 120-by-120 and 240-by-240
grids (circles) vs. traveltime by a ray tracing method (solid line).
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Figure 8: Location of caustics and some rays from a ray tracing method in the waveguide
model. Caustics are determined by the local level set method with a 360-by-360 grid in the
x-0 space.

solutions are symmetric as expected. Comparisons between the solution from the Eulerian
method and that from a ray tracing method are also shown in Figure 7. As we mentioned
earlier, the velocity model is approximated by a constant near the source and this gives the
initial condition A = —2 at z=dz. For this waveguide model, because u,=vy=0, the equation
for A is purely advective; therefore the exact solution is A(z; z,8)=-2, which is independent
of z. The variations in the subplots of A in Figures 5 and 6 are due to numerical errors.

The singularities in the amplitudes, shown in upper right subfigures in Figures 5 and 6,
come from the vanishing of ¢y on the zero level set of ¢, shown in lower right subfigures in
Figures 5 and 6 respectively, at around z = £0.45.

The caustic curves detected by the local level set method are shown in Figure 8: circles
are computed locations of the caustics in the waveguide model, and the solid lines are the
rays emanating from the source computed by a ray tracing method. The caustic locations
are exactly those places where rays form an envelop as seen in the figure.

5.3 Sinusoidal model

This example is adapted from the sinusoidal waveguide model used in [35, 36], and the
velocity function is given by

c(x,z) =14 0.2sin(0.57z) sin[37(z + 0.55)] . (59)

The zero level set and the contours of the traveltime field by a 120 by 120 grid in z-6 space
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Figure 9: Contours of the traveltime and the zero level set at z = 2.0km in the Sinusoidal
model by a 120-by-120 grid.

at z = 2.0 are given in Figure 9. As remarked above, the traveltime function is only updated
within a tube around the zero level set, and the discontinuity in the traveltime field is clearly
seen in the left subfigure of Figure 9. Figures 10 and 11 show traveltimes, amplitudes and
some intermediate quantities at z =2.0 using 120-by-120 and 240-by-240 grids, respectively.
The subplots for traveltimes in Figures 10 and 11 show that the triplications in the traveltime
developed at z=2.0 are clearly captured by the level set Eulerian method. Singularities in
the amplitude come from the overturning of the zero level set in the phase space, i.e. ¢y = 0,
which is shown in the lower right subfigure in Figures 10 and 11. Close-up in the triplication
region is shown in Figure 12: solutions from the level set method are shown in circles while
solutions from the ray tracing method are shown in dots.

Figure 13 shows locations of the caustics detected by the proposed method, and the
results match with that from the ray tracing method.

5.4 Synthetic Marmousi model

This example is the Marmousi model from the 1996 INRIA Workshop on Multi-arrival
Traveltimes. The calibration data used here were computed by Dr. Klimes and can be
found at http://www.caam.rice.edu/~benamou/traveltimes.html. This is a synthetic model
which will challenge the level set method used here.

The original Marmousi model is sampled on a 24m by 24m grid, consisting of 384 samples
in the z-direction and 122 samples in the z-direction; therefore the model dimension is
9.192km long in the z-direction and 2.904km deep in the z-direction. In the computational
results presented here, we use a portion of Marmousi model, i.e., a window from 2.64km to
9.36km in the z-direction and from Okm to 2.904km in the z-direction. The source is located
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Traveltime Amplitude
0.5 O

Figure 10: Traveltime, amplitude, A and ¢y at z = 2.0km in the Sinusoidal model using a
120-by-120 grid.
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Figure 11: Traveltime, amplitude, A and ¢y at z = 2.0km in the Sinusoidal model using a
240-by-240 grid.
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Figure 12: Traveltime at z = 2.0 km in the Sinusoidal model using 120-by-120 and 240-by-240

Caustics

grids (circles) vs. traveltime by a ray tracing method (dots).
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Figure 13: Location of caustics and some rays from a ray tracing method in the Sinusoidal
model. Caustics are determined by the local level set method with a 360-by-360 grid in the

x-0 space.



A Local Level Set Method for Paraxial Geometrical Optics 25

Traveltime hd
T 15

15F

. . . . . . . . 15 . . . . . . . .
160 180 200 220 240 260 280 300 320 340 160 180 200 220 240 260 280 300 320 340
Receiver Receiver

Figure 14: Contours of the traveltime and the zero level set in the Marmousi model at
z = 0.0km.

at £=6.0km and z=2.8km. The purpose is to compute (possibly multivalued) traveltimes
for those sampling points, i.e. the receivers from 160 to 340 on the surface z=0.0km. Since
we are using a local level set method, we can choose such a large window of the velocity
model. In the example presented in [30], we were able to deal with a much smaller portion
of the velocity model because there we used a global level set method.

As illustrated in [30], to resolve a complicated wavefront like the one generated by the
Marmousi model, we have to use very fine computational meshes which need huge memory
storage in the global level set setup. With the local level set method developed here, we
are able to tackle a larger portion of the original velocity with reasonable memory and
computational cost. Figure 14 shows the zero level set and its overlay on the traveltime
field; in this computation we have refined the orginal model with a refinement ratio =8, and
set reinitializaton and orthogonalization steps being 15, respectively. As we can see from
the plot, the zero level set has lots of overturnings and tiny tips. Therefore, there are lots of
caustics developed in the wave propagation. The resulting traveltimes at the surface along
with the ray tracing solutions are shown in Figure 15; the two solutions match with each
other nicely. Figures 16-18 show zoom-in details at some particular locations. Near Receiver
310, we have captured five branches of traveltimes; this can be seen from both the zero level
set in Figure 14 and the traveltime branches in Figure 16. Near Receivers 272 and 182, we
have captured three branches of traveltimes; in particular, the branches in Figure 17 are tiny
which illustrate the high resolution of the proposed level set method.

6 Conclusion

We have proposed a local level set method for paraxial geometrical optics, so that the multi-
valued traveltime and amplitude can be constructed with ease. The computational complex-



A Local Level Set Method for Paraxial Geometrical Optics 26

Multiple TT: level-set method vs. ray-tracing
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Figure 15: Comparison between traveltimes using a ray tracing method and the local level
set method at z = 0.0km in the Marmousi model.
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Figure 16: Zoom-in at Receiver 310: five branches of traveltimes by the local level set method
at z = 0.0km in the Marmousi model.
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Figure 17: Zoom-in at Receiver 272: tiny three branches of traveltimes by the local level set
method at z = 0.0km in the Marmousi model
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Figure 18: Zoom-in at Receiver 182: three branches of traveltimes by the local level set
method at z = 0.0km in the Marmousi model.
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ity of the algorithm is O(N?logN), therefore it is highly efficient. Although the subhorizontal
condition is required for the approach to work, it is suitable for many applications, such as
reflection seismics, underwater acoustics and optics. The future work includes grafting this
approach to high resolution seismic inversion [34] and computing the high frequency wave
field using a time domaim approach proposed in [6] rather than the usual frequency domain
approach in [23].
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