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Abstract. We propose a solution to the problem of inferring the depth map, ra-
diance and motion field of a scene from a collection of motion-blurred and de-
focused images. We model motion-blurred and defocused images as the solution
of an anisotropic diffusion equation, whose initial conditions depend on the radi-
ance and whose diffusion tensor encodes the shape of the scene, the motion field
and the optics parameters. We show that this model is well-posed and propose an
efficient algorithm to infer the unknowns of the model. Inference is performed
by minimizing the discrepancy between the measured defocused images and the
ones synthesized via diffusion. Since the problem is ill-posed, we also introduce
additional Tikhonov regularization terms. The resulting method is fast and robust
to noise as shown by experiments with both synthetic and real data.
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1 Introduction

We consider the problem of recovering the motion, depth map and radiance of a scene
from a collection of defocused and motion-blurred images. Defocus is commonly en-
countered when using cameras with a finite aperture lens, while motion blur is common
when the imaging system is moving.

To the best of our knowledge, we are the first to address the above problem. Typ-
ically, this problem has been studied by considering images that are affected either by
defocus or by motion blur alone. The first case is divided into two fields of research de-
pending on which object one wants to recover. When we are interested in recovering the
radiance from defocused (and possibly downsampled) images, we are solving asuper-
resolutionproblem (for example, see [1] and references therein). If we are interested in
recovering the depth map of the scene (and possibly the radiance of the scene), then we
are solving the so-called problem of depth from defocus [2–7].

The second case corresponds to the problem of motion deblurring, where one is
mainly interested in reconstructing the radiance, which can be thought of as theun-
blurred or ideal image of a scene under the assumptions of Lambertian reflection and
uniform illumination [8–10]. Motion deblurring is a problem of blind deconvolution
[11] or blind image restoration (see [12] for example), and, therefore, is related to a
large body of literature (for example, see the survey [13] and references therein).

1.1 Contributions of This Paper

The contribution of this paper is twofold: to link the estimation of the depth map of a
scene to the recovery of the radiance and to introduce a novel imaging model for both
defocused and motion-blurred images that is simple and computationally efficient.

The advantage of linking the recovery of the depth map to the recovery of the ra-
diance of the scene becomes evident when modeling motion blur. Consider a camera
that is moving and capturing an image while its shutter is open. In general, points in the
scene that are closer to the camera move faster on the image plane than points that are
farther from the camera. Thus, these points generate a different motion blur in different
locations of the captured image and this difference depends on the depth map of the
scene as well as on the motion of the camera. Hence, to motion-deblur the captured
image, i.e. to recover the radiance, one also needs to reconstruct the depth map of the
scene. We propose a model for motion blur whose description requires only the depth
map of the scene and the rigid motion parameters of the camera (at most6 scalar num-
bers for2 images). This model avoids the artifacts of employing oversimplified motion
models (e.g. each point on the image plane moves with constant velocity) and yields bet-
ter estimates than motion models where the motion field is completely unconstrained,
due to its lower dimensionality.

The second contribution of this paper is that we introduce a simple and computa-
tionally efficient model for defocused and motion-blurred images. We propose a model
in the framework of anisotropic diffusion in the spirit of [14]. We evolve a partial dif-
ferential equation (PDE) with initial conditions equal to the unblurred image and with a
diffusion tensor (see section 2.1) depending on the depth map, the motion of the scene,
and the parameters of the optics. The solution taken at a final timeT corresponds to
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one of the captured images. In this paper we model only sideway translational motions,
but the approach can be extended to more general motions in a straightforward manner
(see section 2.2). We derive a simple relation between the diffusion tensor and the depth
map, focal settings of the camera, and motion blur parameters in this case. The literature
on anisotropic diffusion is quite substantial and, therefore, this work relates to a large
number of other works. In particular, to the extensive literature in image processing, for
instance [15–18] and references therein.

We pose the inference problem as the minimization of the discrepancy between the
data (i.e. the final value of the anisotropic diffusion for several different focal settings)
and the model. The problem is ill-posed, it consists in finding a diffusion tensor and
an unknown initial value from final values of parabolic equations. For this sake we
introduce Tikhonov-type regularization, which also remedies an unwanted effect with
respect to motion blur, where a local minimum would be attained for zero motion in the
absence of suitable regularization (see section 3).

2 A General Model for Defocus and Motion Blur

2.1 An Imaging Model for Space-Varying Defocus

Images captured with a camera are measurements of energy emitted from the scene.
We represent an image with a functionJ : Ω ⊂ R2 7→ [0,∞), that maps pixels on the
image plane to energy values. We assume thatΩ is a bounded domain with piecewise
smooth boundary∂Ω. The intensity of the measured energy depends on the distance of
the objects in the scene from the camera and the reflectivity properties of their surfaces.
We describe the surfaces of the objects with a functions : R2 7→ [0,∞), and the
reflectivity properties with another functionr : R2 7→ [0,∞); s assigns a depth value to
each pixel coordinate and it is calleddepth map. Similarly,r assigns an energy value to
each point on the depth maps and it is called, with an abuse of terminology1, radiance
of the scene. Furthermore, we usually know lower and upper bounds0 < smin < smax

for the depth maps, which we may incorporate as an additional inequality constraint of
the form

smin ≤ s(x) ≤ smax, ∀x ∈ Ω. (1)

The energy measured by an imageJ also depends on the optics of the camera. We
assume the optics can be characterized by a functionh : R2 × R2 7→ [0,∞), the so-
calledpoint spread function(PSF), so that an imageJ can be modeled by

J(y) =
∫

h(y, x)r(x)dx. (2)

Although we did not write it explicitly, the PSFh depends on the surfaces and the
parameters of the optics (see section 3 for more details).

1 In the context ofradiometry, the termradiancerefers to a more complex object that describes
energy emitted along a certain direction, per solid angle, per foreshortened area and per time
instant. Here we are implicitly assuming that scene radiance and image irradiance are the same,
which is an approximation that is only valid for Lambertian scenes under uniform illumination.
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Under the assumption that the PSF is Gaussian and that the surfaces is smooth, we
can substitute the above model with a PDE whose solutionu : R2 × [0,∞) 7→ R,
(x, t) 7→ u(x, t), at each timet represents an image with a certain amount of blurring.
In formulas, we have thatJ(y) = u(y, T ), whereT is related to the amount of blurring
of J . We use the followinganisotropic diffusionpartial differential equation:

{
u̇(y, t) = ∇ · (D(y)∇u(y, t)) t > 0
u(y, 0) = r(y) ∀y ∈ Ω

(3)

whereD
.=

[
d11 d12

d21 d22

]
with dij : R2 7→ R for i, j = 1, 2 andd12 ≡ d21, is calleddiffu-

sion tensor. We assume thatdij ∈ C1(R2) (i.e. the space of functions with continuous
partial derivatives inR2) for i, j = 1, 2, and2 D(y) ≥ 0 ∀y ∈ R2. The symbol∇ is the

gradient operator
[

∂
∂y1

∂
∂y2

]T

with y = [y1 y2]T , and the symbol∇· is the divergence

operator
∑2

i=1
∂

∂yi
. Notice that there is a scale ambiguity between the timeT and the

determinant of the diffusion tensorD. We will setT = 1
2 to resolve this ambiguity.

When the depth maps is a plane parallel to the image plane, the PSFh is a Gaussian
with constant covarianceσ2, and it is easy to show that2tD = σ2Id, whereId is the
2× 2 identity matrix. In particular, at timet = T = 1

2 we haveD = σ2Id. This model
is fairly standard and was used for instance in [14].

2.2 An Imaging Model for Motion Blur

On the image plane we measure projections of three dimensional points in the scene. In
other words, given a pointX(t) = [X1(t) X2(t) X3(t)] ∈ R3 at a time instantt, we
measure

x(t) .= [x1(t) x2(t)]T
.=

[
X1(t)
X3(t)

X2(t)
X3(t)

]T

. (4)

Using the projections of the points on the image planex(t), we can write the coordinates
of a pointX(t) as

X(t) = [x(t) 1]T s(x(t)). (5)

We denote withV = [V1(t) V2(t) V3(t)]T ∈ R3 the translational velocity and withω ∈
R3 the rotational velocity of the scene. Then, it is well known that the time derivative
of the projectionx satisfies (see [19] for more details):

ẋ(t) =
1

s(x(t))

[
F 0 −x1(t)
0 F −x2(t)

]
V +

[ −1− x2
2(t) x1(t)x2(t) −x2(t)

−x1(t)x2(t) 1 + x2
1(t) x1(t)

]
ω. (6)

We definev
.= ẋ(t) and call it thevelocity field.

As we have anticipated, we restrict ourselves to a crude motion model that only
represents sideways translations parallel to the image plane

v(t) = F
V1,2(t)
s(x(t))

=
V̄1,2(t)
s(x(t))

(7)

2 SinceD is a tensor, the notationD(y) ≥ 0 means thatD(y) is positive semi-definite.
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whereV̄1,2 = FV1,2 is the velocity in focal length units. Now, recalling eq. (2), we have
thatJ(x + vt) denotes an image captured at timet. If the camera shutter remains open
while moving the camera with velocityV for a time interval∆T , then the imageI we
measure on the image plane can be written as:

I(x) =
1

∆T

∫ ∆T
2

−∆T
2

J(x + vt)dt '
∫

1√
2πγ2

e
− t2

2γ2 J(x + vt)dt (8)

whereγ depends on the time interval∆T . The parameterγ can be included in the
velocity vectorv since there is an ambiguity between the duration of the integration
time and the magnitude of the velocity. Therefore, we have

I(x) =
∫

1√
2π

e−
t2
2 J(x + vt)dt. (9)

For simplicity, the above model has been derived for the case of a sideway translational
motion, but it is straightforward to extend it to the general case of eq. (6).

2.3 Modeling Motion Blurring and Defocus Simultaneously

In this section, we consider images where defocus and motion blur occur simultane-
ously. In the presence of motion, a defocused imageJ measured at timet can be ex-
pressed as

J(y + vt) =
∫

h(y + vt, x)r(x)dx. (10)

Following eq. (9), we obtain

I(y) =
∫

1√
2π

e−
t2
2

∫
1

2πσ2
e−

(y−x+vt)T (y−x+vt)
2σ2 r(x)dxdt. (11)

If we now interchange the integration order, we can write the previous equation in a
more compact way as

I(y) =
∫

1
2π|C| 12 e−

(y−x)T C−1(y−x)
2 r(x)dx (12)

whereC = σ2Id + vvT .
Eq. (12) is also the solution of the anisotropic diffusion PDE (3) with initial con-

dition the radiancer and diffusion tensorD = C
2t . Hence, a model for defocused and

motion-blurred images is the following:
{

u̇(y, t) = ∇ · (D∇u(y, t)) t > 0
u(y, 0) = r(y) ∀y ∈ Ω

(13)

where at timet = T = 1
2 , D = C = σ2Id + vvT . Now, it is straightforward to extend

the model to the space-varying case, and have that

D(y) = σ2(y)Id + v(y)v(y)T . (14)
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In particular, when eq. (7) is satisfied, we have

D(y) = σ2(y)Id +
V̄1,2V̄

T
1,2

s2(y)
. (15)

Notice that the diffusion tensor just defined is made of two terms:σ2(y)Id and
V̄1,2V̄ T

1,2
s2(y) .

The first term corresponds to the isotropic component of the tensor, and captures de-
focus. The second term corresponds to the anisotropic component of the tensor, and it
captures motion blur. Furthermore, since both of the two terms are guaranteed to be
always positive semi-definite, the tensor eq. (15) is positive semi-definite too. We will
use eq. (13) together with eq. (15) as our imaging model in all subsequent sections.

2.4 Well-posedness of the Diffusion Model

A first step in the mathematical analysis is to verify the well-definedness of the parameter-
to-output map(r, s, V1,2) 7→ u(., T ), which mainly corresponds to a well-posedness
result for the degenerate parabolic initial-boundary value problems





u̇(y, t) = ∇ · (D(y)∇u(y, t)) t > 0
u(y, 0) = r(y)
D(y)∇u(y, t) · n = 0

(16)

for diffusion tensors of the formD(y) = σ(y)2Id + V̄1,2V̄ T
1,2

s(x)2 . n denotes the unit vector
orthogonal to the boundary ofΩ. The following theorem proves the existence of weak
solutions for the direct problem:

Theorem 1. Let r ∈ L2(Ω) ands ∈ H1(Ω) satisfies(1). Then, there exists a unique
weak solutionu ∈ C(0, T ; L2(Ω)) of (16), satisfying

∫ T

0

∫

Ω

λ(y)|∇u(y, s)|2 dy ds ≤
∫

Ω

r(y)2 dy, (17)

whereλ(y) ≥ 0 denotes the minimal eigenvalue ofD(y).

Proof. See Appendix.

3 Estimating Radiance, Depth and Motion

In section 2.1 we introduced the varianceσ2 of the PSFh to model defocus. The vari-
anceσ2 depends on the depth map via the following equation

σ2(x) =
(

d

2

)2 (
1− p

(
1
F
− 1

s(x)

))2

(18)

whered is the aperture of the camera (in pixel units),p is the distance between the
image plane and the lens plane (see Figure 1),F is the focal length of the lens ands is
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s p

d σ

σ

depth map lens image plane

Fig. 1.Simplified geometry of a camera with a lens. The depth maps is the distance of each point
in the scene from the lens. The parameterp is the distance of the lens from the image plane. The
diameter of the lens is denoted byd, andσ denotes the radius of the blurring disc generated by a
point in the scene.

the depth map of the scene. We simultaneously collect a numberN of defocused and
motion-blurred images{I1, . . . , I2} by changing the parameterp = {p1, . . . , pN}. No-
tice that the parameterspi lead to different variancesσ2

i (x), which affect the isotropic

component of the diffusion tensorD, but not its anisotropic component
V̄1,2V̄ T

1,2
s2(x) . As

shown in section 2.3 we can represent an imageIi by taking the solutionui of eq. (13)

at timet = T = 1/2 with a diffusion tensorDi(x) = σ2
i (x)Id + V̄1,2V̄ T

1,2
s2(x) , and with the

same initial conditionui(y, 0) = r(y) ∀i = 1 . . . N .
We pose the problem of inferring the radiancer, the depth maps and the motion

field v of the scene by minimizing the following least-squares functional with Tikhonov
regularization (cf. [20])

r̂, ŝ, V̂1,2 = arg min
r,s,V1,2

N∑

i=1

∫

Ω

(ui(x, T )− Ii(x))2 dx + α ‖r − r∗‖2 + β ‖∇s‖2 +

+γ (‖V1,2‖ −M)2 ,
(19)

whereα, β, andγ are positive regularization parameters,r∗ is a prior3 for r andM is
a suitable positive number4. One can choose the norm‖ · ‖ depending on the desired
space of solutions. We choose theL2 norm for the radiance and the components of the
gradient of the depth map and the`2 norm for the velocity vectorV1,2.

In this functional, the first term takes into account the discrepancy between the
model and the measurements; the second and third term are classical regularization
functionals, imposing some regularity on the estimated depth map and penalizing large
deviations of the radiance from the prior. The last term is of rather unusual form, its
main objective being to excludeV1,2 = 0 as a stationary point. One easily checks that
for γ = 0 or M = 0, V1,2 = 0 is always a stationary point of the functional in (19),

3 We do not have a preferred prior for the radiancer. However, it is necessary to introduce this
term to guarantee that the estimated radiance does not diverge. In practice, one can use as a
prior r∗ one of the input images, or a combination of them, and choose a very smallα.

4 Intuitively, the constantM is related to the maximum motion blurring intensity that we are
willing to tolerate in the input data.
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which is of course an undesirable effect. This stationary point is removed for positive
values ofM andγ (see Figure 2).
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Fig. 2. Left: cost functional for various values ofV1 andV2 whenγ = 0 or M = 0. Right:
cost functional for various values ofV1 andV2 whenγ 6= 0 andM 6= 0. In both cases the cost
functional eq. (19) is computed for a radiancer̂ and a depth map̂s away from the true radiance
r and the true depth maps. Notice that on the right plot there are two symmetric minima for
V1,2. This is always the case unless the true velocity satisfiesV1,2 = 0, since the trueV1,2 can be
determined only up to the sign.

3.1 Cost Functional Minimization

To minimize the cost functional (19) we employ a gradient descent flow. For each un-
known we compute a sequence converging to a local minimum of the cost functional,
i.e. we have sequencesr̂(x, τ), ŝ(x, τ), V̂1,2(τ), such that

r̂(x) = lim
τ 7→∞

r̂(x, τ), ŝ(x) = lim
τ 7→∞

ŝ(x, τ), V̂1,2 = lim
τ 7→∞

V̂1,2(τ). (20)

At each iteration we update the unknowns by moving in the opposite direction of the
gradient of the cost functional with respect to the unknowns. In other words, we let

∂r̂(x, τ)
∂τ

.= −∇r̂E(x),
∂ŝ(x, τ)

∂τ

.= −∇ŝE(x),
∂V̂1,2(τ)

∂τ

.= −∇V̂1,2
E(x).

(21)
It can be shown that the above iterations decrease the cost functional asτ increases. The
computation of the above gradients is rather involved, but yields the following formulas,
that can be easily implemented numerically:

∇rE =
N∑

i=1

wi(x, 0)

∇sE = 2
N∑

i=1

∫ T

0

(
σi(x)

pi

s2(x)
Id +

V1,2V
T
1,2

s3(x)

)
∇ui(x, t) · ∇wi(x, t) dt

∇V1,2E = −
N∑

i=1

∫ T

0

∫

Ω

(
V ′

1,2V
T
1,2 + V1,2V

′T
1,2

s2(x)
∇ui(x, t) · ∇wi(x, t)) dx dt

(22)

wherewi satisfies an adjoint parabolic equation (see Appendix for more details).
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4 Experiments
The algorithm presented in section 3.1 is tested on both synthetic (section 4.1) and real
(section 4.2) data. In the first case, we compare the estimated unknowns with the ground
truth and establish the performance of the algorithm for different amounts of noise. In
the second case, since we do not have the ground truth, we only present a qualitative
analysis of the results. We implement the gradient flow equations in section 3.1 with
standard finite difference schemes (see [18, 21] for example).

4.1 Synthetic Data
In this first set of experiments, we consider a depth map made of a slanted plane (see
the leftmost image in Figure 5), that has one side at0.52m from the camera and the
opposite side at0.85m from the camera. The slanted plane is painted with a random
texture. We define the radiancer to be the image measured on the image plane when
a pinhole lens is used (see first image from the left in Figure 3). The second image
from the left in Figure 3 has been captured when the scene or the camera are subject
to a sideway translational motion while the camera shutter remains open. Notice that
the top portion of the image is subject to a more severe motion blur than the bottom
part. This is due to the fact that in this case points that are far from the camera (bottom
portion of the image) move at a slower speed than points that are close to the camera
(top portion of the image).

We simulate a camera that has focal length0.012m and F-number2. With these
settings we capture two images: one by focusing at0.52m, and the other by focusing
at0.85m. If neither the camera nor the scene are moving, we capture the two rightmost
images shown in Figure 3. Instead, if either the camera or the scene are moving sideway,
we capture the two leftmost images shown in Figure 4. The latter two are the images
we give in input to our algorithm. In Figure 4 we show the recovered radiance when
no motion blur is taken into account (third image from the left) and when motion blur
is taken into account (rightmost image). As one can notice by visual inspection, the
latter estimate of the radiance is sharper than the estimate of the radiance when motion
blurring is not modeled. The improvement in the estimation of the radiance can also
be evaluated quantitatively since we know exactly the ground truth. To measure the
accuracy of the estimated radiance, we compute the following normalized RMS error:

NRMSE(φestimated, φtrue) =
‖φestimated − φtrue‖

‖φtrue‖ (23)

whereφestimated is the estimated unknown,φtrue is the ground truth and‖ · ‖ denotes
the L2 norm. We obtain that the NRMSE between the true radiance and the motion-
blurred radiance (second image from the left in Figure 3) is0.2636. When we compen-
sate only for defocus during the reconstruction, the NRMSE between the true radiance
and the recovered radiance is0.2642. As expected, since the motion-blurred radiance is
the best estimate possible when we do not compensate for motion blur, this estimated
radiance cannot be more accurate than the motion-blurred radiance. Instead, when we
compensate for both defocus and motion blur, the NRMSE between the true radiance
and the recovered radiance is0.2321. This shows that the outlined algorithm can restore
images that are not only defocused, but also motion-blurred. The recovered depth map
is shown in Figure 5 on the two rightmost images together with the ground truth for
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direct comparison (left). The true motion isV1,2 = [0.8 0]T and the recovered motion
is [0.8079 − 0.0713]T in focal length units.

To test the performance and the robustness of the algorithm, we synthetically gen-
erate defocused and motion-blurred images with additional Gaussian noise. We use a
scene made of a staircase depth map with20 steps, with the first step at0.52m from
the camera and the last step at0.85m from the camera. As in the previous experiment,
we capture two images: one by focusing at0.52m and the other by focusing at0.85m.
To each of the images we add the following5 different amounts of Gaussian noise:0%,
0.5%, 1%, 2.5% and5% of the radiance magnitude. For each noise level we run20 ex-
periments from which we compute the mean and the standard deviation of the NRMSE.
The results are shown in Figure 6.

Original Motion-blurred Two defocused images

Fig. 3. First from the left: synthetically generated radiance. Second from the left: motion-blurred
radiance. This image has been obtained by motion-blurring the synthetic radiance on the left.
Third and fourth from the left: defocused images from a scene made of the synthetic radiance in
Figure 3 (leftmost) and depth map in Figure 5 (leftmost) without motion blur.

4.2 Real Images

We test the algorithm on two data sets. The first data set is made of the two real im-
ages shown in Figure 7. The scene is made of a box that is moving sideway. We si-
multaneously capture two images with a multifocal camera. The camera has an AF

Fig. 4. First and second from the left: defocused and motion-blurred images from a scene made
of the synthetic radiance in Figure 3 (leftmost) and depth map in Figure 5 (leftmost). Third from
the left: recovered radiance from the two defocused and motion-blurred images on the left when
no motion blur is taken into account (V1,2 = 0). Fourth from the left: recovered radiance from
the two defocused and motion-blurred images on the left when motion blur is taken into account
(V1,2 6= 0).

NIKKOR 35mm Nikon lens, with F-number2.8. We capture the first image by focus-
ing at 70mm from the camera and the second image by focusing at90mm from the
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Fig. 5. Left: true depth map of the scene. Middle: recovered depth map. Right: profile of the
recovered depth map. As can be noticed, the recovered depth map is very close to the true depth
map with the exception of the top and bottom sides. This is due to the higher blurring that the
images are subject to at these locations.

camera. The scene lies entirely between70mm and90mm. The estimated radiance is
shown in Figure 7, together with the recovered depth map. The estimated motion is
V1,2 = [0.5603 0.0101]T in units of focal length. In the second data set we use the two
defocused and motion-blurred images in Figure 8 (first and second image from the left)
captured with the same camera settings as in the first data set. The scene is composed
of a banana and a bagel and the scene is moving sideways. The estimated radiance
is shown in the third image from the left of the same figure. To visually compare the
quality of the estimated radiance, we also add the fourth image from the left in Fig-
ure 8. This image has been obtained from about the same viewing point when neither
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Fig. 6.Left: depth map estimation for5 levels of additive Gaussian noise. The plot shows the error
bar for20 trials with a staircase depth map and a random radiance. We compute the RMS error
between the estimated depth and the true depth, and normalize it with respect to the norm of the
true depth (see eq. (23)). Right: radiance estimation for5 levels of additive Gaussian noise. As in
the previous error bar, we compute the RMS error between the true radiance and the reconstructed
radiance and then normalize it with respect to the norm of the true radiance.

the camera nor the scene was moving. Hence, this image is only subject to defocus.
The reconstructed depth map is shown in Figure 9. The first image from the left is the
depth map visualized as a gray level image. Light intensities correspond to points that
are close to the camera and dark intensities correspond to points that are far from the
camera. The next three images are visualizations of the depth map from different view-
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ing angles with the estimated radiance texture mapped onto it. The estimated velocity
for this data set isV1,2 = [0.9639 − 0.0572]T , that corresponds to a sideway motion.

Fig. 7. First and second from the left: input images of the first data set. The two images are both
defocused and motion-blurred. Motion blurring is caused by a sideway motion of the camera.
Third from the left: recovered radiance. Fourth from the left: recovered depth map.

Fig. 8. First and second from the left: input images of the second data set. The two images are
both defocused and motion-blurred. Motion blurring is caused by a sideway motion of the camera.
Third from the left: recovered radiance. Fourth from the left: an image taken without motion blur.

5 Summary and Conclusions
In this manuscript we proposed a solution to the problem of inferring the depth, radi-
ance and motion field of a scene from a collection of motion-blurred and defocused
images. First, we presented a novel model that can take into account for both defocus
and motion blur (assuming motion is pure sideway translation), and showed that it is
well-posed. Motion-blurred and defocused images are represented as the solution of an
anisotropic diffusion equation, whose initial conditions are defined by the radiance and
whose diffusion tensor encodes the shape of the scene, the motion field and the op-
tics parameters. Then, we proposed an efficient algorithm to infer the unknowns of the
model. The algorithm is based on minimizing the discrepancy between the measured
defocused images and the ones synthesized via diffusion. Since the inverse problem
is ill-posed, we also introduce additional Tikhonov regularization terms. The resulting
method is fast and robust to noise as shown in the experimental section.
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Appendix

Existence of a Solution

For ease of reading, we recall the statement of Theorem (1) of subsection 2.4.

Theorem 2. Let r ∈ L2(Ω) and s ∈ H1(Ω) satisfy(1). Then, there exists a unique
weak solutionu ∈ C(0, T ; L2(Ω)) of (16), satisfying

∫ T

0

∫

Ω

λ(y)|∇u(y, s)|2 dy ds ≤
∫

Ω

r(y)2 dy, (24)

whereλ(y) ≥ 0 denotes the minimal eigenvalue ofD(y).

Proof. We start by investigating an approximation to equation (16) withD(y) replaced
by Dε(y) = D(y) + εId for ε > 0. In this case, (16) is a parabolic problem with
nondegenerate diffusion tensor, and standard theory (cf. [22]) shows that there exists a
unique solutionuε ∈ C(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)). Moreover, one can deduce
the a-priori estimate

∫

Ω

uε(y, t)2 dy +
∫ t

0

∫

Ω

(ε + λ(y))|∇uε(y, s)|2 dy ds ≤
∫

Ω

r(y)2 dy

for all t ∈ (0, T ]. This estimate implies the existence of a weakly convergent subse-
quenceuεk asεk → 0 and by standard methods one can show that the limitũ is a weak
solution satisfying (24).

Computation of the Gradients of the Cost Functional

We formally compute directional derivatives in direction(r′, s′, V1,2) in the following.
The variation of the objective functional is given by

E′(r, s, V1,2)
∣∣
r′,s′,V ′1,2

= 2
∑N

i=1

∫
Ω

(ui(x, T )− Ii(x))u′i(x, T ) dx+

2α〈r − r∗, r′〉+ 2β〈∇s,∇s′〉+
γ(|V1,2| −M)V1,2·V ′1,2

|V1,2| ,

(25)

whereu′i is the solution of the initial value problem





u̇′i(y, t) = ∇ · (Di(y)∇u′i(y, t) + D′(y)∇ui(y, t))
u′i(y, 0) = r′(y)
(Di(y)∇u′i(y, t) + D′(y)∇ui(y, t)) · n = 0

(26)

andD′
i is the variation of the diffusion tensor, given by

D′
i(y) = −2σi(x)

pi

s2(y)
s′(y)Id − 2

V1,2V
T
1,2

s3(y)
s′(y) +

V ′
1,2V

T
1,2 + V1,2V

′T
1,2

s2(y)
. (27)
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In the following, we report only the computation of the first termE1

E1
.= 2

N∑

i=1

∫

Ω

(ui(x, T )− Ii(x))u′i(x, T ) dx (28)

in the cost functional of eq. (25), as the computation of the other terms is straightfor-
ward.

In order to avoid the expensive computation of the gradient by solving a time-
dependent problem for each variation, we can employ the adjoint method, whose main
idea is to simplify the gradient computation by introducing an adjoint system of differ-
ential equation. In this case, the adjoint problem is given by





ẇi(y, t) = −∇ · (Di(y)∇wi(y, t))
wi(y, T ) = ui(y, T )− Ii(y)
(Di(y)∇wi(y, t)) · n = 0.

(29)

Using Gauss’ Theorem, we now obtain

E1 = 2
N∑

i=1

∫

Ω

wi(x, T )u′i(x, T ) dx

= 2
N∑

i=1

∫

Ω

wi(x, 0)r′(x) dx +
N∑

i=1

∫ T

0

∫

Ω

(ẇi(x, t)u′i(x, t) + wi(x, t)u̇′i(x, t)) dx dt

= 2
N∑

i=1

∫

Ω

wi(x, 0)r′(x) dx−
N∑

i=1

∫ T

0

∫

Ω

(D′
i(x)∇ui(x, t) · ∇wi(x, t)) dx dt

= 2
∫

Ω

(∇rEr′ +∇sEs′) dx +∇V1,2EV ′
1,2.

(30)
Using the formula forD′

i(x) we can compute the gradients as

∇rE =
N∑

i=1

wi(x, 0)

∇sE = 2
N∑

i=1

∫ T

0

(
σi(x)

pi

s2(x)
Id +

V1,2V
T
1,2

s3(x)

)
∇ui(x, t) · ∇wi(x, t) dt

∇V1,2E = −
N∑

i=1

∫ T

0

∫

Ω

(
V ′

1,2V
T
1,2 + V1,2V

′T
1,2

s2(x)
∇ui(x, t) · ∇wi(x, t)) dx dt.

(31)

The computation of the gradients involves the solutionui of eq. (16) with tensorsDi,
and, subsequently, the solutionwi of eq. (29). Both of these steps are well-posed due to
Theorem 1. Thus, the gradients exist if the terms in eq. (31) are finite.


