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Abstract

We cast the problem of inferring the 3D shape of a scene
from a collection of defocused images in the framework of
anisotropic diffusion. We propose a novel algorithm that
can estimate the shape of a scene by inferring the diffusion
coefficient of a heat equation. The method is optimal, as
we pose it as the minimization of a certain cost functional
based on the input images, and fast. Furthermore, we also
extend our algorithm to the case of multiple images, and
derive a 3D scene segmentation algorithm that can work in
the presence of pictorial camouflage.

1. Introduction
When imaging a scene through a lens, objects at different
distances are blurred by different amounts, and therefore a
collection of defocused images contains information about
the shape of the scene. The problem of retrieving the 3D
shape, or depth map, of a scene, given two or more blurred
images is known as depth/shape from defocus in the field of
computer vision. The typical assumption is to approximate
locally the depth map of the scene with a plane parallel to
the focal plane [4, 12, 15, 16, 18, 14, 6], although work has
also been done in more general cases [3, 8].

In this paper we present a novel algorithm to optimally
recover shape from two defocused images. We build on the
fact that defocus can be modeled by a diffusion process,
which in turn can be modeled by a partial differential equa-
tion, the heat equation [9]. The idea consists of running a
forward heat equation on regions where one image is more
focused than the other, until both images become identical.
The diffusion coefficient required to match the two images
at any given point has a one-to-one correspondence with
the depth of the scene at that point. Although we pose our
problem as a cost functional minimization, our algorithm
is surprisingly fast given the dimension of the space of the

unknowns at play. The minimization is performed by a few
iterations of a gradient descent, which is initialized by a fast
approximated solution.

This algorithm, which can be though of as perform-
ing “simulation-based” inference, avoids the proverbial ill-
posedness associated to reconstructing shape from defocus.
The latter corresponds to solving a blind deconvolution task,
an inverse problem in the infinite-dimensional space of un-
known shapes and radiances of the scene. Our algorithm,
instead, returns an estimate of the shape of the entire scene
without the need for time-consuming alternating minimiza-
tions that are typically employed in blind deconvolution
problems.

The literature on anisotropic diffusion is quite substantial
and, therefore, this work relates to a large number of other
works. In particular, to the extensive literature in image
processing, for instance [7, 11, 1, 13, 17] and references
therein.

We also propose an extension of our algorithm to the
case when more defocused images are available. We con-
sider that images are collected through a controlled change
in the focus setting, for example by moving the lens clock-
wise at a constant velocity and by capturing images at a
fixed frame rate. Our algorithm yields a segmentation of the
scene based on its shape, and not on pictorial cues, and can
therefore be useful in the presence of camouflage, where
pictorial segmentation is challenging.

2. Defocusing via diffusion
In this section, we first introduce the convolutional model
for defocusing. In the simple case of uniform blurring, that
occurs whenever we are imaging a plane parallel to the fo-
cal plane, the convolutional model is known to be shift-
invariant. Then, we recall that the same model can also
be formulated as the (isotropic) heat equation, within the
context of partial differential equations (PDE). However,
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when blurring is not uniform, the isotropic heat equation
cannot be employed. As an alternative, we propose to use
the anisotropic diffusion equation. Based on the properties
of this parabolic differential equation, we devise a scheme
to infer the shape of the scene by reconstructing the space-
varying diffusion coefficients.

2.1. A convolutional model for defocusing
Consider a scene with a smoothLambertian1 surfaceS. We
take images of the scene from the same point of view and
assume that the scene and the illumination are static with
respect to the camera . Under these conditions we can rep-
resent the surfaceS with a functions : R2 7→ R+, and
the radiance map (or, equivalently, the reflectance map) on
the surfaceS with a functionr : R2 7→ R+. If we use
a real aperture camera, the irradiance (the image intensity)
I : Ω ⊂ R2 7→ R+ measured on the image plane with focal
distancep of the optics (the distance between the lens plane
and the plane focused by the lens), can be approximated by
the following equation:

I(y) =
∫

R2
h(y,x, b(s(x), p))r(x)dx ∀y ∈ Ω (1)

whereh : Ω×R2 ×R+ 7→ R+ is thepoint spread function
(PSF) of the optics. The point spread function depends on
the blurring radius b that is function of the focal distance
p, and the distance between the surfaceS and the image
plane. The blurring radiusb determines the size of the re-
gion of the radiancer that contributes to the image intensity
I(y) at each pointy ∈ Ω. Under some hypotheses (see
[16]) on the scene and the focal settings, the map between
b and the surfaceS is monotonic. Therefore, the problem
of inferring the surfaceS from blurred images, is equiva-
lent to the problem of inferring the blurringb. From the
energy conservation principle, h is a function that satisfies
the normalization property

∫

R2
h(y,x, b(s(x), p))dx = 1 ∀y ∈ Ω (2)

for any shape and parameters of the optics. When we are
imaging anequifocal plane2, we haves(x) = s ∀x ∈ Ω.
The PSFh turns out to be a shift-invariant function, i.e.
h(x,y, b(s(x), p)) = h(x−y, b(s, p)) andb(s, p) is a con-
stant. It can be argued, by using notions of radiometry, that
a good approximation for this PSF is the Gaussian function,
with varianceσ2 .= γb for a constantγ > 0 (this constant
can be determined with a calibration procedure). The Gaus-
sian function has been widely used in the literature of depth
from defocus [3].

1A Lambertian surface is characterized by having abidirectional re-
flectance distribution functionthat is independent of the viewing direction.

2An equifocal plane is a plane parallel to the lens plane.

2.2. Equifocal imaging as isotropic diffusion
When the PSF is approximated by a shift-invariant Gaus-
sian function, it is well-known [9] that the imaging model
of Eq. (1) can be formulated in terms of theisotropic heat
equation:

{
u̇(y, t) = c4u(y, t) c ∈ R+ t ≥ 0
u(y, 0) = r(y) ∀y ∈ Ω (3)

where the solutionu : R2 × R+ 7→ R+ taken at a spe-
cific time t = τ , plays the role of an imageI(y) =
u(y, τ) ∀y ∈ Ω. Since we restrict ourselves to solutions
that represent images, which are spatially bounded, we are
guaranteed that a solution to (3) exists and is unique. The
dot-notation is defined aṡu

.= ∂u
∂t , and the symbol4 de-

notes the Laplacian operator
∑2

i=1
∂2

∂y2
i

with y .= [y1 y2].
The parameterc is called thediffusion coefficientand it is
nonnegative. By computing the Green’s function3 relative
to the isotropic heat equation (3), it is easy to verify that the
blurring parameterb is related to the diffusion coefficient
via

b =
2tc

γ
. (5)

Notice that the diffusion coefficientc and the time variable
t are determined up to a common scale factor. Later, we
will solve this ambiguity by fixing the timet to a reference
time, and scalingc accordingly, or, vice versa, by fixingc
and scaling the timet.

Now, suppose that we collect two imagesI1 andI2 for
two different blurring parametersb1 andb2. Using Eq. (5)
with a fixed diffusion coefficientc, we can obtain the two
time instantst1 andt2, so that the solution of Eq. (3) verifies
I1(y) = u(y, t1) andI2(y) = u(y, t2) ∀y ∈ Ω. Now,
supposeb1 < b2 (i.e. imageI1 is more focused than image
I2), then alsot1 < t2 from Eq. (5), and we can substitute
Eq. (3) with

{
u̇(y, t) = c4u(y, t) c ∈ R+

u(y, t1) = I1(y) ∀y ∈ Ω (6)

and have that the solutionu verifiesu(y, t2) = I2(y) ∀y ∈
Ω. Similarly, if t1 > t2, the same equations hold by switch-
ing the role of the imagesI1 andI2.

The isotropic diffusion of Eq. (6) models therelative
blurring between imageI1 and imageI2. In fact, by us-
ing Eq. (1) in the shift-invariant Gaussian case, the relative

3The Green’s functionG : Ω × R2 × R+ 7→ R+ corresponding to
Eq. (3) is defined as theimpulse responseof Eq. (3), i.e. G(y,x, t) =
u(y, t) whereu(y, t) is the solution of Eq. (3) with initial conditions
u(y, 0) = δ(x− y). The functionG satisfies the equation

u(y, t) =

Z
R2

G(y,x, t)u(x, 0)dx =

Z
R2

G(y,x, t)r(x)dx. (4)
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blurring∆b
.= b1 − b2 verifies

∆b =
2(t1 − t2)c

γ
=

2∆tc

γ
. (7)

One can view the relative time∆t as the variable encoding
the change in focal settings, and the diffusion coefficientc
as the variable encoding the shape of the surfaceS.

The problem of inferring shape from defocus, can then
be posed as the following minimization:

ĉ = arg min
c

∫

R2
φ(u(y, t2), I2(y))dy (8)

whereu(y, t) is the solution of (6), andφ is a discrepancy
measure.

2.3. Non-equifocal imaging model
When the surfaceS is not an equifocal plane, the corre-
sponding PSF is, in general, shift-variant, and the equiva-
lence with the isotropic heat equation does not hold. Rather
than seeking an approximation for the shift-variant PSF, we
propose a model based on a generalization of the isotropic
heat equation that satisfies the energy conservation principle
(2). To take into account the space-variant nature of the non-
equifocal case, we propose using theanisotropic diffusion

equation, and define a diffusion tensorc
.=

[
c11 c12

c21 c22

]

where cij : R2 7→ R for i, j = 1, 2. We assume that
cij ∈ C1(R2) (i.e. the space of functions with continu-
ous partial derivatives inR2) for i, j = 1, 2, and4 c(y) ≥ 0
∀y ∈ R2. Let the open setO .= {y : c(y) > 0} ⊂ Ω,
and assumeO is such thatO ∈ C1 (i.e. O is bounded and
the boundary ofO can be locally mapped by functions in
C1(R)). The anisotropic diffusion equation is then defined
as {

u̇(y, t) = ∇ · (c(y)∇u(y, t)) t ≥ 0
u(y, t1) = I1(y) ∀y ∈ Ω (9)

where the symbol∇ is the gradient operator

[
∂

∂y1
∂

∂y2

]
with

y = [y1 y2], and the symbol∇· is the divergence operator∑2
i=1

∂
∂yi

. Here we assume for simplicity thatI1 is more
focused thanI2, i.e. t1 < t2. It is easy to verify that (9)
satisfies the energy conservation principle (2) by using the
divergence theorem and the assumptions on the diffusion
tensor (for more details see [5]).

By assuming that the surfaceS is smooth, we can relate
the diffusion tensorc to a relative blurring tensor∆b (a 2-
dimensional covariance matrix of the Gaussian kernel) via:

∆b(s(y), p) ' 2∆tc(y)
γ

(10)

4Sincec is a tensor, the notationc(y) ≥ 0 means thatc(y) is positive
semi-definite.

and the solutionu(y, t) of Eq. (9) verifiesu(y, t2) ' I2(y).
The original problem (8) can then be posed again as

ĉ = arg min
c

∫

R2
φ(u(y, t2), I2(y))dy (11)

whereu(x, t) is now the solution of (9). This problem is
known to be ill-posed [10], and regularization needs to be
added in order to retrieve the diffusion tensorc:

ĉ = arg min
c

∫

R2
φ(u(y, t2), I2(y))dy+α

∫

R2
‖∇c(y)‖2dy

(12)
whereα > 0 is a tuningparameter that determines the de-
gree of regularization ofc, and

‖∇c(y)‖2 =
2∑

i,j=1

‖∇cij(y)‖2. (13)

In general, the relative blurring tensor∆b may be neither
positive definite nor negative definite, so that the diffusion
tensorc does not satisfyc ≥ 0, and the initial assumption
that I1 is more focused thanI2 is not true over the whole
Ω. In this case, the minimization (12) would involve back-
ward diffusion as well as forward diffusion. We avoid the
instability issues of backward diffusions, by defining two
diffusion tensorsc+ andc−, and a partition{O−,O+} of
R2, such that they satisfyc+(y) = c(y) ≥ 0 ∀y ∈ O+ and
c−(y) = −c(y) ≥ 0 ∀y ∈ O−. Then, we can divide the
original model (9) into the following two models:





u̇(y, t) = ∇ · (c+(y)∇u(y, t)) t ≥ 0
u(y, 0) = I1(y) ∀y ∈ O+

u(y,∆t+) ' I2(y) ∀y ∈ O+

(14)

and




u̇(y, t) = ∇ · (c−(y)∇u(y, t)) t ≥ 0
u(y, 0) = I2(y) ∀y ∈ O−

u(y,∆t−) ' I1(y) ∀y ∈ O−
(15)

which satisfy the initial assumptions.
Similarly, we can also divide the original problem (12)

into the two subproblems:

ĉ+ = arg min
c+(y) ≥ 0
∀y ∈ O+

∫

O+

φ(u(y, ∆t+), I2(y))dy+

+α+

∫

R2
‖∇c+(y)‖2dy

(16)
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and

ĉ− = arg min
c−(y) ≥ 0
∀y ∈ O−

∫

O−
φ(u(y, ∆t−), I1(y))dy+

+α−

∫

R2
‖∇c−(y)‖2dy

(17)
with some constantsα+ > 0 andα− > 0.

Notice that in both problems (16) and (17) the diffu-
sion tensorsc+ andc− are constrained to be positive semi-
definite, and therefore, the corresponding models (14) and
(15) involve only forward diffusions. An additional bene-
fit of this formulation, that we will see in Section 3, is that
when solving these two problems, we can obtain a fast ap-
proximated solution by simulating the corresponding model
just once.

3. Shape from defocus via anisotropic
diffusion

As we have seen in the previous sections, the problem of
estimating the depth maps of a scene from blurred images,
can be posed as the problem of inferring the diffusion ten-
sorsc− andc+.

For now, consider Eq. (14) and the corresponding prob-
lem (16) onc+. For ease of notation, we define

∫

R2
ψ(c+(y))dy =

∫

R2
φ(u(y, ∆t+), I2(y))dy+

+α+

∫

R2
‖∇c+(y)‖2dy.

(18)
The evolution of the diffusion coefficientc+ can be per-
formed via the gradient descent

ċ+(y) = −κ
(∇ψ(c+)

)
(y) (19)

with κ > 0 a scalar tuning parameter. It can be shown that
in the case ofφ(a, b) = (a − b)2, wherea, b ∈ R, the
gradient∇ψ(c+) is (for more details see [5]):

(∇ψ(c+)
)
(y) = −2

∫ ∆t+

0

∇v(y, τ)∇u(y, τ)T dτ−
−α+4c+(y)

(20)
where(·)T denotes the transpose of a vector, andv : R2 ×
R+ 7→ R is defined as

v(y, τ) .=
∫

R2
G(y,x, ∆t+ − τ)

(
u(x, ∆t+)− I2(x)

)
dx.

(21)
G is the Green’s function associated withu in Eq. (14).

Once u(y, τ) has been computed by simulating
model (14) with the current estimate ofc+, we can com-
putev(y, τ) by simulating the same model, but with initial
conditionsu(y,∆t+)− I2(y).

Since in this paper we are interested in deriving a fast
scheme for 3D shape estimation, we consider only the case
of a scalar diffusion coefficientc, which is equivalent to
having cij = c for i, j = 1, 2. In this case the gradient
above becomes simply:

(∇ψ(c+)
)
(y) = −2

∫ ∆t+

0

∇v(y, τ)T∇u(y, τ)dτ−
−α+4c+(y)

(22)
which reduces of about four times the total amount of re-
quired computations. Furthermore, we also propose to
initialize the above gradient descent by using a fast ap-
proximated solution forc+. As a first step, we substi-
tute the integration inτ with a summation over only the
two time instantsτ = 0 and τ = ∆t+. Then, we ap-
proximate the Green’s functionG(y,x, ∆t+) with a shift
invariant Gaussian kernel with variance2∆t+cM

α , where
cM = maxy∈O+ c+(y). We call

(∇ϕ(c+)
)
(y) the approx-

imated gradient.
To compensate for all the simplifications made so far,

we propose substituting the gradient iteration (19) with the
following iteration

ċ+(y) =
{

κ if
(∇ϕ(c+)

)
(y) < 0

0 if
(∇ϕ(c+)

)
(y) ≥ 0.

(23)

Then, to further reduce the amount of computations for
this approximated solution, we change the initial condition
of model (14) with the solutionu(y, τ) computed at the
previous gradient descent step and useċ+ as diffusion co-
efficient instead ofc+. Finally, we obtainc+ by integrat-
ing (23) in time. In this way, we obtain a first initial dif-
fusion coefficientc+ by running a single forward simula-
tion of model (14), and by simultaneously guaranteeing that
c+ ≥ 0.

Although the iteration above has been derived by using
very crude approximations, we will see in the experimen-
tal section that it returns an initial estimate of the diffusion
coefficient already very close to the ground truth (which is
available in the case of synthetic data).

We use this estimate ofc+ to initialize iteration (19).
Then, from Eq. (19) the total amount of diffusionc+ can
be obtained by integratinġc+ in time. The same scheme
applies to the diffusion coefficientc−. We also impose that
the diffusion coefficientsc+ andc− are strictly positive only
on disjoint regions, as the setsO+ andO− are disjoint by
definition. We do that by setting to zero the smallest of the
two coefficients on the regions where the gradient iterations
make both coefficients positive. Finally, the surfaceS can
be derived directly fromc+ andc− via Eq. (10).

In short, one can see the proposed scheme as a technique
to diffuse two given blurred imagesI1 andI2 in the regions
where one is more focused than the other, until they both be-
come identical. The amount of diffusion required to match
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the two images carries information about the shape of the
scene.

4. 3D shape segmentation
When it is possible to collectN images in a controlled way,
for example by moving the lens clockwise at a constant ve-
locity and by capturing images at a fixed frame rate, we can
reconstruct the surfaceS of the scene by using a partition-
ing scheme derived from the previous section.

Consider two imagesI1 andI2 from theN images avail-
able, captured with focal planes at depthp1 andp2 respec-
tively, and suppose that the depth map of the scene is con-
tained betweenp1 andp2. This means that

p1 < s(x) < p2 ∀x ∈ Ω. (24)

The blurring radiusb is typically defined as

b(s(x), pi) = βD

∣∣∣∣1−
s(x)
pi

∣∣∣∣ i = 1, 2 (25)

with β a scale factor, andD the lens diameter. Then, points
where the amount of blurring of the two images is the same,
i.e. whereb(s(x), p1) = b(s(x), p2), lie on the equifocal
plane at depth

Z =
2p1p2

p1 + p2
. (26)

Points that belong to regions whereI2 is more focused than
I1 correspond to depths larger than (26), while points that
belong to regions whereI1 is more focused thanI2 corre-
spond to depths smaller than (26). We call the collection of
the first group of points thebackground, and the collection
of the second group of points theforeground.

Our procedure consists in computing the diffusion co-
efficients c+ and c−, and then setting the foreground as
the region where the estimated diffusion coefficientc+ is
strictly positive and the background as the region wherec−
is strictly positive. We have seen experimentally that seg-
mentation is achieved with sufficient precision by iterating
only once the approximated gradient descent (22).

By repeating the segmentation on other couples of im-
ages satisfying the constraint (24) we can build a “layered”
representation of the surface of the scene. Suppose that the
N images have been collected by increasing the focal plane
depthp of a constant step∆p, so that thei-th image cor-
responds to the focal plane depthpi = p + i∆p. Dur-
ing the segmentation procedure, we consider two images
with focal depthpi andpi+M with i = 1 . . . N − M . We
chooseM so that (24) is satisfied for alli = 1 . . . N −M .
The couple(i, i + M) defines the equifocal plane at depth
Zi = 2pipi+M

pi+pi+M
as prescribed by (26). Then, the region

of the image domain, whose depth is betweenZj and
Zj+1, will be segmented as background when the couple
(j, j + M) is considered, and as foreground when the cou-
ple (j + 1, j + 1 + M) is considered.

5. Experiments
To test our algorithms we use both synthetically generated
and real images. First, we show experiments by using the
gradient descent described in Section 3 on sets of2 images.
Then, we show experiments on a set of60 images by imple-
menting the 3D shape segmentation algorithm described in
the previous section.

5.1. Experiments: anisotropic diffusion
We numerically implement the gradients required by our
algorithm by using forward and backward finite difference
schemes. We will not give further details, as this implemen-
tation follows a very standard scheme, that can be found in
[2], for example.
Synthetic images:In our synthetic setup (see Figure 1) we
generate a “wave-shaped” surface and a radiance with in-
tensities that are uniformly distributed between50 and150,
where the gray-scale ranges between0 and255. We capture
two images with two different focal settings. In this case
a shift-invariant approach would fail to capture the depth
variation of the scene, especially at the ridges of the waves
(see Figure 3). We retrieve a first estimate of the surface
by employing the approximated gradient in Eq. (22). Fig-
ure 2 shows6 snapshots of the surface estimation in gray-
levels (white corresponds to small depth values, while black
corresponds to large depth values). Notice that the surface
closely resembles the correct shape (see Figure 1), although
it has been estimated via the approximated gradient. An al-
ternative visualization of the surface evolution is given in
Figure 3, where it is easier to perceive the reconstructed 3D
geometry. Finally, in Figure 4 we show the final shape after
applying the gradient descent (22), texture mapped with one
of the input images. We found that the difference between
the final shape and the one obtained from the approximated
iteration is minimal.
Real images: Our real data setup (see Figure 5) is com-
posed of a cylinder and a square sponge placed on top of
a box. The objects lie between0.6m and0.9m in front of
the camera, which is equipped with a Nikon AF NIKKON
35mm lens. We capture two images by focusing first at
0.6m and then at0.9m (see Figure 5). Figure 6 shows6
snapshots of the surface estimation in gray-levels. The same
evolution is rendered in 3D in Figure 7. Notice that at the
edges of the sponge the segmentation fails, due to the fact
that the diffusion coefficient is not smooth and the image
formation process cannot be captured by Eq. (1). Finally, in
Figure 8 we show the final shape after applying the gradient
descent (22), texture mapped with one of the input images.

5.2. Experiments: 3D shape segmentation
We test the 3D shape segmentation algorithm on real im-
ages from the scene in Figure 9. We capture60 images by
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Figure 1: Top: setup for the synthetic scene. Bottom: 2
input images synthetically generated.

Figure 2: 6 snapshots from the evolution of the estimated
surface by using the approximated gradient in Eq. (22). The
depth map is shown in gray-levels (white corresponds to
small depth values, while black corresponds to large depth
values).

changing the focal setting of a constant step. In Figure 9 we
show a sample of2 of the60 images. We chooseM = 33
and segment the 3D shape in27 levels (see Figure 10 and
Figure 11). 6 snapshots of the reconstructed surface after
smoothing are then shown in Figure 12.

6. Summary and Conclusions
We have presented novel algorithms to infer shape from de-
focus and 3D segmentation based on true shape and not on
pictorial cues. The first algorithm retrieves 3D shape of an
entire scene by inferring the diffusion coefficient of a heat
equation. Inference is performed by a gradient descent min-
imization and numerical instabilities are avoided by consid-

Figure 3:6 snapshots from the evolution of the surface es-
timation by using the approximated gradient in Eq. (22) are
shown as a gray-level mesh (white corresponds to small
depth values, black corresponds to large depth values).

Figure 4: 6 novel views of the estimated shape with tex-
ture mapping, after refining the diffusion coefficients with
Eq. (20).

ering only forward diffusions. The algorithm is robust, in
view of its “simulation” nature, and fast because it avoids
alternating minimization, usually employed in blind decon-
volution algorithms. The second algorithm segments the 3D
shape of the scene based on a partitioning procedure derived
from the properties of anisotropic diffusion.
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