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Abstract

We set up the electromagnetic system and its plane-wave solutions with the associated slowness
and wave surfaces. We treat the Cauchy initial-value problem for the electric vector and make explicit
the quantities necessary for numerical evaluation. We use the Herglotz-Petrovskii representation as an
integral around loops which, for each position and time form the intersection of a plane in the space of
slownesses with the slowness surface. The field, especially its singularities, is strongly dependent on the
varying geometry of these loops. We give without derivation the static term corresponding to the mode
with zero wave speed. Numerical evaluation of the solution is presented graphically followed by some
concluding remarks.

1 Introduction

1.1 General introduction

Crystal optics is similar to, but simpler than, anisotropic elasticity. For instance its slowness surface has
conical points, in common with many elasticity systems, and there are conical points on the wave surface.
It also has a third interesting feature associated with the rôle of the divergence in relation to Maxwell’s
equations, namely the fact that one characteristic speed is zero (actually two coincident zeros), so that the
slowness surface is quartic rather than sextic as might be expected from the dimensionality - one quadratic
sheet of the slowness surface lies at infinity. Remarkably the wave surface is another quartic surface of the
same algebraic type, but with reciprocal parameters. See for instance Born and Wolf (1989) for a very full
and readable account of the plane-wave theory of this system and the associated geometry.

The system of crystal optics is of great intrinsic and historical interest, the latter because Hamilton’s
prediction in 1833 of internal conical refraction, and Lloyd’s experimental confirmation closely thereafter,
led to the wide acceptance of Fresnel’s wave theory of light. The intrinsic interest is largely centered around
the remarkable geometrical properties of the slowness surface and wave surface, which are both of a type
known as Fresnel’s wave surface (Salmon, 1915).

We illustrate numerically the analytic expression for the fundamental solution of the system in terms of
real loop integrals according to the Herglotz-Petrovskii formula, which may also be applied readily to other
constant-coefficient hyperbolic systems. Petrowskii (1945) expressed the solution in terms of non-real cycles
in complex space. Atiyah, Bott, and Garding (1970, 1973) placed Petrovskii’s work on a modern basis,
and De Hoop and Smit (1995) recently elaborated this in a three-dimensional elastodynamic setting. But
following John (1955) and Gelfand and Shilov (1964) we will stay with the representation in terms of real
integrals. Burridge (1967) used it to obtain the geometrical arrivals (see below), and the singularity due
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to the conical points of the slowness surface at field points in the interior of the cone of internal conical
refraction for cubic elastic media. But that work lacked numerical illustrations and the treatment of the
conical point was not uniform near the conical surface itself. Although we still do not give the uniform
time-dependent asymptotic analysis for this region, we do present numerical solutions close to and on this
‘cone of internal conical refraction’. The geometrical arrivals mentioned above are singularities in the field
associated with slownesses ξ which are ‘stationary points’ where the plane ξ·x = t touches the slowness
surface and at which the slowness surface has finite non-zero Gaussian curvature, and such wave arrivals are
governed by the simplest form of geometrical ray theory.

For instance Movskin et al. (1993) have derived the Green’s function in the frequency domain and
discussed various important directions and cones of directions in relation to the field, namely in the directions
of generators of the cone of internal conical refraction, and in the directions of the biradials, i.e. the directions
of the conical points on the wave surface, and they obtain asymptotic approximations to the field at large
distances in the neighborhoods of these directions.

In this paper we study the second-order vector equation forE obtained by eliminating the other dependent
variables from Maxwell’s equations and the constitutive laws of crystal optics. This equation is like the
second-order elastodynamic equation for particle displacement and may be obtained from that of isotropic
infinitesimal elasticity by setting the Lamé constant λ = −2, and µ = 1, so that λ+ 2µ = 0, and the density
ρ = σ (see below).

See Every (1981) the effects of curvature of the slowness surface near crystal symmetry axes in cubic
crystal acoustics, and Shuvalov and Every (1996) for more general symmetries.

1.2 Outline of this paper

In Section 2 we set up the electromagnetic system and its plane-wave solutions with the associated geometrical
entities such as the slowness surface, and the wave surface, and we show their remarkably tightly knit
relationship to the energy ellipsoid and its parameterization by elliptic coordinates. In Section 3 we set
up and solve the Cauchy initial-value problem for E and make explicit some quantities with a view to
numerical evaluation. In Section 4 we follow the Herglotz-Petrovskii procedure of transforming the integral
representation to an integral around loops which, for each x, t, form the intersection of the plane ξ·x = t with
the slowness surface. As x, t vary the geometry of these loops varies, and the field, especially its singularities,
are strongly dependent on the geometry of these loops. In Section 5 we give without derivation the static
term corresponding to the mode with zero wave speed. Numerical evaluation of the fundamental solution is
presented graphically in Section 6 for a selection of points in the positive quadrant of the 13-plane. Section
7 contains some concluding remarks.

Table of notations:

Symbol Definition
t. time

x = (x1, x2, x3) spatial coordinate vector.
r = (r1, r2, r3) coordinate vector for the

representation of E .
c the speed of light in vacuo.

E, H the electric and magnetic vectors.
D The electric displacement.
B The magnetic induction.
µ The magnetic permeability

(scalar).
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Symbol Definition
ε The dielectric tensor (symmetric).

σ, σ1, σ2, σ3 µε/c2 and its principal values.
ξ The slowness vector.
f Plane wave pulse shape.

e, h, d, b Constant polarization vectors for
E, H, D, B, related to ξ.

x̂ The unit vector in the direction
of x, and similarly for other
vectors.

x̂, ŷ, ẑ, x⊥ Unit vectors (Section 5 and
Appendix A only).

Ω, dΩ The unit sphere and its surface
element.

E The energy ellipsoid rTσ−1r = 1.
u, v Ellipsoidal coordinates on ellipsoid E

(σ1 ≥ u ≥ σ2 ≥ v ≥ σ3 ≥ 0.)
S, dS The slowness surface and its

surface element.
cS A conical point on S.
ΠS One of the four special tangent

planes to S.
CS One of the four circles in which a

ΠS touches S.
W The wave surface (reciprocal

to S).
cW A conical point on W (reciprocal

to ΠS).
ΠW One of the four special tangent

planes to W
(reciprocal to cS).

CW One of the four circles in which ΠW
touches W.

DW The disk spanning CW .
Σ±, χ± The two cones of internal conical

refraction (vertex 0, base CW),
equation χ±(x) = 0.

L Loop or loops forming the
intersection of plane ξ·x = t
with slowness surface S.

∇, ˙ Derivatives with respect to
x and t.

Notes: 1) When used in matrix calculations vectors are columns unless explicitly transposed. (Thus xTx is
a scalar and xxT is 3× 3.) 2) There are four conical points cS . cS in the singular refers to the cS in ξ1 > 0,
ξ3 > 0. And similarly for some other quantities.
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2 Crystal optics equations

2.1 Maxwell’s equations and the slowness surface

We follow Born and Wolf (1991, Chapter XIV). Let x = (x1, x2, x3) = (x, y, z) be cartesian coordinates and
t the time. Maxwell’s equations and the constitutive equations of crystal optics are

−1
c
Ḃ = ∇ × E,

1
c
Ḋ = ∇ ×H,

B = µH, D = εE.
(2.1)

Please refer to the Table of Notations for symbol definitions.

Since E, H, D, and B may be expressed as superpositions of plane waves we shall seek them in a
standard form for plane waves:

E = e f(t− ξ · x), H = h f(t− ξ · x),
D = d f(t− ξ · x), B = b f(t− ξ · x), (2.2)

Substitution of (2.2) into (2.1) leads to
1
c
b =

µ

c
h = ξ × e, −1

c
d = −ε

c
e = ξ × h. (2.3)

It easily follows that
ξ×(ξ×e) =

µ

c
ξ×h = −σe, (2.4)

i.e.
σe = |ξ|2e− (ξ·e)ξ. (2.5)

Then from (2.3)
h·ξ = b·ξ = d·ξ = e·h = d·h = 0. (2.6)

Also
ξ·(e× h) = −e·(ξ × h) = h·(ξ × e) =

1
c
e·d =

1
c
h·b. (2.7)

We shall often assume that
εij = εiδij , σij = σiδij . (2.8)

No summation is implied. Then
dk = εkek, bk = µhk. (2.9)

From (2.7) we have 1
c

∑
k

εke
2
k =

1
c
µ|h|2 = ξ·(e× h). (2.10)

From (2.7),(2.8),(2.9) we obtain µεk
c2

ek = |ξ|2ek − (ξ·e)ξk. (2.11)

Writing
σk =

µεk
c2

(2.12)

and rearranging (2.11) we get
ek = (ξ·e) ξk

|ξ|2 − σk
. (2.13)

Equation (2.9) for dk and (2.13) lead to

dk = (ξ · e) εkξk
|ξ|2 − σk

. (2.14)

Contracting (2.13) with ξk, and canceling ξ·e gives∑
k

ξ2
k

|ξ|2 − σk
= 1. (2.15)

Contracting (2.14) by ξk, and using ξ·d = 0 we get
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Figure 1: This shows the slowness surface S cut away to reveal the inner sheet. The contours drawn on the surface
are tangent everywhere to the polarization e. The thicker contours drawn in each coordinate plane show the circle
and ellipse in which that plane cuts the surface. The conical points are clearly visible as the intersections of the
ellipse and circle inthe 13-plane. There are also four planes each of which touches S along a circle. The four circles
(only half of one being clearly visible) are drawn as heavy lines surrounding the conical points on the outer sheet.

∑
k

σkξ
2
k

|ξ|2 − σk
= 0. (2.16)

Equations (2.15) and (2.16) may be taken as equivalent equations of the slowness surface Sσ on which ξ
is constrained to lie. Another equation for S is

det(σ − |ξ|21 + ξξT ) = 0 (2.17)

obtained from (2.5) regarded as a linear system in e. In (2.17) 1 is the identity 3 × 3 tensor and ξT is the
transpose of the column vector ξ. Equation (2.17) can be written more explicitly as

|ξ|2 ξTσξ − tr(adjσ)|ξ|2 + ξT adjσ ξ] + detσ = 0, (2.18)

where adj stands for the transposed matrix of cofactors, and tr for the trace. See Figure 1.

2.2 The wave surface.

Let us now consider the wave surface reciprocal to the slowness surface. Remarkably for the system of crystal
optics the algebraic form of the two surfaces is the same.

To see this we first consider the equation of energy conservation
∂t[ 1

8π (E ·D +H ·B)] = − c
4π ∇ · (E ×H). (2.19)

This is easily verified from equations (2.1). The quantity 1
8π (E ·D + H ·B) is the energy density and

c
4πE ×H is the Poynting vector giving the power flux density. For plane waves E ·D = H ·B, and the
Poynting vector is the group, or ray, velocity multiplied by the energy density. It follows by using (2.3) and
(2.7) in (2.19) that

1
8π (e · d+ h · b) = 1

4πe · d = 1
4πh · b = 1

4πµ|h|
2 = c

4π ξ · (e× h). (2.20)

from which we may deduce that the ray velocity v is

v =
c

4π
1

µ|h|2 e× h. (2.21)

For future reference let us notice here that from (2.6) and (2.21) the vectors ξ, v, d, and e all lie in the same
plane orthogonal to the parallel vectors b, h.
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Figure 2: This shows (a) the inner sheet of the wavesurface W reciprocal to the outer sheet of the slowness surface
S on the left and (b) the outer sheet reciprocal to the inner sheet of the slowness surface on the right. The four
prominent ‘ears’ on the inner sheet have negative Gaussian curvature and correspond to four regions with negative
curvature on S. The dark circles are the circles of contact CW of the four special tangent planes ΠW . These circles
correspond to conical points on S. Reciprocally the conical points of W where the ‘ears’ of the inner sheet meet the
‘body’ correspond to circles of plane tangency on S. The two sheets join smoothly along the CW .

From (2.20), (2.21) we have
ξ · v = 1. (2.22)

We may now verify that
v × (v × d) = −σ−1 d, (2.23)

i.e.
σ−1 d = |v|2d− (v·d)v. (2.24)

Taking advantage of the fact that σ is diagonal in the current coordinate system we may write (2.24) as
1
σk

dk = |v|2dk − (v · d)vk, (2.25)

leading to ∑
k

v2
k

|v|2 − 1
σk

= 1,
∑
k

1
σk

v2
k

|v|2 − 1
σk

= 0. (2.26)

and det(σ−1 − |v|21 + vvT ) = 0, (2.27)

compare (2.15), (2.16), (2.17). Also
|v|2 vT adjσ v − [tr(σ)|v|2 − vTσ v] + 1 = 0, (2.28)

in analogy with the development (2.11) to (2.17). Equations (2.26) and (2.27),(2.28) may be taken as
equivalent equations of the wave surfaceWσ upon which v is constrained to lie. See Figure 2. Two double
cones Σ± having the origin as vertex pass through the circles. Their equations are

χ±(ξ) ≡ (ξc3x1 ± ξc1x3)
(ξc3x1

σ1
± ξc1x3

σ3

)
+ x2

2 = 0, (2.29)

where ξc1, 0, and ξc3 are the slowness components of the conical point cS .

3 The Cauchy problem

In this section we set up and solve the Cauchy problem for the second-order system of PDE’s obtained by
eliminating B, D, H from (2.1). Later we shall evaluate the solution numerically and present some results
graphically. Our development is strongly motivated by John (1955), the discussion of the Herglotz-Petrowskii
formulae in Gelfand and Shilov (1964), and Petrowskii (1945).
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3.1 The second-order equation for E

The elimination of B, D, H from (2.1) yields the single second-order equation

σË = −∇×∇×E = (∇21−∇∇T )E. (3.1)

Then, on writing ∂t for ∂/∂t (3.1) becomes

[σ∂2
t − P (∇)]E = 0, (3.2)

where
P (ξ) = |ξ|21− ξξT , (3.3)

so that P (ξ̂) is the projection onto the plane normal to ξ̂. We shall generate the fundamental solution of
(3.2) by solving the Cauchy problem for (3.2) in t > 0 with initial conditions

E(x, 0) = 0, ∂tE(x, 0) = σ−1δ(x), (3.4)

where
δ(x) = δ(x1)δ(x2)δ(x3). (3.5)

By Duhamel’s principle this Cauchy problem is equivalent to the inhomogeneous equation

[σ∂2
t − P (∇)]E = 1δ(t)δ(x), (3.6)

with E = 0 for t < 0. We shall solve this using the following considerations.

3.2 The residue calculation

Let us write
L(v, ξ) = v2σ − P (ξ), (3.7)

regarding v as a scalar complex variable. Then for large enough |v|
L−1(v, ξ) = v−2σ−1[1− v−2P (ξ)σ−1]−1

= v−2σ−1

∞∑
n=0

v−2n(P (ξ)σ−1)n. (3.8)

This is a series in inverse even powers of v, starting with v−2. On multiplying this by vq and integrating
around a large circle centered at the origin in the complex v plane we obtain

I =
1

2πi

∮
L−1(v, ξ)vq dv =

{
0, q = 0,
σ−1, q = 1. (3.9)

Other values of q will not concern us. Let us now evaluate I by residues at the finite poles. When ξ 
= 0
there are four simple non-zero poles ±V1, ±V2 of L−1 and a double pole at v = 0. Thus, if we write V−1 for
−V1 and V−2 for −V2, and ∂v for ∂/∂v we find on evaluating the residues at the VN that

I =
∑
N

vqadjL
∂v detL

∣∣∣∣∣
v=VN

+ residue at v = 0. (3.10)

We may rewrite ∂v detL|v=VN as

∂v detL|v=VN = ∂v det(v2σ − P )|v=VN
= 2VN tr(σ adjL). (3.11)

To find the residue at v = 0 we expand (v2σ − P )−1 in positive powers of v. Thus using

adjP (ξ) = |ξ|2ξξT (3.12)

we find that detL = adj(v2σ − P )
= adjP + O(|v|2)
= |ξ|2ξξT + O(|v|2).

(3.13)
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Recalling that detP = 0 we see that
det(v2σ − P ) = v2tr(σadjP ) + O(|v|4)

= v2|ξ|2 ξTσξ + O(|v|4).
(3.14)

So
{det[L(v, ξ))]}−1 =

v−2

|ξ|2 ξTσξ
+ O(1). (3.15)

Thus the residue of vqL−1 at 0 is

{residue of vqL−1

at v = 0} =




0, q = 0,

ξξT

ξTσξ
, q = 1.

(3.16)

Thus, from (3.9), (3.10), (3.11), and (3.16) we find that∑
N

adjLN
2VN tr(σadjLN )

= 0, (3.17)

and ∑
N

adjLN
2 tr(σadjLN )

+
ξξT

ξTσξ
= σ−1. (3.18)

Here we have written LN for L evaluated at v = VN , N = ±1,±2.

3.3 The fundamental solution

Let us first seek a matrix plane-wave solution Gξ of (3.2) in the form

Gξ(x, t) =
∑
N

adjLN
2VN tr(σadjLN )

f(VN t− ξ·x) +
ξξT

ξTσξ
tf ′(−ξ·x). (3.19)

We first verify that L(∂t,∇)Gξ(x, t) = 0. Thus

L(∂t,∇)Gξ(x, t) =
∑
N

LNadjLN
2VN tr(σadjLN )

f ′′(VN t−ξ·x) =
∑
N

detLN 1
2VN tr(σadjLN )

f ′′(VN t−ξ·x) = 0, (3.20)

since the detLN = 0. By (3.17) the initial value of Gξ is

Gξ(x, 0) =
∑
N

adjLN
2VN tr(σadjLN )

f(−ξ·x) = 0, (3.21)

and by (3.18) the initial value of ∂tGξ is

∂tGξ(x, 0) =
∑
N

adjLN
2 tr(σadjLN )

f ′(−ξ·x) +
ξξT

ξTσξ
f ′(−ξ·x) = σ−1f ′(−ξ·x). (3.22)

We are ultimately interested in the matrix point source problem (3.2), (3.4), (3.5) or equivalently (3.6). The
link is the plane-wave expansion of the δ-function,

δ(x) = − 1
8π2

∫
Ω

δ′′(ξ̂·x) dΩ, (3.23)

where Ω is the unit sphere |ξ| = 1, dΩ its surface element, and δ′′ is the second derivative of the one-
dimensional δ-function. (See John, 1955, Chapter II; Courant and Hilbert, 1962, Chapter VI, Section 11;
and Gelfand and Shilov, 1964, Chapter I, Section 3.11.) From (3.21) and (3.22), and setting f = δ′, we see
that

G(x, t) = − 1
8π2

∫
Ω

Gξ(x, t) dS

=− 1
8π2

∑
N

∫
Ω

adjLN
2VN tr(σadjLN )

δ′(VN t−ξ̂·x) dΩ− t

8π2

∫
Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(−ξ̂·x) dΩ.

(3.24)

satisfies (3.4) exactly.
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3.4 Transformation to an integral over the slowness surface

Here we follow John (1955, Chapter II) and Gelfand and Shilov (1964, Chapter I, Section 6.3). If the
wavespeeds ±VN are ordered from the most negative to the most positive we find that VN (−ξ) = V−N (ξ).
This and the fact that the VN are homogeneous functions of degree 1 imply that the integral in (3.24) for N
is the same as the integral for −N . Thus we may combine the terms for ±N and write

G(x,t) = − 1
4π2

∑
N=1,2

∫
Ω

adjLN
2VN tr(σadjLN )

δ′(VN t−ξ̂·x) dΩ− 1
8π2

∫
Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂

t δ′′(−ξ̂·x) dΩ. (3.25)

In the Nth term of (3.24) let us transform the integral over Ω to one over SN , N = 1, 2. We note that

|ξ|2 dΩ = cos θ dSN =
ξ·∇ξVN
|ξ| |∇ξVN |

dSN =
1

|ξ| |∇ξVN |
dSN , (3.26)

where ξ = |ξ|ξ̂, θ is the angle between ξ and v̂ the normal to SN , and dSN is the surface element on SN
and we have used the homogeneity of VN as a function of ξ. We next use the facts that VN (ξ) = 1 on SN ,
δ′ is homogeneous of degree −2, and that VN (ξ) is homogeneous of degree 1, to get

δ′(VN (ξ̂)t− ξ̂·x)

VN (ξ̂)
= |ξ|3 δ

′(VN (ξ)t− ξ·x)
VN (ξ)

= |ξ|3δ′(t− ξ·x), (3.27)

Finally we write

G(x, t) = − 1
8π2

∂t

∫
S

adjL(1, ξ)δ(t− ξ·x)
|∇ξVN | tr[σ adjL(1, ξ)]

dS − t

8π2

∫
Ω

ξ̂ξ̂
T
δ′′(ξ̂·x)

ξ̂
T
σξ̂

dΩ, (3.28)

where we have combined the two terms N = 1, 2 by integrating over the whole of S which comprises both
sheets. Because of the properties of δ the integrals may be written as integrals along curves of intersection
of the algebraic surface S with the plane ξ·x = t. We shall elucidate this and make more explicit the various
expressions appearing in the integrand.

4 The loop integrals

Consider the integral expression of (3.28) repeated here for convenience

G(x, t) = − 1
8π2

∂t

∫
S

adjL(1, ξ)δ(t− ξ · x)
|∇ξv| tr[σ adjL(1, ξ)]

dS − t

8π2

∫
Ω

ξ̂ξ̂
T
δ′′(ξ̂ · x)

ξ̂
T
σξ̂

dΩ. (4.1)

The first integral reduces to an integral around a curve, the intersection of S and the plane ξ·x = t. Let n
be the outward unit normal to S and ζ ′ difined by

ζ ′ = x̂·ξ. (4.2)

Then sin θ dS = dsdζ ′, (4.3)

where s is arclength along the curve and

cos θ = x̂·n =
x̂·∇ξv

|∇ξv|
. (4.4)

Hence δ(t− ξ · x) dS
|∇ξv|

=
δ(t− |x| ζ ′) dsdζ ′√
|∇ξv|2 − (x̂·∇ξv)2

. (4.5)

Thus ∫
S

adjL(1, ξ)δ(t− ξ · x)
|∇ξv| tr[σ adjL(1, ξ)]

dS =
1
|x|

∫
L

adjL(1, ξ) ds
tr[σ adjL(1, ξ)]

√
|∇ξv|2 − (x̂·∇ξv)2

(4.6)

Here L is the complete real intersection of S with the plane ξ·x = t and ds is arclength along L.
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4.1 Implicit computation of the complete intersection L

To evaluate the integral (4.6), we have to compute the complete real intersection L of S with the plane
ξ·x = t. We use an Eulerian approach.

Since S = {ξ ∈ R3 : det(σ − P (ξ)) = 0}, (4.7)

we define the function Φ(ξ) ≡ det(σ − P (ξ)), (4.8)

and find its zero level set S: S = {ξ ∈ R3 : Φ(ξ) = 0}, (4.9)

Moreover, the hyperplane ξ·x = t may also be represented implicitly by the zero level set of function

Ψ(ξ) ≡ ξ·x− t = 0. (4.10)

To reduce the computation we use the fact that L always lies on the plane ξ·x = t with a fixed normal
x̂. Thus we may rotate the coordinate system first so that ξ·x̂ is one of the new coodinates and find L
by contouring zero level sets of a 2-dimensional function of the remaining coordinates. This technique is
commonly used in the level set method for dynamic implicit surfaces, see Osher and Fedkiw (2002).

4.2 The method of evaluation

The method of numerical evaluation is as follows. We first rotate the coordinate system so that the new
3-direction is parallel to x. Thus, defining the rotation matrix Q to have x̂ as its third column (We chose
the second column to lie in the 12-plane.), and setting

ξ = Q ξ′ (4.11)

the coordinate ξ′3 is in the direction of x as required and ξ′1, ξ
′
2, ξ
′
3 form a right-handed orthogonal coordinate

system. So, using
σ′ = QTσQ, ξ′ = QT ξ (4.12)

we may write the determinant det{σ − P (ξ)} by (2.18)

det{σ − P (ξ)} = det{σ′ − P (ξ′)} = σ1σ2σ3 − tr{adj(σ′}|ξ′|2 + ξ′T adj(σ′)ξ′ + |ξ′|2ξ′Tσ′ξ′ (4.13)

as a function of ξ′1 and ξ′2 for each fixed ξ′3 = t/|x|. A Matlab code was written using the contour command
to find L as a curve or curves of points in the ξ′1ξ

′
2-plane where this determinant vanishes. The integration

was performed to second order accuracy in the stepsize of the mesh on which det{σ′−P (ξ′)} was evaluated.

5 The static term

In (3.28) the final term of the fundamental solution G represents a non-propagating disturbance, correspond-
ing to zero velocity, which grows linearly in time and is singular at the origin. It is

J(x, t) = − t

8π2

∫
Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(ξ̂·x) dΩ. (5.1)

Let x̂ be the unit vector in the direction of x and let ŷ, ẑ be chosen so that x̂, ŷ, ẑ form a right-handed
orthonormal triple. Then a general unit vector ξ̂ perpendicular to x may be written as cosφŷ+ sinφẑ, and
we may write J as

J(x, t) = − t

8π2|x|3
∫ 1

−1

∫ 2π

0

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(µ) dφdµ, (5.2)

where
ξ̂ = µx̂+

√
1− µ2(cosφŷ + sinφẑ), (5.3)

where x⊥ = cosφŷ + sinφẑ. say. Then

10



J(x, t) = − t

8π2|x|3
∫ 2π

0

∂2

∂µ2

(
ξ̂ξ̂

T

ξ̂
T
σξ̂

)∣∣∣∣∣
µ=0

dφ. (5.4)

After some elementary calculations we find that

∂2

∂µ2

(
ξ̂ξ̂

T

ξ̂
T
σξ̂

)∣∣∣∣∣
µ=0

= 2

[
x̂x̂T

x⊥
T
σx⊥

− 2(x⊥Tσx̂)(x̂x⊥T + x⊥x̂T )

(x⊥Tσx⊥)2
+

4(x̂Tσx⊥)2x⊥x⊥T

(x⊥Tσx⊥)3

]
. (5.5)

Thus we need integrals of the form

I(0) =
∫ 2π

0

dφ
D

, I(2)
pq =

∫ 2π

0

x⊥p x
⊥
q dφ

D2
, I(4)

pqrs =
∫ 2π

0

x⊥p x
⊥
q x
⊥
r x
⊥
s dφ

D3
, (5.6)

where D = x⊥
T
σx⊥ and the superscripts indicate the ranks of the tensors. We begin with I(0) from which

the others may be derived by means of

I
(2)
pq = −∂I(0)

∂σpq
, I

(4)
pqrs =

1
2

∂2I(0)

∂σpq∂σrs
. (5.7)

Let us write
F = x̂Tadjσ x̂. (5.8)

Then it may be shown that
I(0) =

2π

F
1
2
, (5.9)

but for want of space we omit the derivation. Let us further define

Zjk = εijkx̂i, w = σx̂, W = ZTσZ. (5.10)

Then, it follows after some further calculation that the static term of (3.28) is given by

− t

8π2

∫
Ω

ξ̂ξ̂
T

ξ̂
T
σξ̂

δ′′(ξ̂ · x) dΩ =

− t

4πF
1
2 |x|3

{
2x̂x̂T − x̂

Tσx̂

F
W − 2

F
(x̂wTW + Wwx̂T )− 2

F
ZTwwTZ +

3
F 2

(wTWw)W

}
,

(5.11)

with Z, w, and W given by (5.10), and F by (5.8).

We now have the ingredients for evaluating the solution G given in (3.28).

6 The field in the 13-plane

6.1 The 13-section

In this section we plot the solution Gij(x, t) as functions of t for various fixed x with |x| = 1 and x given
by

x(θ) =

( sin θ
0

cos θ

)
, (6.1)

and θ = 0, π/36, π/18, . . . , π/2, i.e. θ increasing by steps of 5◦ from 0◦ to 90◦. This will give a sampling of
points on the 13-plane illustrating the various types of behavior in relation to the geometrical configuration
described at the end of the previous sections.

Let us first define θa, θb and θc by

tan θa =

√
σ3(σ1 − σ2)
σ1(σ2 − σ3)

, tan θb =

√
σ1(σ1 − σ2)
σ3(σ2 − σ3)

, tan θc =
√

σ1 − σ2

σ2 − σ3
. (6.2)
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Here θa and θb are the points at which the circle CW crosses the 13-plane, for θ = θc x is parallel to a biradial
and so points in the direction of the conical point cW . We find that θa < θc < θb. See Figure 3 where the
13-section of W is plotted.

To understand the sequence of arrivals for a given x(θ) draw the ray through the origin in the direction of
x(θ) in Figure 3. As t increases the point x(θ)/t will move along the ray through the origin parallel to x(θ)
from outside W for small t inwards towards the origin. Each crossing of W is associated with the arrival
of a singularity. A normal to W at one of these crossings gives the direction of the associated stationary
point ξ1,2 on S. Reciprocally the normal to S at such a ξ1,2 gives the direction of the point x to which it
corresponds. Thus at both stationary points ξ1,2 corresponding to the ray in the direction of x̂, the normals
to S are parallel to x̂ and make an angle θ with the 3-axis. The inner sheet of W corresponds to the outer
sheet of S, and vice-versa as indicated in the captions to Figure 2.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5 3

1

θa

θb

θc

Figure 3: This shows the 13-section of the wave surface W for fixed time t = 1. Notice the ellipse and the circle
which intersect at the conical points of W, the biradials, making angle θc with the 3-axis. The angles θa, θb, and θc,
measured from the 3-axis, are indicated. Notice also the segments of common tangents which represent the disks DW
forming a part of the wavefront carrying a weak singularity.

For 0 < θ < θa and again for θb < θ < π/2, x(θ) lies outside the cone Σ++ and the singularities all
correspond to points of tangency on S with positive Gaussian curvature. These singularities are of the form

A(x̂)ê1,2ê
T
1,2

K
1
2 (ξ1,2)|x|

δ[t− t1,2(θ)], (6.3)

except that a more complicated asymptotic ansatz (not given in this paper) is required for those x having
directions passing close to θ = θa or θb, and yet another for θ near θc. In (6.3) A is a smoothly varying
function of direction, ξ1,2 = ξ1,2(θ) are the two points at which the plane ξ·x(θ) = t is tangent to S, and
t1,2(θ) the two corresponding values of t, with indexing such that t1 < t2, and e1,2(θ) the corresponding
polarization for E. Then ξ1(θ) lies on the inner sheet of S and ξ2(θ) lies on the outer. See Figures 3 & 4.
K(ξ1,2) > 0 is the Gaussian curvature of S at ξ1,2. See Burridge (1967). For these ranges of directions the
plane x·ξ = t passes over cS so as to make locally a hyperbolic section with the tangent cone to S at cS .
There is no corresponding conical wave arrival.

For θ = θa, ξ1 = cS and ξ2 is on the outer sheet still near the 3-axis. In Figures 6 we show the
configuration of the loops for θ just less, and just greater than, θa. This raises the question of the uniform
analytical treatment of the neighborhood of the circle CW , the boundary of the disk DW . The analysis of this
approximation is not known to the present authors for the time-dependent problem, but Borovikov (2000) has
recently given a treatment for a closely related time-harmonic case. Afte some preliminary transformation
the time-dependent approximation may be derived from this by a Fourier transform, but as far as the authors
are aware this has not yet been carried out.

For θa < θ < θc and for θc < θ < θb χ(x) < 0 and x lies within the cone Σ++, the Gaussian curvature is
negative at the contact point ξ1, which now lies on the outer sheet of S. The wave singularity corresponding
to such a point has the form
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ξ2(0)
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ξ1(θc) = ξ2(θc)

ξ2(θc) = ξ1(θc)

ξ2(θa)
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ξ1(
π
2 ) ξ2(

π
2 )

1

3

Figure 4: This shows the 13-section of the slowness surface S. Notice the ellipse and the circle which intersect at the
conical points of S, the binormals, making angle θc with the 3-axis. The points ξ1,2(θ) are indicated for θ = θa, θb, θc.
The normals re in the directions θa, θb, θc.

A(x̂)ê1,2ê
T
1,2

|K|
1
2 (ξ1)|x|

−1
π(t− t1)

, (6.4)

the Hilbert transform of that in (6.3). See Burridge (1967). Notice that for these values of θ this is the first
of the two ‘geometrical’ wave arrivals and it carries a two-sided singularity. Hence the field must already
be non-zero. Indeed, when χ(x) < 0 a step singularity arising from the neighborhood of the conical point
arrives first, the associated wavefront being the disk spanning a contact circle CW onW. See Burridge (1967)
for a treatment of the analogous arrival for cubic elastic media when x is not too near the cone Σ++. Notice
that the for these x the plane ξ·x = t cuts the cone tangent to S at cS in elliptical sections and there is a
non-zero conical arrival.

As θ increases from θa to θc, the stationary point ξ1(θ) moves away from the conical point on S toward the
circle CS at the lower of ξ1(θc) = ξ1(θc), and at the same time the stationary point ξ2(θ) moves from ξ2(θa)
outside of the cone Σ++ toward the rim of the disk nearest to the 3-axis at the upper point ξ1(θc) = ξ1(θc).
Both geometrical arrivals come in together at t = t1 = t2. The direction of x now becomes biradial and
passes through the conical point cW on W. Then all the points of CS become stationary points and to find
the singularities for directions near biradial one needs to perform a further appropriate uniform asymptotic
analysis.

To track these points as θ passes from θc to θb and in order to keep the order of arrival times so that
t1 ≤ t2 the labeling of points must change so that ξ1 becomes ξ2 and vice versa. The old ξ2, renamed as
ξ1, now proceeds from the rim to the conical point ξc while the old ξ1, renamed as ξ2, proceeds beyond the
rim towards the 1-axis, reaching an intermediate position ξ2(θb) while ξ1(θb) moves to ξc.

For θ passing from θb to π/2, ξ1 proceeds on the inner sheet of S from ξc to the direction of the 1-axis
and ξ2 also tends to the 1-direction on the outer sheet. In Figure 4 is shown the 13-section of S with the
points ξ1,2(θa,b,c) indicated. Pairs ξ1,2 corresponding to the same θ have parallel normals in the direction of
ξ(θ), making and angle θ with the 3-axis, and indicated as dashed lines in the figure.
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6.2 Numerical values of the Gij(x, t) for various x in the 13-plane.

Since the solution is self-similar (homogeneous of degree -2 in x and t) the computation of G was carried
out as described above by taking x = (sin θ, 0, cos θ), for which |x| = 1. In Figure 7 the components of G
and its time integral are plotted as functions of t for each x corresponding to the values of θ listed above.
Let us relate these plots to the geometry of the integration loops. Consider, for instance, the plots in these
figures for θ = 50◦ and 55◦, close to and on either side of θc. See Figure 3. The corresponding integration
loops are shown superimposed on the quarter of S for which x1 > 0 and x3 > 0 in Figure 5.
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1
2
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Figure 5: These diagrams show one quarter of S with integration loops for selected values of t and two positions,
θ = 50◦ and 55◦, of x on either side of the biradial direction i.e. near the conical point cW onW. The points marked
‘◦∗’ indicate the points of tangency. First the point of negative curvature where the loops are locally hyperbolic and
slightly later the point of positive curvature where the lune-shaped loop shrinks to a point.

We may read off the polarization e1,2 needed for (6.3) or (6.4) associated with given stationary points
◦∗ from the lines marked on S in Figure 1 and also in Figure 5. We may also approximately read off the
amplitude since that is inversely proportional to the square root of the Gaussian curvature of S at the
corresponding stationary point. Notice particularly that the curvature goes to infinity at the conical point,
apparently leading to zero amplitude there, but indicating that the waveform has a weaker singularity type.
(On the other hand the curvature goes to zero at points of the circles CW where the four special tangent
planes ΠS touch S indicating a stronger singularity type in the biradial directions.)

The details of the loops in the neighborhood of cS for an x just outside the cone Σ++ are shown in Figure
6(a). For these x there is a stationary point near cS and marked ‘◦∗’, which lies on the inner sheet of S (as do
the other smaller closed loops). The conical point itself is where the loops cross below ◦∗. The larger loops,
only partially shown in the figure, belong to the outer sheet of S. The time sequence is such that the outer
closed loops are paired with the lower open loops at earlier times and a full intersection of ξ·x = t with S
consists of such pairs of loops until the upper ◦∗ is reached, when the small closed loops disappear.

The details of the loops for an x just inside the cone Σ++ are shown in Figure 6(b). Now the stationary
point marked ‘◦∗’, which lies on the outer sheet of S. The conical point itself is where the small closed loops
(on the inner sheet of S) converge to a point and then open up as closed loops on the outer sheet. The open
larger loops belong to the outer sheet of S. The time sequence is that the outer closed loops and the lower
open loops are paired at earlier times, and a full intersection of ξ·x = t with S consists of two loops until ◦∗ is
reached, when the small closed loops merge with the larger loops to form one large loop like the uppermost
(and latest) of the open loops shown.

In Figure 7 are plotted the components of G which are not identically zero by symmetry in the plane
x2 = 0 and their time integrals WG. In these figures the Gij [x(θ), t] are plotted as functions of t for the
fixed values of θ indicated on the left vertical scale. The two curves cutting across these indicate the arrival
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(a) (b)

Figure 6: This shows the configurations of loops near the binormal direction, i.e. near the conical point on S, for
θ = 15◦ (left) and θ = 30◦ (right). These directions correspond to points x just just inside and just outside the cone
Σ+. Notice in the left figure the stationary point surrounded by the small loop on the inner sheet of S. The conical
point appears where the curves cross. The signal from the conical point is zero in all components. In the right figure
the stationary point ◦∗ is in a neighborhood of negative Gaussian curvature on the outer sheet of S. The local shape
of the loops is hyperbolic. The conical point appears where the loops converge above it. χ(x) < 0 here and so x is
inside the cone through the circle of tangency CW and there is a nonzero steplike arrival when the loops pass over
the conical point. As t increases near these small loops surround the conical point on the inner sheet, shrink to the
conical point, and then grow around it on the outer sheet. χ(x) > 0 and so x is (just) outside the cone through the
circle of tangency CW and the singularity at ◦∗ is δ-like, appropriate to positive curvature.

times t1(θ) and t2(θ). Where these (almost) meet corresponds to θc where t1 = t2. In the plots of each WGij

the horizontal axis is time t− t3(θ) after the conical-point arrival. Notice that only in the range θa < θ < θb
(approximately 25◦ < θ < 75◦) is the signal non-zero for t3 < t < t1. In the same range the arrival at t1 has
the Hilbert transform pulse shape. The final arrival, and the leading arrival outside the interval θa < θ < θb,
are δ-like for G and step discontinuities for WG.

It is difficult to represent the amplitudes of the δ-like singularities in relation to the smooth parts of the
signal, since the amplitudes of the numerical δ’s are inversely proportional to the time step and therefore
large and dependent upon the discretization. To give a better representation of the singularities in relation
to the smooth field we have plotted in the right panels the step response WGij obtained from the integrals
in (3.28) before differentiation with respect to t, plus the time integral of the third term.

7 Conclusions

We have developed the fundamental solution for the time-dependent system of crystal optics using the
Herglotz-Petrowskii formula. This technique represents the solution as integrals around real loops, the
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Figure 7: This plots the nonzero components of Gij(x, t) and its time integral WGij(x, t), the step response, for x
having the direction (sin θ, 0, cos θ) for θ increasing by steps of 5◦ from 0◦ to 90◦. See the text for further details.
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intersection of a moving plane ξ·x = t with the slowness surface S, together with a non-propagating term,
which is calculated separately. Because of the identities stemming from the residue calculation of Section 3
and other similar relationships it is possible to express the result in terms of abelian integrals on non-real
cycles (Petrowskii, 1945), and possibly a more efficient computation would ensue. These are closely related
to the integrals arising in the Cagniard - De Hoop method. See for instance Van der Hijden (1987) for the
extension to waves in layered anisotropic elastic media. We have not concerned ourselves with the efficiency
of computation, but have used this strikingly geometrical representation to motivate our calculation and to
illustrate some special regions of the field, namely the field near the cone of internal conical refraction, and
the field near the biradial directions. We found that this representation is easily programmable in Matlab.

We have graphically displayed the geometrical entities that come into play and plotted the signal G(x, t)
as functions of t for linear ‘gathers’ of positions x in the style used in seismic exploration. Since it is not
straightforward to represent graphically the amplitude of the Dirac δ we have in one or two places plotted
the step response. It is an easy matter to calculate the field to any degree of accuracy in any region using our
method. The same method may be used for the fundamental solution for infinitesimal anisotropic elasticity.

We have left for future study the analysis of the uniform asymptotics for field points near the the biradial
directions associated with the conical points cW on the wavesurface W and near (the surfaces of) the cones
of internal conical refraction Σ±. We note that Borovikov has obtained related time-harmonic results where
the cone is strictly conical in that it has straight generators but with a nonlinear phase function.
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