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Abstract

We try to give a brief survey about using multiple level set methods
for identifying piecewise constant functions. A general framework is
presented. Application using this general framework for different prac-
tical problems are shown. We try to show some details in applying the
general approach for different applications. Numerical experiments are
also presented for some of the problems.

1 Introduction

In this work, we are trying to give a brief survey about using multiple level
set methods for identifying piecewise constant or piecewise smooth functions.
We try to present a general framework and then show various applications
of this basic approach. The general approach presented here is originated
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from [12, 51, 7]. The applications we have surveyed have used this general
approach or could be reformulated using this general approach for multiple
level set ideas.

The general minimization problem we shall consider in this work is given
in the form:

min
q∈K

F (q), (1)

where K is a space or set containing piecewise constant functions over a
given domain Ω and possibly with some other extra constraints. Such kinds
of minimization problems arise from inverse problems, optimal shape design
problems, medical imaging and other applications.

In order to find a piecewise constant functions, we essentially need to find
the values for the constants and the location of the discontinuities. For some
applications, the values of the constants are known and we only need to find
the locations of the discontinuities. For two-dimensional problems, to find
the locations of the discontinuities is to find the curves that separate the
constant regions. For three dimensional problems, to find the discontinuity
is to find the surface between the regions. In practical simulations, we need
to use a mesh or grid. For the applications we shall consider, each constant
normally contains many mesh or grid points.

Minimization using shape derivatives have been used for finding curves
and surfaces. We shall give a brief overview in Section 2 for this kind of
approach. One of the potential limitations of this kind of approach is that it
is difficult to handle the case that the curve or surface may disappear, merge
with each other, or pinch off with each other. In this work, we shall present a
different approach of using level sets to represent piecewise constant functions
and embed this representation in frameworks for solving a variety of inverse
problems and minimization problems with piecewise constant functions. As
computational techniques, level set methods have several advantages in mov-
ing curves in 2D and surfaces in 3D. In section 3, we give an overview of the
multiple level set idea first proposed in [51]. We try to supply some of the
details in calculations related to gradient methods for level set ideas. It is
shown that we can easily combine level set methods to calculate gradients
for the considered minimization problems. Sections 4-9 are devoted to dif-
ferent applications. In §4, we show how to apply the level set methods for
segmentation of digital images following [11, 12, 10, 9, 51]. The minimiza-
tion functional is slightly different from the original Chan-Vese functional
[9, 51]. In §5, we reformulate the optimal shape design problem of Osher
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and Santosa [38] into the framework of multiple level set methods. Applica-
tions for identifying the coefficient from an elliptic equation are presented in
§6 following Chan and Tai [7]. In the original calculation of [7], augmented
Lagrangian method was used to deal with the equation constraint. In §6,
we show the formulation without using the augmented Lagrangian methods
and some numerical tests are presented. In §7, we show applications of the
level set methods for electrical impedance following Chung-Chan-Tai [17].
A similar application using level set methods for PET medical imaging is
discussed in §8 following Lysaker et al [33]. In the last section §9, we show
a variant of the level set methods which can be used to trace free boundary
for the obstacle problems [34]. In the conclusion, we briefly mention some of
the key issues in using level set methods for practical applications.

As the application of level set methods for identifying piecewise constant
functions is relatively new, the works we have surveyed are mostly recent
works of our research group and and we must apologize for possible omissions
for other recently related works.

2 Minimization using shape derivatives

If the constant values for a 2D piecewise constant function are known, then
we just need to identify the location of the discontinuities. For such a kind
of applications, the minimization problem (1) can often be transformed into
the following minimization problem:

min
Γ
F (Γ). (2)

That is, we trying to find a curve Γ which minimizes the functional F (Γ).
Traditionally, a curve is parameterized as:

x = x(s) s ∈ [0, 1].

Correspondingly, the minimization problem (2) could be transformed into

min
x(s)

F (x(s)). (3)

One of the common ways to find a curve which is a minimizer for (3) is to
use the gradient method. First we discretize the interval [0, 1] for the space
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variable into s0 = 0 < s1 < s2 < · · · < sNs = 1. Then we update xn
i ≈ xn(si)

by the formula

xn+1
i = xn

i − αn ∂F

∂xi

(xn). (4)

One can also introduce an artificial time variable t and use more sophisticated
methods to solve the following equation to steady state:

xt = −∂F
∂x

. (5)

The weak point of such an approach is that it is hard to handle topological
changes of the curves. The above procedure is sometimes referred to as
particle tracing method with clear reference that the point xn

i is used to
trace the location of the point xi at a given iteration. If the curve disappears,
splits or merges during the iterations, then the iteration (4) will break down
and some extra care must be taken to handle such kind of situations. In
addition, there are also other difficulties related to numerical instability. For
example, if the points on the curve get clustered, then the equation (5) is
getting more and more stiff which will require smaller and smaller time steps
to be used for the discretization of the time variables. The level set method
is a good alternative for overcoming these difficulties. The level set method
does not need to trace particles on the curves. Instead, a curve is represented
implicitly by the zero level set of a function. By dynamically updating the
level set function, the zero level set of the function is also changed. Thus, to
find a curve, we just need to find the corresponding function associated with
this curve. By modifying the values of a function, we can easily get the zero
level curve to disappear, split or merge. We shall supply the details about
the level set strategy in the next section and show applications afterwards.

3 Minimization using level set methods

The level set method was proposed in Osher and Sethian [39] for tracing
interfaces between different phases of fluid flows. Later, it has been used for
many different kind of applications involving movement of interfaces for dif-
ferent kind of physical problems, see [37, 44, 36, 40, 53]. In the following, we
shall present a ”unified” framework, first presented in [51], of using multiple
level sets to represent piecewise smooth functions, and use this in various
problems of identifying piecewise constant functions.
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3.1 An overview of level set methods

For simplicity, let us proceed with two dimensional problems. Let Γ be a
closed curve in Ω ⊂ R2. Associated with Γ, we define a φ as a signed
distance function by:

φ(x) =

{
distance(x,Γ), x ∈ interior of Γ

−distance(x,Γ), x ∈ exterior of Γ.

It is clear that Γ is the zero level set of the function φ. In case that Γ is
not closed, but divide the domain into two parts, then the function can be
defined to be positive on one side of the curve and negative on the other side
of the curve. The function φ is called a level set function for Γ. It is clear
that φ satisfies the partial differential equation:

|∇φ| = 1, in Ω. (6)

However, φ is not the only function that satisfies equation (6) in the distri-
bution sense. In order to define a unique solution for the equation, we need
to introduce the concept of viscosity solution. The existence and uniqueness
of viscosity solutions for linear and nonlinear partial differential equations is
an active research field with rich literature results [18]. One way to intro-
duce the viscosity function is to add an extra time variables t. Let φ̃ be any
function such that Γ is the zero level set curve of φ̃ and φ̃ is positive inside
Γ and negative outside Γ. Then the distance function φ is the steady state
of the following time dependent equation (c.f. [37, 40, 36]):

∂d

∂t
+ sign(d)(|∇d| − 1) = 0 d(x, 0) = d0 = φ̃, (7)

i.e. d(x, t; φ̃) → φ(x) as t → ∞. Moreover the steady state is unique. In
applications given later, we only need the value of d in a band of width ε
around Γ. Correspondingly, we only need to solve equation (7) for t ≤ O(ε).

Once the level set function is defined, we can use it to represent general
piecewise constant functions. For example, assuming that q(x) equals c1
inside Γ and equals c2 outside Γ, it is easy to see that q can be represented
as:

q = c1H(φ) + c2 (1−H(φ)) , (8)

where the Heaviside function H(φ) is defined by:

H(φ) =

{
1, φ > 0
0, φ ≤ 0.
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In order to identify the function q, we just need to identify the level set
function φ and the piecewise constant values ci’s.

If the function q(x) has many pieces, then we need to use multiple level
set functions. We shall follow the ideas of Chan and Vese [9, 51]. Assume
that we have two closed curves Γ1 and Γ2, and we associate the two level set
functions φj, j = 1, 2 with these curves. Then the domain Ω is divided into
four parts:

Ω1 = {x ∈ Ω, φ1 > 0, φ2 > 0} ,
Ω2 = {x ∈ Ω, φ1 > 0, φ2 < 0} ,
Ω3 = {x ∈ Ω, φ1 < 0, φ2 > 0} , (9)

Ω4 = {x ∈ Ω, φ1 < 0, φ2 < 0} .

Using the Heaviside function again, we can express q with possibly up to four
pieces of constant values as:

q = c1H(φ1)H(φ2) + c2H(φ1)(1−H(φ2))+
+c3(1−H(φ1))H(φ2) + c4(1−H(φ1))(1−H(φ2)).

(10)

By generalizing, we see that n level set functions give the possibility of
2n regions. For i = 1, 2, · · · , 2n, let

bin(i− 1) = (bi1, b
i
2, · · · , bin)

be the binary representation of i−1, where bij = 0 or 1. A piecewise constant
function q with constant values ci, i = 1, 2, · · · 2n could be represented as:

q =
2n∑
i=1

ci

n∏
j=1

Ri(φj), (11)

where

Ri(φj) =

{
H(φj), if bij = 0;

1−H(φj), if bij = 1.

Even if we the true q needs less than 2n distinct regions, we can still use n
level set functions since some subdomains are allowed to be empty. In using
such a representation, we only need to determine the maximum number of
level set functions we want to use before we start.

For some applications, the function value inside each region may not be
a constant and may change slowly. Thus, we may try to use quadratic, cubic
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or some higher order polynomials to approximate the function inside each
region. Representations (10) and (11) can be easily generalized to higher
order approximations, see [51, 13] for some details about using this idea for
image problems. In this work, we shall only concentrate on applications with
piecewise constant functions.

3.2 The level set dictionary

For every level set function φi, its zero level set represents a curve Γi. It is
therefore not surprising that most of the geometrical quantities of the curve
Γi can be represented in term of the function φi. Here, we try to recall some
of the standard level set dictionary from [37, 36]. First, it is easy to see that

N =
∇φi

|∇φi|

is the unit normal vector of Γi pointing to the interior. The mean curventure
of the curve is

κ = −∇ · ∇φi

|∇φi|
.

Moreover, we have that

Length of Γi =

∫
Rn

δ(φi)|∇φ|dx =

∫
Rn

|∇H(φi)|dx.∫
Γi

p(x)ds =

∫
Rn

p(x)δ(φi(x))|∇φ(x)|dx =

∫
Rn

p(x)|∇H(φi(x))|dx.

If we denote ωi = {x| φi(x) > 0}, it is easy to see that

Area of Ωi =

∫
Rn

H(φ)dx,∫
ωi

p(x)dx =

∫
Rn

p(x)H(φ(x))dx.

3.3 Combining level set methods with gradient type of
methods

Gradient type methods will be used to find the minimizers with respect to
ci and φi. For minimization problem (1), assume that K is a space or set
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containing piecewise constant functions over a domain Ω and possibly with
some other extra constraints. For any given q ∈ K, it can be represented as
in (11). To use gradient methods to minimize a functional F on K, we shall
calculate the Gateaux differential of F [21, p.23]. The Gateaux differential
shall be defined in the sense of distributions. For a given F : V 7→ R, which
maps elements from a space V to real numbers, we say that G(q) is the
Gateaux differential of F (q) if

lim
ε→0

F (q + εµ)− F (q)

ε
=

∫
Ω

G(q)µdx, ∀µ ∈ C∞0 (Ω).

Normally, we write ∂F/∂q = G(q). Under appropriate continuity assump-
tions on the derivatives and related functions, the following relations are
true:

∂F

∂ci
=

∫
Ω

∂F

∂q

∂q

∂ci
dx,

∂F

∂φi

=
∂F

∂q

∂q

∂φi

. (12)

The above formulas are essentially the chain’s rule. In the appendix, we give
a brief explanation about how to get these formulas under proper continuity
assumptions on F and it derivatives. For many problems, we know how to
compute ∂F/∂q and there are ready softwares to compute them. In order
to use the level set method, we just need to compute the derivatives ∂q/∂ci
and ∂q/∂φi as given later in (14) and (16).

Let us first consider a simple case where we only have one level set function
and the piecewise constant function q(x) is represented as in (8). Then it is
easy to see that:

∂F

∂c1
=

∫
Ω

∂F

∂q
H(φ)dx,

∂F

∂c2
=

∫
Ω

∂F

∂q
(1−H(φ))dx,

∂F

∂φ
= (c1 − c2)δ(φ)

∂F

∂q
. (13)

In the above, δ denotes the Dirac function, i.e. δ(0) = 1 and δ(x) = 0,∀x 6= 0.
If we define Ω1 = {x|x ∈ Ω, φ > 0}, Ω2 = {x|x ∈ Ω, φ ≤ 0}, then it is easy
to see that:

∂F

∂c1
=

∫
Ω1

∂F

∂q
dx,

∂F

∂c2
=

∫
Ω2

∂F

∂q
dx.

Now we consider the more general case of n level set functions as given
in (11). From (11), we see that:

∂q

∂ci
=

n∏
j=1

Ri(φj),
∂q

∂φi

=
2n∑
i=1

ci

( n∏
j=1,j 6=i

Ri(φj)

)
D(φi), (14)
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where

D(φi) =

{
δ(φi), if bij = 0;

−δ(φi), if bij = 1.

Define Ωi to be the support set for
∏n

j=1Ri(φj), i.e.

Ωi = support of
n∏

j=1

Ri(φj). (15)

It is easy to see that Ωi is the region that q = ci. It can be seen that ∂q/∂ci
is nonzero only in the region Ωi corresponding to q = ci. Inside this region,
∂q/∂ci = 1. Correspondingly, we have that

∂F

∂ci
=

∫
Ωi

∂F

∂q
dx. (16)

In applications given later, we need to use the length of the curves as
regularization functionals. The purpose of using this regularization term is
to prevent the zero level curves becoming oscillatory. For gradient methods,
we need to calculate the Gateaux differential for the length functional:

R(φj) =

∫
Ω

|∇H(φj)|dx =

∫
Ω

δ(φj)|∇φj|dx.

To get the differential of R with respect to φj in a direction µj, we proceed

∂R

∂φj

· µj =

∫
Ω

δ′(φj)µj|∇φj|dx+

∫
Ω

δ(φj)
∇φj

|∇φj|
· ∇µjdx.

Applying Greens formula to the last term which can be theoretically verified
by replacing the delta function by a smooth function and then passing to the
limit, we will get that

∂R

∂φj

· µj =

∫
Ω

δ′(φj)µj|∇φj|dx−
∫

Ω

∇ ·
(
δ(φj)

∇φj

|∇φj|

)
µjdx

=

∫
Ω

δ′(φj)µj|∇φj|dx−
∫

Ω

(
δ′(φj)

|∇φj|2

|∇φj|
µj+δ(φ)µj∇ · ∇φj

|∇φj|

)
dx

= −
∫

Ω

δ(φ)µj∇ · ∇φj

|∇φj|
dx,

(17)

which indicates that
∂R

∂φj

= −δ(φj)∇ · ∇φj

|∇φj|
. (18)
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3.4 Smooth Approximations to H and δ Functions

In numerical implementations, it is desirable to replace the Heaviside function
H and the delta function δ by some smoothed counterparts. These epsilon-
approximations are designed so that they are everywhere non-zero. This
is useful for ”growing” level sets in interior regions (e.g. inside of annular
regions). Another clear motivation of using smoothed approximations is to
get the involved functionals differentiable. In our simulations, the following
smoothed functions for the Heaviside-function H and delta-function δ have
been used (c.f. [51]):

Hε(φ) =
1

π
tan−1 φ

ε
+

1

2
, (19)

δε(φ) =
ε

π (φ2 + ε2)
. (20)

In order to have a good accuracy, we need to choose ε sufficiently small. For
small ε, δε is a smooth function, but with very sharp singular layers. This
makes it difficult to represent the δε function in discretization. From our
numerical experience, it was found that it is not good to use too small ε for
Hε and δε.

However, there are also some other alternatives to deal with the singular
function δ(φ). For example, we can replace the δ(φ) function just by constant
1 or by |∇φ| in the gradient and it can be proved that the direction is still
a decent direction for some applications. For example, the decent direction
used in [38, 30] are equal to replace δ by 1 in our calculated derivatives.
For many other applications considered in [36, 44], the decent directions are
equal to replace the δ function by |∇φ| in our calculated derivatives.

4 Image segmentation

For some applications, we need to find the location of discontinuities for the
intensity values of a given digitall image and this process is often called image
segmentation. One of such applications is the segmentation of images from
medical magnetic resonance imaging (MRI). A typical MR image contains
different regions and inside each region the image intensity value varies slowly.
For clinical purposes, it is very important to accurately identify the boundary
between the different regions. The thickness of some of the special regions
give important information for doctors in practical clinical diagnose.
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Following [35], it was proposed in Chan and Vese [11, 12, 10, 9] that we can
use piecewise consant functions (or higher order polynomials) to approximate
the image functions. For one level set function, the minimization functional
used in Chan and Vese [11, 12] is

G(ci, φ) =

∫
Ω

1

2
|c1 − qd|2H(φ)dx

+

∫
Ω

1

2
|c2 − qd|2(1−H(φ))dx+ β

∫
Ω

|∇H(φ)|dx. (21)

It is easy to extend the above formulation to multiple level set functions, see
[51].

If we use the general framework we have presented in section 3, we find
that the Mumford-Shah minimization functional [35] can be written in the
following form:

F (ci, φi) =

∫
Ω

1

2
|q − qd|2dx+ β

∑
i

∫
Ω

|∇H(φi)|dx. (22)

Both (21) and (22) have been referred as the Chan-Vese model for segmenta-
tion problems. The formulation (22) bears more of the natures of the general
formulation of [7, §3].

Using (12) and (18), it is easy to see that the differentials of F defined in
(22) are given by:

∂F

∂φi

= (q − qd)
∂q

∂φi

− βδ(φi)∇ · ∇φi

|∇φi|
.

Let Ωi to be defined as in (15), we get from (12) that

∂F

∂ci
=

∫
Ω

(q − qd)
∂q

∂ci
= ci|Ωi| −

∫
Ωi

qddx.

In the above, |Ωi| denotes the measure of Ωi.
For one level set function, it is interesting to observe that F (ci, φi) =

G(ci, φi) if we do not replace H by its smoothed counter part. However, the
functional values, especially the derivatives ∂F/∂φi and ∂G/∂φi, are different
if we use smoothed approximations for H and δ. The following gradient
algorithm have been used to find a minimizer for the functional (22):
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Algorithm 1 Determine how many level set functions we need to use. Choose
initial level set functions φ0

i and the time step ∆t. For k ≥ 1,

• Update the constant values by

cki =

∫
Ωi

qddx

/
|Ωi|. (23)

• Update the level set functions by

φk
i = φk−1

i −∆t
∂F

∂φi

(cki , φ
k−1
i ). (24)

• If ”necessary”, reinitialize the level set functions φk
i , i.e. set d0 =

φk
i . Choose an appropriate τ0 and solve equation (7) to t = τ0. The

reinitialized φk
i is then taken as

φk
i := d(x, τ0;φ

k
i ). (25)

• Update qk as in the following and go to the next iteration:

qk =
2n∑
i=1

cki

n∏
j=1

Ri(φ
k
j ).

The above algorithm is essentially the same algorithm used in [51, 7]. As
the functional (22) is quadratic with respect to ci, we are trying to find the
ci values by enforcing ∂F/∂ci = 0 in (23). The time step ∆t in the gradient
updating (24) is normally fixed or obtained by a line search. After some
updating of φi as in (24), the functions φi are not distance functions any
more. Thus, we try to project them back to be distance functions as in (25).
However, it is suggested not to do this reinitialization very often. We shall
reinitialize after a fixed number of updating or when the level set functions
φi have under-taken a sufficient amount of changes (for example, sufficiently
many nodal values of φi have changed sign). For some applications, we could
recover the level set functions even without reinitialize the level set functions.
There are different methods available in the literature for reinitialize the level
set functions, see [36, 44, 43, 50, 52].

As the derivatives of the functional (22) differs from (21), we have tried
to compare their numerical performances. Intensive numerical experiments
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have been done in Hodneland [27]. It seems that the scheme with (22) is
more stable, otherwise the performance is nearly the same. We show some
of the obtained results in the Figure 1. The numerical tests seem to indicate
that it is better to use the total variational norm of φi instead of length of the
zero level curve of φi as the regularization term. The results obtained have
been compared with the widely used SPM (Statistical Parametrical Mapping,
http://www.fil.ion.ucl.ac.uk/spm) algorithm. When the noise level is low,
the level set method is as good as SPM. For higher level noise, the level set
method gives better results [27], especially if the intensity value inside each
region is inhomogeneous (i.e. the value is not nearly constant, but varies
rather much), then the level set segmentation is much better.

In Algorithm 1, a gradient method is used to find the minimizer for the
cost functional. We shall note that one can also use other methods to find
the minimizer. See [46, 26] for some recently developed fast methods for the
level set segmentation. In a related survey paper [13], one could also find
some more applications of the level set idea and variational PDE for image
processing problems.

5 Optimal shape design problems

In applications, we often need to design shapes that minimize or maximize
some given criteria. Some optimal shape design problems of such a kind can
be formulated as identification problems for piecewise constant functions.
The problem given in this section represents such a kind of optimal shape
design problems and it is taken from Osher and Santosa [38], see also [4, 5,
42, 32] for some more problems that are similar in nature to what is given
below.

Consider a drum head with a fixed shape Ω ⊂ R2 and variable density
q(x). The resonant frequencies of the drum are found by solving the eigen-
value problem

−∆u = λq(x)u, x ∈ Ω, u = 0, x ∈ ∂Ω.

Let S ⊂ Ω be a domain inside Ω. We do not assume any topology on S. We
assume that the density q(x) takes on two values, i.e q(x) = c1 inside S and
q(x) = c2 outside S. We will deal only with the first two eigenvalues λ1 and
λ2. It is known that λ1 and λ2 are distinct. The optimization problems we
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Figure 1: Segmentation of an MR brain image using functional (22).

want to consider is to find the minimizers for

max
S

λ1 or min
S
λ1 or max

S
(λ2 − λ1). (26)

subject to the constraint
|S| = c0,

where |S| is the area of S and c0 is a prescribed number.
We use the Lagrange multiplier method to solve the optimization problem

(26). For a given level set function φ associated with S, let F (φ) = λ1

or −λ1 or λ2 − λ1 depending on the minimization property we want. Let
G(φ) = |S| − c0 =

∫
Ω
H(φ)dx − c0 be the constraint function on the mass.

The Lagrangian, with multiplier ν, is given by

L(φ, ν) = F (φ) + νG(φ). (27)
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The necessary condition for a saddle point is

∂L(φ, ν)

∂φ
=
∂F (φ)

∂φ
+ ν

∂G(φ)

∂φ
= 0, G(φ) = 0. (28)

In order to show how we calculate the gradient, we let for example F (φ) = λ1.
Then, the eigenpair (u1, λ1) solves

−∆u1 = λ1q(x)u1, x ∈ Ω, u1 = 0, x ∈ ∂Ω. (29)

Differentiating with respect to q in a direction µ on both sides gives us:

−∆

(
∂u1

∂q
· µ

)
− λ1q(x)

(
∂u1

∂q
· µ

)
= qu1

(
∂λ1

∂q
· µ

)
+ λ1µu1.

Due to the reason that u1 is the eigenfunction for λ1, it is easy to see that
the left-hand side is orthogonal to u1. Multiplying both sides with u1 and
use (29), we get

∂λ1

∂q
· µ = −

λ1

∫
Ω
µu2

1dx∫
Ω
q(x)u2

1dx
.

Thus
∂λ1

∂q
= − λ1u

2
1∫

Ω
q(x)u2

1dx
.

Using the chain rule (12), it is easy to get ∂λ1/∂φ. From the fact that
∂G/∂φ = δ(φ), we easily can derive the formula for ∂L/∂φ. Once the gradient
is known, one can use a gradient method of Uzawa type or projected gradient
method to find a saddle point for the Lagrangian L.

Before we conclude, we just want to emphasis that the results we have
presented above in this section is completely due to [38]. We just want to
show that we can formulate their problem and approach in the general level
set formulation we have presented. The gradient calculation we have given
above is also essentially the same as the one given in [38]. In [38], they
try to find a decent direction. The decent direction they got is equivalent
to replace the δ function in our gradeint by constant 1. See [38] for some
intensive numerical tests for this optimal shape design problem.

6 An elliptic inverse problem

Consider the partial differential equation:{
−∇ · (q(x)∇u) = f in Ω ⊂ R2,

u = 0 on ∂Ω.
(30)
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We want to use observations of the solution u to recover the coefficient q(x)
which is assumed to be piewise constant. This is a typical example for ill-
posed problems. A small error in the observation for the state variable u
could produce a large error in the recovered coefficient q(x). Even as a purely
academic problem, this seemingly simple problem is rather difficult to solve
by numerical schemes. In the presence of noise in the observation data, it
has been shown theoretically, c.f. [22, 23, 47, 48, 49], that the approximation
error increases as the mesh size decreases. Up to now, it seems that there
are not many available algorithms that can solve this inverse problem with
relatively large noise on a sufficient fine mesh.

The desire to recover accurately the geometry of the coefficient discon-
tinuities have motivated a number of approaches in the literature [6, 8, 14,
3, 24, 15]. One approach is to use a regularization of the coefficient which
respects the jumps and the geometry of the discontinuities. For example, in
our earlier work [6, 8], the Total Variation norm regularization technique is
combined with the augmented Lagrangain technique of [28, 31] for this pur-
pose. Other works along this line are [15, 14], etc. An alternative approach
is to model the geometry of the discontinuities implicitly in the representa-
tion of the coefficient. Specifically, several approaches using level set ideas
have been recently proposed for this purpose; see [30, 4, 5, 20, 26] for some
poineering work in this direction. In Ito-Kunisch-Li [30], level set ideas are
used for elliptic inverse problems similar to the ones we are considering in
this paper. Another related work is Ben Ameur-Chavent-Jaffré [1]. In [1],
piecewise contants are used to approximate the coefficient and they try to
adaptively refine the mesh until some given criteria are meet. For our level
set approach, we use a fixed fine mesh, but we use the level set functions to
find the best partition of the domain into piecewise contant regions to give
a best match for the measurement.

Due to the ill-posedness of the problem, output-least-squares method is
often used for recovering q(x). Assume that ud is an observation for u, the
minimization functional for the output-least-squares method is:

F =

∫
Ω

1

2
|u− ud|2dx+ β

∫
Ω

|∇q|dx. (31)

In the above, u is the solution of (30) with a given q and
∫

Ω
|∇q|dx is the total

variation norm of q. In case we only have a sparse observation or other kind
of observations for u, the modifications needed for the numerical scheme is
minor. We shall use level set method to represent the coefficient q(x). So the
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function q(x) depends on the level set functions φi and the constant values
ci. From the chain rule (12), we just need to calculate ∂F/∂q in order to get
∂F/∂φi and ∂F/∂ci. Differentiating with respect to q in a direction µ for
equation (30), we get that

−∇ ·
(
q(x)∇

(
∂u

∂q
· µ

))
−∇ · (µ∇u) = 0. (32)

In the above, ∂u
∂q
· µ denotes the derivative of u in a direction µ at a given q.

The precise definition of this derivative can be given as:

∂u

∂q
· µ = lim

ε→0

u(q + εµ)− u(q)

ε
. (33)

For general problem, the limit above is related to a proper norm. For this
concrete problem, the limit above is understood in the norm of H1

0 (Ω).
Define z(x) ∈ H1

0 (Ω) to be the solution of

−∇ · (q(x)∇z) = u− ud in Ω, z = 0 on ∂Ω. (34)

From the variational forms for the weak solutions for (32) and (34), it is easy
to get that

∂F

∂q
· µ =

∫
Ω

(
(u− ud)

(
∂u

∂q
· µ

)
+ β

∇q · ∇µ
|∇q|

)
dx

=

∫
Ω

(
µ∇u · ∇z + β

∇q · ∇µ
|∇q|

)
dx.

Again, ∂F
∂q
· µ above is the directional derivative of F which could be defined

similarly as in (33). From the above, we get that

∂F

∂q
= −∇u · ∇z − β∇ ·

(
∇q
|∇q|

)
.

In order to compute ∂F/∂q once, we need to solve both equations (30) and
(34) once. The following algorithm could be used to recover the coefficient
q(x):

Algorithm 2 Determine how many level set functions we need to use. Choose
initial level set functions φ0

i , constant values c0i . For k ≥ 1,
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• Update qk by

qk =
2n∑
i=1

ck−1
i

n∏
j=1

Ri(φ
k−1
j ).

• Compute uk and zk from equations (30) and (34).

• Choose the step size αn
i and update the constant values by

cki = ck−1
i − αn

i

∫
Ωi

∂F

∂q
(qk, zk, uk)dx.

• Choose the step size σn
i and update the level set functions as:

φk
i = φk−1

i − σn
i

∂F

∂q
(qk, zk, uk)

∂q

∂φi

(cki , φ
k−1
i ).

• If ”necessary”, reinitialize the level set functions φk
i , i.e. set d0 =

φk
i . Choose an appropriate τ0 and solve equation (7) to t = τ0. The

reinitialized φk
i is then taken as

φk
i := d(x, τ0;φ

k
i ). (35)

• Go to the next iteration if not converged.

Similar to image segmentation, the reinitialization step (35) should not be
done very often. The above algorithm differs from the algorithm of Chan
and Tai [25, 7]. In Chan and Tai [25, 7], augmented Lagrangian method was
used for enforcing the equation constraint (30). The cost per iteration for the
above algorithm is somehow more expensive than the augmented Lagrangian
approach. However, the above algorithm seems to be more stable with respect
to initial guess and converges faster when the iterative solution is still far
from the true solution. For numerical purpose, the details explained in [7]
for calculating the gradients and the other technical devices are all relevant
for the above scheme. The step sizes αn

i and σn
i could be fixed during the

iterations. One can also use a line search to find the step sizes. To guarantee
that the recovered q is positive, we assume that the constant values ci ∈ [ai, bi]
and ai, bi are known a priori. One test example is shown in Figure 2 and 3.
The true coefficient, solution u and the curve for the discontinuity is shown
in Figure 2. The identified coefficient and the curve for different iterations
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Figure 2: The exact q(x) and the location of the discontinuity

are shown in Figure 3. In the test, we have used Ω = [0, 1]× [0, 1], mesh size
h = 1/64, β = 5 × 10−6, times steps αn

i = 0.01, σn
i = 5. The ε value used

for Hε and δε is ε = h. With 1% noise in the observation, it is remarkable to
see that the algorithm is able to recover the concave part of the curves and
the sharp corners of the curves are also captured rather well. Note especially
that the region inside the concave part of the curve on the left side is very
thin and the algorithm is still able to identify this region rather accurately.
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7 Electrical impedance tomography

There are a variety of medical problems for which it would be useful to
know the time-varying distribution of electrical properties inside a human
body [2, 16, 19, 41]. One way to identify the electrical properties inside
the body is to apply some current with some low angular frequencies. This
will produce a magnetic field inside the body. Under the condition that
the angular frequency and the conductivity are low, one can get from the
Maxwell’s equation that the electric potential u in the body is governed by
the equation

∇(q(x, ω)∇u) = 0. (36)

Here u is the electric potential or voltage, and ω is the angular frequency
of the applied current which is assumed to be fixed for the setting of the
problem. Instead of reducing the Maxwell’s equation to the elliptic equation
(36), one can also try to reduce it to the Helmholtz equation as in [20]. In
practice, we apply currents to electrodes on the surface of the body. These
currents produce a current density on the surface whose inward pointing nor-
mal component is known. The current will produce some electric potentials
which we shall measure on the surface of the human body. Mathematically,
we say that we have N functions gi defined on the surface ∂Ω. This will
produce N solutions to (36), i.e.

∇(q(x)∇ui) = 0 in Ω,
∂ui

∂n
= gi. (37)

We assume that we have measured the values of ui on ∂Ω, i.e. we have
measurements mi = ui|∂Ω. We shall use mi to recover a piecewise constant
q(x). For physical reasons, we need to require that∫

∂Ω

uids = 0,

∫
∂Ω

gids = 0.

We shall use the output-least-squares method similarly as in [16, 19, 41] to
find q. The minimization functional is

F (q) =
1

2

N∑
i=1

∫
∂Ω

|ui(q)−mi|2 ds+ β

∫
Ω

|∇q| dx.
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For a given q, let ui = ui(q) be the corresponding solution of (37) and define
zi be the solutions of

−∇ · (q∇zi) = 0 in Ω

q
∂zi

∂n
= ui −mi on ∂Ω,

∫
∂Ω

zids = 0.

it can be shown that

dF

dq
= −

N∑
i=1

∇ui · ∇zi − β∇ ·
(
∇q
|∇q|

)
.

See Chung, Chan and Tai [17] for the details. Once we get ∂F/∂q, it is easy
to use (12) to get ∂F/∂φi if we represent q using level set functions as in
(11). An algorithm similar to Algorithm 2 could be used to update the level
set functions φk

i and the constant values cki . In Figure 4, we present some
numerical results with 4, 12 and 60 observations. The observations contain
1% of noise. The dotted line shows the true discontinuity. The solid line
is the recovered discontinuity. More measurements give a better accuracy
for the recovered curve. Compared with other approaches, it seems that our
algorithm is more robust with respect to noise.

8 Positron Emission Tomography

In PET (positron emission tomography), a compound containing a radiative
isotope is injected into a human body and forms an unknown emission density
q(x) ≥ 0, x ∈ Ω. The positron emitted finds a nearby electron and annihilates
into two photons. The two photons travels at almost opposite directions. A
detector ring surrounds the patient and collects all emissions. For an emission
event to be counted, both photons must be registered nearly simultaneously
at two opposite detectors. Regions with higher concentration of radioactivity
causes a higher emission rate. Given the total number of measured counts
at each detector pair, the challenge is to locate all emission sources inside
the detector ring (c.f. [33, 29]). Mathematically, the recovery of q(x) can
be formulated in the following way. First, we cover the domain Ω by a
uniform square mesh. Assume the squares are indexed by i = 1, 2, · · ·B and
q(x) is a constant qi inside each square. The detector pairs are indexed by
j = 1, 2, · · · , T . If there are k detectors, we can have maximumly k(k− 1)/2
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detector pairs, i.e. T ≤ k(k − 1)/2. The two photons emits in two random
directions. For a given intensity q(x), the maximum probable measurement
we get is ~n = P~q, where ~n = {nj}B

j=1 and ~q = {qi}T
i=1 is the vector for q. The

detection probability matrix P is given, see [33, 29] for some details about
how to get the matrix P .

Based on some statistical arguments, it turns out that we need to solve the
following minimization problem in order to find a q for a given measurement
~n:

min
~q
F (~q), F (~q) =

( B∑
i=1

qi −
T∑

j=1

nj log(P~q)j

)
. (38)

We can see that the gradient of F (~q) is given by:

∂F

∂~q
= e− P t(~n./P~q).

In the above, e is the vector whose elements are all 1, P t is the transpose of P
and (~n./P~q) is the elementwise division of vector ~n by vector P~q. We assume
the q is piecewise constant, i.e. the qi values may equal to the same constant
for many elements inside a given region, and thus can be represented by the
level set representation shown in §3. Let ~φ = {φk}B

k=1 be the vector for the
values for a given level set function φ over the squared elements. Using chain
rule (12), it is easy to see that

∂F

∂ck
= h2

B∑
i=1

∂F

∂qi

∂qi
∂ck

,
∂F

∂φk

=
∂F

∂qk

∂qk
∂φk

.

In the above, h is the mesh size. If we need more than one level set function,
we just need to calculate the gradient similarly for each level set function.
Once the gradients are known, we can use an algorithm similar to Algorithm
2 to update the level set functions and the constant values.

In Figures 5 and 6, we present one test example with a synthetic data
set. For this example, the true λ has three regions. The constant values are
assumed to be known. In the computation, we perturb the constant values by
10% and then fix them during the iterations. The initial level set functions
give four regions. The extra region disappears during the iterations. The
recovered and the true λ are shown in Figure 5 and the evolution of the level
set functions are shown in Figure 6. We refer to [33] for more numerical
experiments.
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Figure 5: The recovered and the true λ function. Left: recovered; Right:
true.
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Figure 6: Evolutions of the two level set functions. From left to right: initial
level set functions, 50, 150 and 650 iterations.

9 Other applications in brief

The level set method is designed to trace moving interfaces, thus it is natural
to use it for different kind of free boundary problems related to partial differ-
ential equations. See [37, 45] for some application to Stefen type of problems,
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[42] for constructing obstacles, [40, 53] for some other applications. However,
for some free boundary problems, we need to consider some variants of the
level set idea in order to use the level set function with the partial differen-
tial equations for free boundary problems. Consider a model free boundary
problem which comes from minimization problem (1) with:

F (v) =

∫
Ω

1

2
|∇v|2 − fv, K = {v| v ∈ H1

0 (Ω), v ≥ ψ}. (39)

In the above ψ is the obstacle function and ψ ≤ 0 on ∂Ω. The solution u for
(39) is unique and it can be formally written as the function satisfying

−∆u ≥ f, u ≥ ψ, (−∆u− f) · (u− ψ) = 0.

To find the solution u, we need to find the contact region Ω+ = {x u(x) =
ψ(x), x ∈ Ω}. Once we know Ω+, the value of u in Ω\Ω+ can be obtained
from solving

−∆u = f in Ω\Ω+, u = 0 on ∂Ω, u = ψ on ∂Ω+.

In order to find u, we essentially just need to find Γ = ∂Ω+. Inside Γ, u = ψ
and outside Γ, u is the solution of the Poisson equation.

It is not easy to use the level set idea sketched in §3.1 directly for this
free boundary problem. However, we note that for any v ∈ K, there exists a
φ ∈ H1

0 (Ω) (may not be unique) such that

a). v = ψ + φH(φ), or b). v = ψ + φ+ |φ|. (40)

For any given φ, let v = v(φ) to be one of the two representations given in
(40). We shall consider the following minimization problem:

min
φ∈H1

0 (Ω)
F (v(φ)). (41)

If φ is a solution for (41), then v(φ) is a solution for (1) with F and K given in
(39). However, we shall note that the minimizer for (40) is not unique. If we
replace H(φ) by Hε(φ) or replace |φ| by φ/

√
φ2 + ε, then the minimization

problem (40) has a unique solution. Using the chain rule (12), it is easy to
calculate that the derivatives with representation (40.a) and (40.b) and they
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are given respectively by

a).
∂F

∂φ
=
∂F

∂v

∂v

∂φ
= (−∆v − f)(Hε(φ) + φδε(φ)). (42)

b).
∂F

∂φ
=
∂F

∂v

∂v

∂φ
= (−∆v − f)

(
1 +

φ√
φ2 + ε

)
. (43)

In simulations, the functions are approximated by discretized functions
with a given mesh size. We need to choose ε properly so that the error
introduced by ε is comparable with the discretization error, see Majava and
Tai [34] for the details about the analysis and some numerical experiments.
In Figure 7 and 8, we show some of the experimental results taken from
Majava and Tai [34]. The results are produced using the gradient methods
φn+1 = φn − α∂F/∂φ(φn) and with a fixed step size α. We take ε = h2 for
(42) and ε = h4 for (43). The step size is taken to be α = 10−4 or α = 10−5

and we have not tried to optimize α.

10 Conclusions

There are many applications that we need to find the minimizer of a cost
functional with respect to piecewise constant functions. We have illustrated
how to use multiple level sets to represent piecewise constant functions. A
uniform, powerful and general framework for solving a wide variety of inverse
problems and optimization probems are given in this work. It is assumed that
the recovered function is constant inside each region. It is easy to extend the
idea to case that the recovered function is a polynomial of a given order inside
each region.

11 Appendix

In this appendix, we give a brief account about the chain’s rules in (12). Un-
der proper assumptions on F and its derivatives, it is true that the following
Taylor expansion is correct:

F (q + µ)− F (q) =

∫
Ω

G(q)µdx+ o(‖µ‖)‖µ‖. (44)
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In the above, ‖µ‖ is a proper norm for µ. If q is represented using the level
set functions as in (11), then q is a function of the level set functions φi and
the constant values ci, i.e.

q = q(φi, ci).

If we perturb the value of ci by εi and define µi = q(φi, ci + εi)− q(φi, ci), it
is easy to get the following relation from (44):

F (q(φi, ci + εi))− F (q(φi, ci))

εi
=

∫
Ω

G(q + µi)
µi

εi
dx+ o(‖µi‖)

∥∥∥∥µi

εi

∥∥∥∥. (45)

Assuming that G(·) is continuous and also noting that

lim
εi→0

µi

εi
=
∂q

∂ci
,

we get the first formula in (12) by letting εi → 0 and using (45). The second
formula in (12) is also easy to derive from (44) just if the needed continuity
assumptions are valid for F and it derivatives.
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Figure 3: The identified zero level curve with 1% noise. The initial curve is a
circle. It automatically splits into two separated regions during the iterations.
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Figure 4: Recovered discontinuity using different number of boundary mea-
surements. More measurements give a better accuracy for the recovered
curve.
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Figure 7: The obstacle and the analytical solution u.
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Figure 8: Errors between the obtained result u∗ and the analytical solution u.
Top: 65×65 grid pints; bottom: 129×129 grid points. Left: results using (42)
and gradient decent method, right: results using (43) and gradient decent
method
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