
A level set method for solving free boundary

problems associated with obstacles ?

K. Majava

University of Jyväskylä, Department of Mathematical Information Technology,
P.O. Box 35 (Agora), FIN-40014 University of Jyväskylä, Finland

X.-C. Tai

University of Bergen, Department of Mathematics, Johannes Brunsgate 12, N-5009
Bergen, Norway

Abstract

A method related to the level set method is proposed for solving free boundary prob-
lems coming from contact with obstacles. Two di�erent approaches are described and
applied for solving an unilateral obstacle problem. The cost functionals coming from
the approach are nonsmooth. For solving the nonsmooth minimization problems,
two methods are applied: �rstly, a proximal bundle method, which a method for
solving general nonsmooth optimization problems. Secondly, a gradient method is
proposed for solving the regularized problems. Numerical experiments are included
to verify the convergence of the methods and the quality of the results.

Key words: Level set methods, free boundary problems, obstacle problem

1 Introduction

The level set method initiated by Osher and Sethian [1] has proven to be an ef-
�cient numerical device for capturing moving fronts, see [2�4]. There are many
industrial problems where interfaces need to be identi�ed, which can be formu-
lated as moving front problems. We mention, for example, image segmentation

? This research was partially supported by the Academy of Finland, NorFA (Nordisk
Forskerutdanningsakademi), and the research council of Norway.
Email addresses: majkir@mit.jyu.fi (K. Majava), tai@mi.uib.no (X.-C. Tai).
URLs: http://www.mit.jyu.fi/majkir (K. Majava),

http://www.mi.uib.no/%7Etai (X.-C. Tai).

Preprint submitted to Elsevier Science 19 November 2003

problems [5], inverse problems [6], and optimal shape design problem [7,8]. In
free boundary problems, it is often needed to �nd the boundary of some do-
mains. It is natural to use level set method for this kind of applications. In
[3,9], the level set method was used for Stefan type of free boundary problems.
In this work, we shall propose an alternative approach for the level set idea of
[1,3,9] and use it for tracing the free boundaries from obstacle contact type of
problems.

The contents of the paper are as follows. In Section 2, a model free boundary
problem is described and the proposed level set approaches are introduced
for solving the problem. In Section 3, the solution algorithms are described
that are applied for realizing the proposed level set approaches. In Section 4,
numerical experiments are presented to verify the convergence of the methods
and the quality of the results. Finally, in Section 5, the conclusions are stated.

2 A modi�ed level set method

Consider a model free boundary problem which comes from the minimization
problem:

min
v∈K

F (v), (1)

with

F (v) =
∫
Ω

(
1

2
|∇v|2 − fv

)
dx, K = {v| v ∈ H1

0 (Ω), v ≥ ψ}. (2)

In the above, Ω ⊂ Rp, p = 1, 2, ψ is the obstacle function satisfying ψ ≤ 0
on ∂Ω, and f typically represents external force for physical problems. The
solution u for (2) is unique and it can be formally written as the function
satisfying

−∆u ≥ f, u ≥ ψ, (−∆u− f) · (u− ψ) = 0.

To �nd the solution u, we need to �nd the contact region Ω+ = {x| u(x) =
ψ(x), x ∈ Ω}. Once we know Ω+, the value of u in Ω\Ω+ can be obtained from
solving

−∆u = f in Ω\Ω+, u = 0 on ∂Ω, u = ψ on ∂Ω+.

In order to �nd u, we essentially just need to �nd Γ = ∂Ω+. Inside Γ, u = ψ
and outside Γ, u is the solution of the Poisson equation.

Based on the above observation, we see that it is essentially enough to �nd the
curve in order to solve the free boundary problem (1). Starting with an initial
curve, we shall slowly evolve the curve to the true free boundary. We can use
the level set method to represent the curve, i.e., we try to �nd a function
ϕ(t, x) such that

Γ(t) = {x| ϕ(t, x) = 0}.

2

In the above, Γ(0) is the initial curve and Γ(t) converges to the true free
boundary, when t→∞. One of the essential ingredient of the level set method
is to �nd the velocity �eld ~V (t, x), which is then used to move the level set
function ϕ(t, x) by solving

ϕt − ~V |∇ϕ| = 0, ϕ(0, x) = ϕ0(x) = ±distance(x,Γ(0)).

In this work, we propose an alternative approach, which seems to be simpler
than the approach outlined above. De�ne the Heaviside function H(ϕ) as

H(ϕ) =

 1, ϕ > 0,

0, ϕ ≤ 0.

For any v ∈ K, there is exists ϕ ∈ H1(Ω) such that

v = ψ + ϕH(ϕ). (3)

It is easy to see that

v =

ψ, if ϕ ≤ 0 (i.e., in the contact region)

ψ + ϕ, if ϕ > 0 (i.e., outside the contact region).
(4)

Thus, the sign of the function ϕ tells the information of the contact region. The
curve, which separates the regions where ϕ is positive or negative, gives the
free boundary. In the traditional level set method, the function ϕ is only used
to represent the curve Γ. In our approach, ϕ is not only used to represent the
curve, but also to carry information about the solution u outside the contact
region, i.e., ϕ is used to indicate that u = ψ inside the contact region and its
value outside the contact region shall be ϕ = u− ψ. We use iterative type of
methods to �nd the correct values of ϕ both inside and outside the contact
region. Note that the value of ϕ inside the contact region is not unique.

Representation (3) is not the only formulation that can be used to express the
value of a function v ∈ K as a function of ϕ ∈ H1(Ω). In fact, there exists a
function ϕ ∈ H1(Ω) for every v ∈ K such that

v = ψ +
1

2
(ϕ+ |ϕ|). (5)

For the above representation for v, we see that (4) is also correct. From now
on, we use a shortened notation

Ji(ϕ) := F (vi(ϕ)), for i = 1, 2, (6)

where

v1(ϕ) = ψ + ϕH(ϕ) and v2(ϕ) = ψ +
1

2
(ϕ+ |ϕ|). (7)

3

On the boundary ∂Ω, we have ϕ = −ψ for both of the approaches (i.e.,
for i = 1, 2). Thus, the function ϕ assumes a Dirichlet boundary condition.
For simplicity, we assume from now on that ψ = 0 on ∂Ω so that we have
ϕ ∈ H1

0 (Ω) for both of the approaches.

Consider now the following unconstrained minimization problem

min
ϕ∈H1

0 (Ω)
Ji(ϕ), i = 1, 2. (8)

Due to the use of the Heaviside function and absolute value of functions in
approaches 1 and 2, the cost functional Ji is not di�erentiable. However, we
can prove that the problem has a solution:

Theorem 1 The non-smooth minimization problem (8) has a minimizer for
i = 1, 2. The minimizer may not be unique.

PROOF. For minimization problem (1), the cost functional is strictly convex
and continuous in H1

0 (Ω) and K is closed in H1
0 (Ω), see [10, p.29]. Thus, there

exists a unique u ∈ K such that

F (u) ≤ F (v) ∀v ∈ K. (9)

Associated with this unique solution u, let us de�ne

ϕ∗(x) =

u(x)− ψ(x), if u(x) > ψ(x) (i.e., outside the contact region)

0, if u(x) = ψ(x) (i.e., inside the contact region).

(10)
With ϕ∗ given above, we have u = vi(ϕ

∗), i = 1, 2. For any ϕ ∈ H1
0 (Ω), we

have vi(ϕ) ∈ K. Thus, we get from (9) that

Ji(ϕ
∗) ≤ Ji(ϕ) ∀ϕ ∈ H1

0 (Ω), i = 1, 2. (11)

This means that ϕ∗ is a minimizer for (8). The value of ϕ∗ inside the contact
region can be any negative value, which means that the minimizer is non-
unique. 2

3 Solution algorithms

Minimization problem (8) has a minimizer. However, the minimizer is non-
unique and the cost functional Ji is non-convex. In order to �nd a minimizer
for it, we shall use two algorithms. The �rst one is the proximal bundle method,
which is a popular method for �nding local minimizers for non-smooth and

4

non-convex minimization problems. For the second algorithm, we turn the non-
smooth minimization problem into a di�erentiable problem by regularizing
the non-smooth functions used in the cost functionals and then use a gradient
method to �nd a minimizer for the smoothed problem.

3.1 Proximal bundle method (PB)

In what follows, we introduce shortly the proximal bundle method, which is
a method for �nding a local minimum of a general unconstrained nonlinear
optimization problem

min
x∈Rn

J (x), (12)

where J : Rn → R.We assume that J in (12) is a locally Lipschitz continuous
function. Thus, J may be non-di�erentiable but it has a subdi�erential at each
point x. The subdi�erential ∂J (of Clarke [11]) of J at x ∈ Rn is de�ned by

∂J (x) = conv{ξ ∈ Rn : xi → x, ∃∇J (xi) and ∇J (xi) → ξ}.

Element ξ ∈ ∂J (x) is called a subgradient. If J is di�erentiable at x, then
∂J (x) = {∇J (x)}.

The basic idea in bundle methods is to approximate the whole subdi�erential
by collecting subgradients calculated in a neighbourhood of the considered
point x. At each iterate, this approximation of the subdi�erential is used to
build up a local model of the original problem. The origin of the methods is the
classical cutting plane method [12], where a piecewise linear approximation of
the objective function is formed. In bundle methods, a stabilizing quadratic
term is added to the polyhedral approximation in order to accumulate some
second order information about the curvature of the objective function.

PB method assumes that at each point x ∈ Rn, we can evaluate the function
value J (x) and an arbitrary subgradient g(x) from the subdi�erential ∂J (x).
For the convergence of the method, in the nonconvex case, J is further as-
sumed to be upper semismooth [13,14]. Some details of the PB method are
given in Appendix of this paper. For more details, see [13,15,16].

The tested proximal bundle algorithm is from the software package NSOLIB.
The code utilizes the subgradient aggregation strategy of [15] to keep the stor-
age requirements bounded, and the safeguarded quadratic interpolation algo-
rithm of [13] to control the size of the search region. For solving the quadratic
subproblem, the code employs the quadratic solver QPDF4, which is based on
the dual active-set method described in [17].

5

3.2 Smoothed approximations and the gradient method

Because the Heaviside function is nondi�erentiable at ϕ = 0, we replace it by
a smooth approximation

Hε(ϕ) =
1

π
tan−1ϕ

ε
+

1

2
,

for small positive ε. The gradient of Hε(ϕ) is denoted by δε(ϕ) (the smoothed
Dirac delta function):

δε(ϕ) =
ε

π(ϕ2 + ε2)
.

For approach 1, i.e., for i = 1 in (6)�(7), we then have

∂F

∂v1

= −∆v1 − f and
∂v1

∂ϕ
= Hε(ϕ) + ϕδε(ϕ).

Correspondingly, we have

∂J1

∂ϕ
=
∂F

∂v1

∂v1

∂ϕ
= (−∆v1 − f)(Hε(ϕ) + ϕδε(ϕ)). (13)

Since also |ϕ| is nondi�erentiable at 0, we use again a smooth approximation
|ϕ| ≈

√
ϕ2 + ε̂, for small positive ε̂ for approach 2, i.e., for i = 2 in (6)�(7).

Then,

∂v2

∂ϕ
=

1

2

(
1 +

ϕ√
ϕ2 + ε̂

)
,

and, altogether, we have

∂J2

∂ϕ
=
∂F

∂v2

∂v2

∂ϕ
=

1

2
(−∆v2 − f)

(
1 +

ϕ√
ϕ2 + ε̂

)
. (14)

Let J ε
i denote the corresponding cost functionals with the smoothed functions.

We shall use the following gradient method (GR) to �nd a function ϕ, which
approximates the minimizers of (8):

ϕn+1 = ϕn − α
∂J ε

i

∂ϕ
(ϕn), i = 1, 2.

The step size α is �xed and is obtained by trial and error approach.

6

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Fig. 1. The obstacle (left) and the analytical solution (right) for n = 100.

4 Numerical experiments

In this section, we present the results of the numerical experiments that were
computed using the proposed algorithms. All experiments are performed on an
HP9000/J5600 workstation (2 × 552 MHz PA8600 CPU) and the algorithms
are implemented with Fortran 77.

4.1 General issues about the experiments

The following two example problems were considered. Both problems have
f = 0.

Example 2 In this one-dimensional example, we chose Ω = [0, 1]. The ob-
stacle and the analytical solution are shown in Figure 1.

Example 3 In this example, we chose Ω = [−2, 2]× [−2, 2] and

ψ(x, y) =

√

1− x2 − y2, for x2 + y2 ≤ 1,

−1, elsewhere.
(15)

With the consistent Dirichlet boundary condition, problem (1) with ψ intro-
duced in (15) has an analytical solution of the form

u(x, y) =

√

1− x2 − y2, for r ≤ r∗,

−(r∗)2ln(r/R)/
√

1− (r∗)2, for r ≥ r∗,

where r =
√
x2 + y2, R = 2, and R∗ = 0.6979651482 . . . , which satis�es

(r∗)2(1− ln(r∗/R)) = 1.

7

−2 −1 0 1 2
−2

0

2
−1

−0.5

0

0.5

1

−2 −1 0 1 2
−2

0

2
−0.5

0

0.5

1

Fig. 2. The obstacle (left) and the analytical solution (right) for n̄ = 100.

The obstacle and the analytical solution are illustrated in Figure 2. The same
example has been considered, e.g., in [18].

Discretization of the problems. In the one-dimensional case, Ω = [0, 1]
is divided into n subintervals, and we denote h = 1/(n + 1). In the two-
dimensional case, Ω = [−2, 2] × [−2, 2] is divided into n̄ subintervals in x-
direction and y-direction. We denote n = n̄2 and h = (4/(n̄+1). Then, u, f, ϕ,
and ψ denote vectors in Rn, whose components correspond to the values of
the unknown functions in the equidistant discretization points in Ω. A �nite
di�erence approximation is used for −∆ with Dirichlet boundary conditions.

How to apply PB for solving (8). Even if it is possible to apply PB for
solving problem (8) with ε, ε̂ = 0, our main focus in this paper is to solve the
problems with ε, ε̂ > 0. In numerical simulations, the level set function ϕ is
seldom exactly zero at a nodal point. Hence, special care needs to be taken
to deal with the case, where ϕ at a given node has di�erent sign than at one
of the neighbouring nodes. Our numerical tests also show that the cost of PB
for large problem sizes is much more expensive than the cost of GR (gradient)
method. Hence, PB is primarily used only as a tool to justify that the results
obtained using GR are correct. However, we have applied PB also with ε̂ = 0
for approach 2.

In order to apply PB for realizing the level set approaches of Section 2, i.e.,
for solving problem (8), we need to be able to compute the cost function
value Ji(ϕ) and a subgradient g(ϕ) ∈ ∂Ji(ϕ) at each point ϕ ∈ Rn. In the
nonsmooth case (i.e., without the regularization using ε̂), we only need to
supply one of the subgradients at each ϕ. For the smoothed cases, i.e., for ε, ε̂ >
0, the cost functional Ji(ϕ) is di�erentiable, so that instead of calculating a
subgradient, we set g(ϕ) = ∂

∂ϕ
Ji(ϕ) due to (13) or (14).

8

Initial values and stopping criteria. In the experiments, we chose ϕ0 = 1
for the initial value and the boundary condition needs to be properly supplied.
PB with ε̂ = 0 converged to a di�erent solution when the initial value ϕ0 =
0 was used. However, during the experiments, a surprising observation was
made. Despite the nonconvexity of the problems, when ε, ε̂ > 0 were chosen
properly, both PB and GR converged to the same result, regardless of the
value ϕ0 ≥ 0.

We have used the stopping criterion || ∂
∂ϕnJi(ϕ

n)|| < 10−2 for GR. For PB,
the stopping criteria are more complicated and they are explained in the Ap-
pendix.

4.2 Results of the experiments

GR vs. PB. In the �rst experiments, we tested if GR obtains the same
results as PB for ε, ε̂ > 0. For this purpose, we considered three di�erent
problem sizes for both examples. In Example 2, n = 30, 50, 100 and in Example
3, n̄ = 10, 30, 50. PB is not able to solve larger problems than n = 50×50 due
to memory problems. The values of the smoothing parameters ε, ε̂ were chosen
to be the smallest ones (as powers of h) for which both algorithms converged
to the same solution from both ϕ0 = 0 and ϕ0 = 1. In the one-dimensional
case, we chose ε = h, ε̂ = h2, and in the two-dimensional case, ε = h2, ε̂ = h4.

Table 1
Results for Example 2.

n Appr Alg it CPU e(u∗, ū) α F (u∗)

30 1 GR 225729 16.11 2.01 · 10−2 10−4 10.389331

PB 3534 1.79 2.01 · 10−2 10.389239

30 2 GR 1859277 29.63 1.30 · 10−2 10−4 10.507347

PB 34523 16.52 1.30 · 10−2 10.506380

50 1 GR 163496 19.10 2.54 · 10−2 10−4 10.583929

PB 2968 2.44 2.54 · 10−2 10.583918

50 2 GR 14608221 376.77 2.20 · 10−2 10−5 10.656211

PB 34320 26.14 2.20 · 10−2 10.655964

100 1 GR 1054158 242.09 6.37 · 10−3 10−5 11.049151

PB 2125 3.30 6.38 · 10−2 11.049157

100 2 RR 10583641 529.16 4.21 · 10−3 10−5 11.087094

PB 47293 75.11 4.21 · 10−3 11.087025

9

Table 2
Results for Example 3.

n Appr Alg it CPU e(u∗, ū) α F (u∗) e(u∗, U)

10*10 1 GR 7124 1.03 2.73 · 10−2 10−2 3.476744

PB 2222 3.68 2.78 · 10−2 3.474095

10*10 2 GR 344365 16.96 5.15 · 10−3 10−3 3.842950

PB 48173 56.41 6.01 · 10−3 3.826969

30*30 1 GR 34991 39.84 3.54 · 10−3 10−3 3.872834

PB 4742 38.00 3.55 · 10−3 3.872785

30*30 2 GR 200238 66.85 8.93 · 10−4 10−3 3.919601

PB 48509 422.62 8.83 · 10−4 3.919754

50*50 1 GR 24599 76.00 1.27 · 10−3 10−3 3.916609

PB 18135 285.30 1.27 · 10−3 3.916593

50*50 2 GR 1535794 1340.53 3.40 · 10−4 10−4 3.933813

PB 204773 2924.01 3.40 · 10−4 3.933813

63*63 1 GR 212296 1038.48 7.27 · 10−4 10−4 3.926376 5.95 · 10−4

63*63 2 GR 1374101 1862.80 1.32 · 10−4 10−4 3.937281 2.09 · 10−5

127*127 1 GR 132984 2615.49 1.90 · 10−4 10−4 3.940715 1.50 · 10−4

127*127 2 GR 9633471 51064.97 4.47 · 10−5 10−5 3.943423 3.65 · 10−6

The results are given in Tables 1�2, where in the �rst column, the size of
the problem is given. In the next column, we state which of the level set
approaches is considered. Then, the solution algorithm used is given. In the
next two columns, it denotes the number of iterations needed and CPU the
elapsed CPU time in seconds. In the sixth column, e(u∗, ū) denotes the average
error between the analytical solution ū and the obtained result u∗ :

e(u∗, ū) =

√√√√ 1

n

n∑
i=1

(u∗ − ū)2
i .

In the seventh column, the value of the constant step size α is given for GR.
We always chose the largest value of α for which the algorithms converged.
In the next column, F (u∗) denotes the value of the cost functional for the
obtained result.

From the tables, we conclude that with the chosen values of ε, ε̂, GR obtains
the same results as PB, so that we can trust that GR is able to solve the
problems. PB is faster than GR for small problems, but it gets slow when the

10

0 0.2 0.4 0.6 0.8 1
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0 0.2 0.4 0.6 0.8 1
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0 0.2 0.4 0.6 0.8 1
−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2 x 10−3

Fig. 3. Di�erence (u∗ − u) between the computed solution u∗ and the analytical
solution u. Top: n = 50, bottom n = 100. Left: approach 1, right: approach 2.

size of the problem gets large.

Quality of the results with ε, ε̂ > 0. PB is not able to solve larger prob-
lems than n = 50 × 50. However, from the above experiments we know that
GR is able to solve the considered problems for ε, ε̂ > 0. Hence, we solved
Example 3 with GR also for n̄ = 63, 127, in order to be able to compare the
obtained results with the �nite element results of [18]. The results are pre-
sented Table 2, where e(u∗, U) in the last column denotes the average error
between the obtained result u∗ and the �nite element result U of [18].

In Figure 3, the di�erences between the computed solution u∗ and the ana-
lytical solution u are presented for Example 2 with n = 50 and n = 100. In
Figure 4, the same di�erences are presented for Example 3 with n̄ = 63 and
n̄ = 127. Finally, in Figure 5, the di�erences between the obtained result u∗

and the �nite element result U are presented for Example 3.

Both the tables and the di�erence plots clearly indicate that the results of
approach 2 are more accurate than results of approach 1. This is partly because
for approach 2, a smaller value of the smoothing parameter ε̂ can be used. In

11

−2 −1 0 1 2
−2

0

2
−2

−1.5

−1

−0.5

0
x 10−3 u* − u

−2 −1 0 1 2
−2

0

2
−1

−0.8

−0.6

−0.4

−0.2

0
x 10−3 u* − u

−2 −1 0 1 2
−2

0

2
−5

−4

−3

−2

−1

0
x 10−4 u* − u

−2 −1 0 1 2
−2

0

2
−3

−2.5

−2

−1.5

−1

−0.5

x 10−4 u* − u

Fig. 4. Di�erence between the obtained result u∗ and the analytical solution u. Top:
n̄ = 63, bottom: n̄ = 127. Left: approach 1, right: approach 2.

fact, we observe from Table 2, that the result of approach 1 is approximately
equally far away from the analytical solution and from the result of [18],
whereas the result of approach 2 is clearly closer to the results of [18] than to
the analytical solution.

The plots in Figure 3 clearly show the fact which is not so visible in Figure 4:
The result of approach 1 is below the analytical solution at the contact region,
whereas the result of approach 2 is slightly above the analytical solution at
the contact region. This is due to di�erent type of smoothing used in the two
formulations. The results U of [18] are closer to the analytical solution at the
contact region than the results of our approaches with ε, ε̂ > 0. This is why
u∗ − U is plotted on the left and U − u∗ on the right in Figure 5.

Convergence with respect to the smoothing parameters. In Tables
3�4, the error e(u∗, ū) is given for di�erent values of ε, ε̂, and n̄ for Example 3.
Here, PB was used as a solution algorithm and we only considered the values
of ε, ε̂ > 0 for which PB converged to the same solution from both ϕ0 = 0 and
ϕ0 = 1.

For approach 1, only the values ε = h, h2 were considered. The results are as
can be expected; they are less accurate for larger value of ε, see Table 3.

12

−2 −1 0 1 2
−2

0

2
−2

−1.5

−1

−0.5

0
x 10−3 u* − U.

−2 −1 0 1 2
−2

0

2
−6

−4

−2

0
x 10−5 U − u*.

−2 −1 0 1 2
−2

0

2
−4

−3

−2

−1

0
x 10−4 u* − U.

−2 −1 0 1 2−2

0

2
−2

−1.5

−1

−0.5

0
x 10−5 U − u*.

Fig. 5. Di�erence between the obtained result u∗ and the �nite element result U of
[18]. Top: n̄ = 63, bottom: n̄ = 127. Left: approach 1, right: approach 2.

For approach 2, the values ε̂ = h2, h3, h4, h5, h6, 0 were considered. The results
in Table 4 show that the value of ε̂ does not have a signi�cant e�ect on the
average error between the obtained result and the analytical solution. Actually,
the average error seems to grow slightly when ε̂ gets smaller. In Figure 6, the
di�erences between the computed solution u∗ and the analytical solution u
are plotted for n̄ = 50 and for di�erent values of ε̂. It can be seen that for
large value of ε̂, the result is far away from the analytical one at the contact
region but close to it outside the contact region. As ε̂ gets smaller, the result
gets closer to the analytical one at the contact region but goes further away
outside the contact region.

For ε, ε̂ > 0, the results of our new approaches are always below or above the
analytical solution at the contact region, due to the smoothing used in the
two formulations. However, for ε, ε̂ = 0, no error is introduced and hence, the
results will be exact at the contact region. In Figure 6, also a plot for ε̂ = 0 is

Table 3
Error e(u∗, ū) with respect to ε for approach 1.

ε /n̄ 10 30 50

h 6.54 · 10−2 2.14 · 10−2 1.25 · 10−2

h2 2.78 · 10−2 3.55 · 10−3 1.27 · 10−3

13

Table 4
Error e(u∗, ū) with respect to ε̂ for approach 2.

ε̂ /n̄ 10 30 50

h2 4.93 · 10−3 6.92 · 10−4 2.84 · 10−4

h3 5.62 · 10−3 6.59 · 10−4 2.68 · 10−4

h4 6.01 · 10−3 8.83 · 10−4 3.40 · 10−4

h5 5.82 · 10−3 9.83 · 10−4 3.63 · 10−4

h6 6.34 · 10−3 1.02 · 10−3 3.70 · 10−4

0 6.68 · 10−3 1.01 · 10−3 3.56 · 10−4

included. There is no visible error between this result and the one with ε̂ = h6,
but a closer examination shows that the result with ε̂ = 0 really is exact at
the contact region.

Other conclusions from the numerical experiments Using both so-
lution algorithms, it takes considerably more time to solve the problem of
approach 2 than that of approach 1. For GR, this is due to the fact that
smaller value of α must be used for the solution of the problem of approach
2. Moreover, both the algorithms become even slower when the value of the
smoothing parameter ε, ε̂ is increased. This is a surprising observation, be-
cause usually, when this kind of smoothing is used, the opposite behaviour is
observed. Finally, Figure 7 illustrates how the contact region develops during
the GR iterations of approach 2 for n̄ = 100.

5 Conclusion

A level set related method was proposed for solving free boundary problems
coming from contact with obstacles. Two di�erent approaches were described
and applied for solving an unilateral obstacle problem. The results obtained
were promising: even if the considered problems are nonsmooth and noncon-
vex, we obtained the same results using two di�erent solution algorithms. Also
the accuracy of the results was reasonable, taken into account that a small
regularization error was introduced in the methods, in order to make the prob-
lems di�erentiable. In this work, we have only tested the proposed methods
for solving the obstacle problem (1). The idea is applicable also for other free
boundary problems dealing with contact regions.

14

−2 −1 0 1 2
−2

0

2
−10

−5

0

5

x 10−4

−2 −1 0 1 2
−2

0

2
−10

−8

−6

−4

−2

0

2
x 10−4

−2 −1 0 1 2
−2

0

2
−10

−8

−6

−4

−2

0

2
x 10−4

−2 −1 0 1 2
−2

0

2
−10

−8

−6

−4

−2

0

2
x 10−4

−2 −1 0 1 2
−2

0

2
−10

−8

−6

−4

−2

0

2
x 10−4

−2 −1 0 1 2
−2

0

2
−10

−8

−6

−4

−2

0

2
x 10−4

Fig. 6. Di�erence (u∗ − u) between the result of PB and the analytical solution for
di�erent values of ε: Top: left: ε = h2, right: ε = h3; Middle: left: ε = h4, right:
ε = h5; Bottom: left: ε = h6, right: ε = 0.

A Appendix

In this appendix, we give some details about the proximal bundle method. For
that purpose, let us consider a general unconstrained nonlinear optimization
problem

min
x∈Rn

J (x), (A.1)

where J : Rn → R is a locally Lipschitz continuous function. We assume that
at each point x ∈ Rn, we can evaluate the function value J (x) and an arbitrary
subgradient g(x) from the subdi�erential ∂J (x). For the convergence of the

15

Fig. 7. The �gures illustrate how the contact region develops during the itera-
tions. Top, from left to right: it = 20500, 21000, 22000, bottom, from left to right:
it = 25000, 50000, 100000.

method, in the nonconvex case, J is further assumed to be upper semismooth
[13,14]. In what follows, we describe how the search direction is obtained in
the proximal bundle method and what kind of line search it uses. For more
details, see [13,15,16].

Search direction: The aim is to produce a sequence {xk}∞k=0 ⊂ Rn con-
verging to some local minimum of problem (A.1). Suppose that at the k-th
iteration of the algorithm, we have the current iterate xk, some trial points
yj ∈ Rn (from past iterations), and subgradients gj ∈ ∂J (yj) for j ∈ Gk,
where the index set Gk is a nonempty subset of {0, . . . , k}. The trial points yj

are used to form a local approximation model of the function J in a neigh-
bourhood of the considered point x.

The idea behind the proximal bundle method is to approximate the objective
function from below by a piecewise linear function. For this purpose, J is
replaced with the so-called cutting-plane model

Ĵ k
α (x) := max

j∈Gk
{J (xk) + (gj)T (x− xk)− αk

j} (A.2)

with the linearization error

αk
j := J (xk)− J (yj)− (gj)T (xk − yj), for all j ∈ Gk. (A.3)

Now, if J is convex, then the cutting-plane model Ĵ k
α gives an underestimate

for J and the nonnegative linearization error αk
j measures how well the model

16

approximates the original problem. In the nonconvex case, these facts are not
valid anymore: αk

j may have a tiny (or even negative) value, even if the trial
point yj lies far away from the current iterate xk, making the corresponding
subgradient gj useless. For these reasons, the linearization error αk

j is replaced
with the so-called subgradient locality measure (cf. [15])

βk
j := max{|αk

j |, γ(sk
j)

2}, (A.4)

where γ ≥ 0 is the distance measure parameter (γ = 0 if J is convex), and

sk
j := ||xj − yj||+

k−1∑
i=j

||xi+1 − xi|| (A.5)

is the distance measure estimating ||xk−yj|| without the need to store the trial
points yj. Then, obviously, βk

j ≥ 0 for all j ∈ Gk and minx∈K Ĵ k
β (x) ≤ J (xk).

In order to calculate the search direction dk ∈ Rn, the original problem (A.1)
is replaced with the cutting plane model

min
d

Ĵ k
β (xk + d) +

1

2
δkdTd, (A.6)

where Ĵ k
β (x) denotes (A.2) with αk

j replaced by βk
j . In (A.6), the regularizing

quadratic penalty term 1
2
δkdTd is included in order to guarantee the existence

of the solution dk and keep the approximation local enough. The role of the
weighting parameter δk > 0 is to improve the convergence rate and to accu-
mulate some second order information about the curvature of J around xk.
One of the most important questions concerning proximal bundle method is
the choice of the weight δk. The simplest strategy would be to use a constant
weight δk ≡ δfix but this can lead to several di�culties [16]. Therefore, the
weight is kept as a variable and updated when necessary. For updating δk, the
safeguarded quadratic interpolation algorithm due to [13] is used.

Notice that problem (A.6) is still a nonsmooth optimization problem. How-
ever, due to the piecewise linear nature it can be rewritten (cf. [16, p.106]
for details) as a (smooth) quadratic programming subproblem of �nding the
solution (d, z) = (dk, zk) ∈ Rn+1 of

min
d,z

z + 1
2
δkdTd

s. t. −βk
j + (gj)Td ≤ z, for all j ∈ Gk.

(A.7)

Line search: Let us consider the problem of determining the step size into
the direction dk calculated above. Assume that mL ∈ (0, 1

2
),mR ∈ (mL, 1),

17

and t̄ ∈ (0, 1] are �xed line search parameters. First, we shall search for the
largest number tkL ∈ [0, 1] such that tkL ≥ t̄ and

J (xk + tkLd
k) ≤ J (xk) +mLt

k
Lz

k, (A.8)

where zk is the predicted amount of descent. If such a parameter exists, we
take a long serious step

xk+1 := xk + tkLd
k and yk+1 := xk+1.

The long serious step yields a signi�cant decrease in the value of the objective
function. Thus, there is no need for detecting discontinuities in the gradient
of J , so that we set gk+1 ∈ ∂J (xk+1).

Otherwise, if (A.8) holds but 0 < tkL < t̄, then a short serious step

xk+1 := xk + tkLd
k and yk+1 := xk + tkRd

k

is taken. Finally, if tkL = 0, then we take a null step

xk+1 := xk and yk+1 := xk + tkRd
k,

where tkR > tkL is such that

−βk+1
k+1 + (gk+1)Tdk ≥ mRz

k. (A.9)

In the short serious step and null step, there exists discontinuity in the gradient
of J . Then, the requirement (A.9) ensures that xk and yk+1 lie on the opposite
sides of this discontinuity, and the new subgradient gk+1 ∈ ∂J (yk+1) will force
a remarkable modi�cation of the next problem of �nding the search direction.
In PB, the line search algorithm presented in [16] is used.

In practice, the iteration is terminated if

zk ≥ −tolPB,

where tolPB > 0 is the �nal accuracy tolerance supplied by the user. However,
there are also some other, more complicated, stopping criteria involved [19].

In the numerical experiments, we chose the following values for the line search
parameters: mL = 0.01,mR = 0.5, and t̄ = 0.1, and for the distance measure
parameter, we chose γ = 0.01. As a stopping criterion in 1D, we used tolPB =
10−5. In 2D, di�erent stopping criteria were used for di�erent problem sizes to
obtain the desired accuracy, namely, tolPB = 10−5 for n̄ = 10, tolPB = 10−6

for n̄ = 30, and tolPB = 10−7 for n̄ = 50.

18

Acknowledgements

The authors want to thank Dr. Marko Mäkelä at the University of Jyväskylä
for the possibility to use the PB code in the numerical experiments.

References

[1] S. Osher, J. A. Sethian, Fronts propagating with curvature dependent speed:
Algorithms based on hamilton-jacobi formulations, J. Comput. Phys. 79 (1988)
12�49.

[2] S. Osher, R. Fedkiw, Level set methods and dynamic implicit surfaces, Vol. 153
of Applied Mathematical Sciences, Springer-Verlag, New York, 2003.

[3] S. Osher, R. P. Fedkiw, Level set methods: an overview and some recent results,
J. Comput. Phys. 169 (2) (2001) 463�502.

[4] J. A. Sethian, Level set methods and fast marching methods, 2nd
Edition, Vol. 3 of Cambridge Monographs on Applied and Computational
Mathematics, Cambridge University Press, Cambridge, 1999, evolving interfaces
in computational geometry, �uid mechanics, computer vision, and materials
science.

[5] T. F. Chan, L. A. Vese, Image segmentation using level sets and the piecewise
constant mumford-shah model, Tech. rep., CAM Report 00-14, UCLA, Math.
Depart., revised December 2000 (April 2000).

[6] T. F. Chan, X.-C. Tai, Level set and total variation regularization for elliptic
inverse problems with discontinuous coe�cients, J. Comput. Phys. (2003) to
appear.

[7] S. Osher, F. Santosa, Level set methods for optimization problems involving
geometry and constraints. I. Frequencies of a two-density inhomogeneous drum,
J. Comput. Phys. 171 (1) (2001) 272�288.

[8] F. Santosa, A level-set approach for inverse problems involving obstacles, ESAIM
Contrôle Optim. Calc. Var. 1 (1995/96) 17�33 (electronic).

[9] J. A. Sethian, J. Strain, Crystal growth and dendritic solidi�cation, J. Comput.
Phys. 98 (2) (1992) 231�253.

[10] R. Glowinski, Numerical methods for nonlinear variational problems, Springer-
Verlag, 1984.

[11] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New
York, 1983.

[12] J. E. Kelley, The cutting plane method for solving convex programs, Journal of
the SIAM 8 (1960) 703�712.

19

[13] K. C. Kiwiel, Proximity control in bundle methods for convex nondi�erentiable
optimization, Math. Program. 46 (1990) 105�122.

[14] H. Schramm, J. Zowe, A version of the bundle idea for minimizing a nonsmooth
function: conceptual idea, convergence analysis, numerical results, SIAM J.
Optim. 2 (1) (1992) 121�152.

[15] K. C. Kiwiel, Methods of Descent for Nondi�erentiable Optimization, Lecture
Notes in Mathematics 1133, Springer-Verlag, Berlin-Heidelberg, 1985.

[16] M. M. Mäkelä, P. Neittaanmäki, Nonsmooth Optimization. Analysis and
Algorithms with Applications to Optimal Control, World Scienti�c, Singapore,
1992.

[17] K. C. Kiwiel, A method for solving certain quadratic programming problems
arising in nonsmooth optimization, IMA J. Numer. Anal. 6 (1986) 137�152.

[18] X.-C. Tai, Rate of convergence for some constraint decomposition methods for
nonlinear variational inequalities, Numer. Math. 93 (4) (2003) 755�786.

[19] M. M. Mäkelä, T. Männikkö, Numerical solution of nonsmooth optimal control
problems with an application to the continuous casting process, Adv. Math. Sci.
Appl. 4 (2) (1994) 491�515.

20

