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ABSTRACT. We propose a new sweeping algorithm which discretizes the Legendre trans-
form of the numerical Hamiltonian using an explicit formula. This formula yields the
numerical solution at a grid point using only its immediate neighboring grid values and is
easy to implement numerically. The minimization that is related to the Legendre transform
in our sweeping scheme can either be solved analytically or numerically. We illustrate the
efficiency and accuracy approach with several numerical examples in 2D and 3D.

1. INTRODUCTION

Hamilton-Jacobi equations

(1) ψt(x, t) +H(x,∇ψ(x, t)) = 0

arise in many applications ranging from classical mechanics to contemporary problems
of optimal control. These include: geometrical optics, crystal growth, etching, computer
vision, obstacle navigation, path planning, photolithography, and seismology. In general,
these nonlinear partial differential equations can not be solved analytically. The solutions
usually develop singularities in their derivatives even with smooth initial conditions. In
these cases, the solutions do not satisfy the equation in the classical sense. The weak solu-
tion that is usually sought is called the viscosity solution [10]. Numerically, in general, one
looks for a consistent and monotone scheme to construct approximate viscosity solutions
[27].

In this paper, we focus on static Hamilton-Jacobi equations of the following form:

(2)
{
H(x,∇φ(x)) = R(x) x ∈ Ω
φ(x) = q(x) x ∈ Γ ⊂ ∂Ω

where H , q, and R > 0 are Lipschitz continuous, and H is also convex and homogeneous
of degree one in ∇φ(x). A special case of this type of equations is the eikonal equation:

(3) |∇φ| = r(x)

with the same type of Dirichlet boundary condition as in (2). Many numerical methods
have been developed for this problem. Rouy and Tourin [24] used an iterative method
to solve the discretized eikonal equation and proved that it converges to the viscosity so-
lution. The key is to use an upwind, monotone, and consistent discretization for |∇φ|.
Instead of using iterative methods, Tsitsiklis [29], later Sethian [25] and Helmsen et. al.
[14] proposed single-pass methods. Based on the monotonicity of the solution along the
characteristics, they combined the heap-sort data structure with a variation of the classical
Dijkstra algorithm to solve the steady state equation |∇φ| = r(x). This became known as
the fast marching method whose complexity is O(N logN), where N is the total number
of grid points in the domain. Later Sethian and Vladimirsky [26] generalize the method of
[29] to solve (2).
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Osher [18] provided a link between time independent and time dependent Hamilton-
Jacobi equations. The zero level set of the viscosity solution ψ of (1) with suitable initial
conditions at various time t is the solution φ(x, y) = t of (2). This gives an approach
that one can try to solve the time-dependent equation by the level set formulation [19]
with high order approximations on the partial derivatives [20] [15]. Falcone and Ferretti
studied a class of semi-Lagrangian schemes which can be interpreted as a discrete version
of the Hopf-Lax-Oleinik representation formula for first order time dependent Hamilton-
Jacobi equations. In semi-Lagrangian schemes, ψ needs to be interpolated using its grid
values, the Legendre transformation of H needs to be obtained, and the minimum must be
computed on an unbounded set. See [11] and the references therein for more details.

Another approach to obtaining a “time” dependent Hamilton-Jacobi equation from a
time independent Hamilton-Jacobi equation comes by using the so-called paraxial formu-
lation, i.e. by assuming that there is a preferred direction in the wave propagation. In
[13], the paraxial formulation was first proposed for the eikonal equation (3). Later in
[22][23], a paraxial formulation was proposed for the static general eikonal equation (2) in
geophysical applications.

An important application for (2) is obtaining geodesic distance on a manifold. Suppose
that P = (x, y) is a point on a manifold M defined as the graph of a smooth function
f(x, y) and γ are the curves connecting P and Γ ⊂ M on the manifold. The minimizing
curve of γ is called the geodesic. Let φ be the distance function such that

φ(x, y) = min
γ⊂M

∫

γ

ds

Then φ is the solution of

(4)
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This equation can be easily generalized to higher dimensions. For example, in three dimen-
sions we again write down the formula forM as the graph of a smooth function f(x, y, z).
The distance function φ then satisfies

(5)
√
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.

We will apply our new algorithm to compute the geodesic distance later. There are other
approaches that are designed to compute geodesic distances on manifolds. Kimmel and
Sethian [16] extended the fast marching method to triangulated manifolds and provided
an algorithm for computing the geodesic distances and thereby extracting shortest paths
on triangulated manifolds. Barth [2] used the discontinuous Galerkin method to find the
distance on graphs of functions that are represented by spline functions. In [7], the au-
thors embeded the manifold as the zero level set of a Lipschitz continuous function and
solved the corresponding eikonal equation (4) in the embedding space. In [17] the authors
based their work on the theory of geodesics on Riemannian manifolds with boundaries and
adapted the standard fast marching method to compute weighted distance functions and
geodesics on implicit surfaces efficiently. Tsai et. al. [28] used a fast Gauss-Seidel type
iteration method and a monotone upwind Godunov flux for the numerical Hamiltonian.
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We propose a new interpretation of the monotone upwind Godunov flux for the numer-
ical Hamiltonian to solve (2) . The complexicity of our method appears to be O(N). We
illustrate the approach with several numerical examples in 2D and 3D.

2. A NEW NUMERICAL SCHEME FOR CONVEX HAMILTONIANS

Our new numerical algorithm for static Hamilton Jacobi equations is composed of a
sweeping process and an update formula. The sweeping process we use here is a version
of Gauss-Seidel iteration. It is motivated originally by Boué and Dupuis [3], who first
suggested that the complexity of this approach for the eikonal case is O(N). In [31], the
fast sweeping algorithm was first formulated in P.D.E. framework for the eikonal equation
and was used to compute the distance function. In the sweeping process, we sweep through
the grids with alternating directions in order to follow the characteristics and use the most
recent values as we update the solution. This means that we overwrite an old value with its
new value as soon as we obtain the latter. In one dimension, we sweep through the grids
from left to right followed by right to left because the characteristics only have two possible
directions. In two dimensions, the characteristics may have an infinite number of possible
directions. We use four sweeping directions so that a specific sweeping direction covers
a group of characteristics at the same time. We denote these four sweeping directions as
one iteration. In n dimensions, we will use 2n alternating directions per iteration. We stop
our iterations when the L1 norm of the difference of two successive iteration results is less
than the given tolerance, which is O(h), where h is the grid size.

The new update formula we derive here comes from uses the Legendre transformation.
The Legendre transformation can be applied to the Wulff problem [21] which is used to
determine the equilibrium shape of crystalline materials. We give the definitions in the
following.

Definition 1. Let γ : Sd−1 → R+ be a continuous function defined on a curved space
Sd−1.

1. The first Legendre transformation of γ is:

γ∗(ν) = min
θ·ν>0,|θ|=1

[
γ(θ)

(θ · ν)

]

2. The second Legendre transformation of γ is:

γ∗(ν) = max
θ·ν>0,|θ|=1

[γ(θ)(θ · ν)]

The first and second Legendre transformation are dual to each other in certain sense, i.e.
(r∗)

∗ = r if r is convex and (r∗)∗ = r if r is polar-convex. See e.g. [21] . We can extend
γ to the whole space Rd by defining

γ̃(x) = |x| γ( x|x| )

where the extension γ̃ is homogeneous of degree 1 and x ∈ Rd.
The convex Hamiltonian using the Bellman formula or the Legendre transformation is:

H(∇φ(x)) = max
θ

[(∇φ · θ)w(θ)], θ ∈ Sd−1

where

(6) w(θ) = min
ν·θ>0,|ν|=1

[
H(ν)

(ν · θ)

]
and ν =

∇φ(x)

|∇φ(x)|
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We define the numerical Hamiltonian as follows:

Ĥ(Di
−φ;Dj

+φ) = max
θ

{(
∑

k

Dk
∓φ · θ±k )w(θ)}

where Di
−φ (Dj

+φ) are backward (forward) difference in i (j) direction, θ+ = max(θ, 0),
and θ− = min(θ, 0). This numerical Hamiltonian is monotone and consistent. It also turns
out to be Godunov’s numerical Hamiltonian. In order to describe this clearly without loss
of generality, we discuss the 2-dimensional case here.

H(φx, φy) = max
θ

(φx cos θ + φy sin θ)w(θ),

where

w(θ) = min
−π

2
≤ν−θ≤π

2

H(cos ν, sin ν)

cos(ν − θ)

The new numerical Hamiltonian is

Ĥ(Dx
−φ,D

x
+φ;Dy

−φ,D
y
+φ) = max

θ
{((cos θ)±Dx

∓φ+ (sin θ)±Dy
∓φ)w(θ)}

We say a functionH(x1, x2, ..., xn) is non-decreasing in xj by writingH(x1, x2, ..., xj−1, ↑
, xj+1, ...xn) and non-increasing by writing H(x1, x2, ..., xj−1, ↓, xj+1, ...xn).

Lemma 1. Ĥ is monotone; i.e. Ĥ(↑, ↓, ↑, ↓).
Proof. Since w > 0, this conclusion is straightforward. �

Lemma 2. Ĥ is consistent; i.e. Ĥ(p, p; q, q) = H(p, q).

Proof. This is a simple manipulation of the definitions:

Ĥ(p−, p+; q−, q+) := max
θ

{((cos θ)±p∓ + (sin θ)±q∓)w(θ)}

Ĥ(p, p; q, q) = max
θ

{((cos θ)±p+ (sin θ)±q)w(θ)}

= max
θ

{(p cos θ + q sin θ)w(θ)}

=: H(p, q).

�

By solving the Riemann problem for Hamilton-Jacobi Equations (a generalization of
Godunov’s procedure), Bardi and Osher [1] proved the following result for Godunov’s
scheme.

(7) HG(p−, p+; q−, q+) = extp∈I[p−,p+]extq∈I[q−,q+]H(p, q)

where
ext p∈I[a,b] = min

p∈[a,b]
if a ≤ b,

ext p∈I[a,b] = max
p∈[b,a]

if a > b,

HG(Dx
−φij , D

x
+φij ;D

y
−φij , D

y
+φij) = HG(p−, p+; q−, q+),

and I [a, b] denotes the closed interval bounded by a and b.

Proposition 1. Ĥ is Godunov’s numerical Hamiltonian; i.e. Ĥ = HG.

Proof. We first assume p− < p+and q− < q+. �
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HG(p−, p+; q−, q+) := min
p−≤p≤p+

min
q−≤q≤q+

H(p, q)

= min
p−≤p≤p+

min
q−≤q≤q+

{max
θ

{(p cos θ + q sin θ)w(θ)}}

= max
θ

{ min
p−≤p≤p+

min
q−≤q≤q+

(p cos θ + q sin θ)w(θ)}

= max
θ

{((cos θ)±p∓ + (sin θ)±q∓)w(θ)}

=: Ĥ(p−, p+; q−, q+)

The proof for the other 3 cases is equally straightforward.
Now use our new numerical Hamiltonian to solve (2). In order to write our scheme in

an explicit form, we prove the following property first.

Lemma 3. maxθ(af(θ) − g(θ)) = 0 with f(θ) > 0 ⇐⇒ a = min g(θ)/f(θ).

0 = max
θ

(af(θ) − g(θ)) = max
θ
f(θ)(a− g(θ)

f(θ)
)

Since f(θ) > 0, we have 0 = maxθ(a− g(θ)
f(θ)), which implies 0 = a− min g(θ)

f(θ) .

Apply this property to

Ĥ(Dx
−φ,D

x
+φ;Dy

+φ,D
y
−φ) = R(x, y).

Let φ0 = φi,j , φW = φi−1,j , φE = φi+1,j , φS = φi,j−1, and φN = φi,j+1. Breaking
down the expressions, we have

max
θ,φW,E,S,N

{{
(cos θ)+(φO − φW )
−(cos θ)−(φO − φE)

}
+

{
(sin θ)+(φO − φS)
−(sin θ)−(φO − φN )

}}
w(θ)−hR(xi, yj) = 0,

max
θ,φW,E,S,N

φO((cos θ)+ − (cos θ)− + (sin θ)+ − (sin θ)−)w(θ) +

{
−(cos θ)+φW

(cos θ)−φE

}
+

{
−(sin θ)+φS

(sin θ)−φN

}
w(θ) = hR(xi, yj).

Thus
(8)

φO = min
θ





{
(cos θ)+φW

−(cos θ)−φE
+

(sin θ)+φS

−(sin θ)−φN

}
w(θ) + hR(xi, yj)

(| cos θ| + | sin θ|)w(θ)





= min
θ
K(θ)

We can also derive the 3-D numerical Hamiltonian and the update formula in the same
way. Let φ0 = φi,j.k, φW = φi−1,j,k, φE = φi+1,j,k, φS = φi,j−1,k , φN = φi,j+1,k ,
φD = φi,j,k−1, and φU = φi,j,k+1. We have

Ĥ(Dx
−φ,D

x
+φ;Dy

−φ,D
y
+φ;Dz

−φ,D
z
+φ) =

max
θ1,θ2

{(sin θ1 cos θ2)
±Dx

∓φ+ (sin θ1 sin θ2)
±Dy

∓φ+ (cos θ1)
±Dz

∓φ)w(θ1, θ2)}

(9)

φO = min
θ1,θ2





{
(sin θ1 cos θ2)

+φW

−(sin θ1 cos θ2)
−φE

+
(sin θ1 sin θ2)

+φS

−(sin θ1 sin θ2)
−φN

+
(cos θ1)

+φD

−(cos θ1)
−φU

}
w + hR

(| sin θ1 cos θ2| + | sin θ1 cos θ2| + | cos θ1|)w




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Sometimes it is possible to obtain explicit expression forw from (6), but in general one has
to use numerical approximations by the fast Legendre transform developed by Brenier[4]
and Corrias[9]. The minimization in the update formulas (8) and (9) can either be achieved
analytically or numerically. For a Hamiltonian of quadratic form in the gradient, we solve
the minimization analytically in the next section. For other cases, we find the minimizer
by using some well-developed numerical optimization technique, e.g. L-BFGS-B [5] [32]
and trust regions methods that employ quadratic interpolation [12] [8].

3. ANALYTICALLY SOLVING A CLASS OF HAMILTON JACOBI EQUATIONS

The quadratic form Hamiltonian

(10)
√
a(x, y)φ2

x + b(x, y)φ2
y − 2c(x, y)φxφy = R(x, y)

is of special interest because computing geodesic distances on a manifold leads to this type
of equation. Here we show that the minimization of (8) can be solved explicitly. Using the
Legendre transformation, we have (after some simple calculations):

H(cos ν, sin ν) =
√
a cos2 ν + b sin2 ν − 2c sin ν cos ν

and

w(θ) =

√
ab− c2

a sin2 θ + b cos2 θ + 2c cos θ sin θ

Finding the minimum of (8) when 0 < θ < π/2 first. dK
dθ = 0 leads to

(11) (−φW + φS)w2 − hR[(cos θ + sin θ)w
′

+ (− sin θ + cos θ)w] = 0

Thus

(12)
−φW + φS

hR
=

−a sin θ + b cos θ + c(sin θ − cos θ)√
(ab− c2)(a sin2 θ + b cos2 θ + 2c sin θ cos θ)

= T (θ)

and

T ′(θ) = −
√
ab− c2(cos θ + sin θ)

(a sin2 θ + b cos2 θ + 2c sin θ cos θ)3/2
< 0

The solvability condition for θ1 is

(13)
c− a√
a(ab− c2)

<
−φW + φS

hR
<

b− c√
b(ab− c2)

If (13) is satisfied, we will have a unique solution for 0 < θ < π/2 because of the mono-
tonicity of T . Let m = (−φW + φS)/hR. We have

θ = tan−1

(
−cm2(ab− c2) − (a− c)(b− c) ±m(ab− c2)

√
(a+ b− 2c) −m2(ab− c2)

am2(ab− c2) − (a− c)2

)

if both m and denominator are not zero. Here we have two choices for θ because we square
both sides while we do the calculation. We need to plug in (12) and pick up the right one.
Also

θ = tan−1(
b− a

c− a
)

if the denominator is zero, and

θ = tan−1(
c− b

c− a
)
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if m = 0. Using similar arguments, we can write down solvability conditions and explicit
formulas for θ in other ranges. This can be summarized in the following algorithm.

Algorithm: (Quadratic Hamilton Jacobi Solver using the Bellman formula) We assume
that φ(i, j) is given in a small neighborhood of Γ. We initialize the unknown φ by setting
φ(i, j) to ∞1 and mask(i, j) = unknown.

We begin by setting φ(0) = φ.
Do the following steps while |φ(n+1) − φ(n)| > δ: (δ > 0 is the given tolerance which

is O(h).)
Sweeping Process: A compact way of writing this sweeping iterations in C/C++ is:
for(s1=-1;s1<=1;s1+=2)
for(s2=-1;s2<=1;s2+=2)
for(i=(s1<0?nx:0);(s1<0?i>=0:i<=nx);i+=s1)
for(j=(s2<0?ny:0);(s2<0?j>=0:j<=ny);j+=s2)
update φi,j

Update Formula: For each grid point (i, j) visited in the sweeping iteration, if mask(i, j) =
unknown, do the following:

For (sx, sy) = (±1,±1)

(1) Check the solvability condition

m =
sxsy(φ(n)(i, j − sy) − φ(n)(i− sx, j))

hR

check
c− a√
a(ab− c2)

< m <
b− c√
b(ab− c2)

when sxsy > 0

check
−(b+ c)√
b(ab− c2)

< m <
a+ c√
a(ab− c2)

when sxsy < 0

(2) If the condition is satisfied,

θ = tan−1

(−cm2(ab− c2) − (asx − csy)(bsy − csx)

am2(ab− c2) − (asx − csy)2
±

m(ab− c2)
√

(a+ b− 2csxsy) −m2(ab− c2)

am2(ab− c2) − (asx − csy)2

)
+ (1 − sx)

π

2

if both m and the denominator are not zero. Plug in the test function

T (θ) =
(−asx + csy) sin θ + (bsy − csx) cos θ√

(ab− c2)(a sin2 θ + b cos2 θ + 2c sin θ cos θ)

and pick up the right one which equals m, not −m. Also

θ = tan−1

(
b− a

c− asxsy

)
+ (1 − sx)

π

2

if denominator is zero, and

θ = tan−1

(
csx − bsy

csy − asx

)
+ (1 − sx)

π

2

if m = 0.

1Notice that we only need to use a large value in actual implementation.
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(3) Add

φtmp =
(sxφ(i− sx, j) cos θ + syφ(i, j − sy) sin θ)w(θ) + hR

(|cos θ| + |sin θ|)w(θ)

to the list phi_candidate.
(4) Add K(0),K(π

2 ),K(π),K( 3π
2 ) to the list phi_candidate.

(5) Let φmin be the minimum element of phi_candidate.
(6) Update

φ(n+1)(i, j) = min(φ(n)(i, j), φmin).

4. NUMERICAL MINIMIZATION

For a more general sweeping algorithm, we use numerical optimization to calculate
φ0. There are many minimization methods that are readily available to us. Some methods
need only evaluations of the function while others require also evaluations of the derivative
of the function. For our multidimensional cases, we use the L-BFGS-B method [5] [32]
[6] because the cost of the iteration is low and the storage requirements of the algorithm
are modest. L-BFGS-B is a limited memory quasi-Newton method for large-scale bound-
constrained problem. The minimizer θ̃ of (8) and the minimizer (θ̃1,θ̃2) of (9) at a grid
point is constructed to be within a given tolerance through iterations, and the number of
iterations depends on the initial condition and also the tolerance. In our algorithm, we use
the minimizer obtained in the previous sweep as initial guess. In the first sweep, we use
the minimizers of the upwind neighboring grid pronts as initial conditions for the quasi-
Newton method. This implies that the initial conditions that we end up using, in most cases,
are close enough to the minimizers. In practice, with the tolerance of 10−6, we observed
that, in average, only four to five iterations are needed. There is an alternative approach
of discretizing θ, and then search for the minimum in the corresponding discretized space.
Take the two dimensional case for example,

(14) φO = min
θ
K(θ) = K(θ̃) ∼ min

θj

k(θj)

where θj = j 4 θ/2π. Used in a straightforward manner, this kind of approach would
require that the grid size 4θ is comparable to the given torelance. In the following, we
briefly describe how L-BFGS-B method works.

Consider finding a minimum by Newton’s method to search for a zero of the gradient
of the function f(θ) : Rn → R . The iteration formula is given by:

θK+1 = θk −A−1 · ∇f(θ)

whereA is the Hessian matrix of f . BFGS method is a “quasi”-Newton method because it
doesn’t use the actual Hessian matrix of f , but it constructs a sequence of Hk to approxi-
mate A−1. The iteration formula for unconstrained optimization is given by

θk+1 = θk − λkHkgk k = 0, 1, 2, ...

where λk is a step size, gk is the gradient of f at θk, and Hk is updated at every iteration
by the following formula

(15) Hk+1 = (V k)THkV k + ρksk(sk)T ,

where
ρk = 1/(yk)T sk , V k = I − ρkyk(sk)T ,

and
sk = θk+1 − θk , yk = gk+1 − gk .
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The limited memory BFGS method only stores the m most recent pairs {si, yi}k−1
i=k−m to

update Hk. Suppose that the current iteration is θk and the initial limited memory matrix
Hk

(0) (usually a diagonal matrix) is updated by {si, yi}k−1
i=k−m. From (15) we have

(16) Hk = ((V k−1)T ...(V k−m)T )Hk
(0)(V

k−m...V k−1)

+ρk−m((V k−1)T ...(V k−m+1)T )sk−m(sk−m)T (V k−m+1...V k−1)
+ρk−m+1((V k−1)T ...(V k−m+2)T )sk−m+1(sk−m+1)T (V k−m+2...V k−1)

+...
+ρk−1sk−1(sk−1)T

For bound constrained problems, the direct Hessian approximationBk = (Hk)−1 is used.
The detail derivation and efficient algorithm for computingHk andBk are in [6]. ThisBk

is used to define a quadratic model of f at θk,

Qk(θ) = f(θk) + (gk)T (θ − θk) +
1

2
(θ − θk)TBk(θ − θk).

In order to find the minimizer of Qk subject to the bound constrained, the gradient pro-
jection method is first used to determine a set of active bounds. Suppose we have Θ =
{θ|li ≤ θi ≤ ui, i = 1, ..., n}, the ith coordinate of the projection of vector θ is given by

P (θ, l, u)i =






li if θi ≤ li
ui if θi ≥ ui

θi otherwise

We find the generalized Cauchy point which is the first local minimizer θc of

Qk
L(t) = Qk(P (θk − tgk, l, u))

Use θc to identify a set of active variable and then find the minimizer θ
k+1

of the quadratic
model with respect to the free variables. Perform a line search

(17) θk+1 = θk + αk(θ
k+1 − θk)

where αk is the step size, to find θk+1 which satisfies the sufficient decrease condition

f(θk+1) ≤ f(θk) + 10−4(gk)T (θ
k+1 − θk).

For more details, please refer to [5]. In our calculation, we choosem = 5 and the stopping
criterion is

||P (θk − gk, l, u) − θk||∞ < 10−6.

5. EXAMPLES

We implement our new numerical scheme in the following examples. We choose δ =
10−15 for two dimensional cases and δ = 10−12 for three dimensional cases for simplicity.
Ideally the δ should be chosen as a small constant times the grid size. We test an anisotropic
case with constant coefficients a, b, and c in Figure 1. Figure 2 shows a very degenerate
case with varied coefficients and a box-shape boundary condition. The equation is

√
0.375φ2

x + 0.25φ2
y − 0.58φxφy = (2.1− cos(4π2xy))/4

Thus a = 0.375, b = 0.25, c = 0.29, and R(x, y) = (2.1 − cos(4π2xy))/4. Notice that
in this case, ab = 0.0938 is barely greater than c2 = 0.0841 and R is highly oscillatory.
That is why it needs more iterations. In general, we usually need more iterations when
the characteristics are very curvy. Figure 3 and Figure 4 show the geodesic distances
on manifolds. In Figure 3, there are two boundary points. The contour plot has kinks
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on the equal distance places. In Figure 4, the boundary point is in the center and on
the top of the mountain-shape manifold. The contour plot shows the geodesic distance
to the boundary point. Figure 5 is an example of the first arrival travel times to seismic
imaging. The computational domain suggests material layering under a sinusoidal profile
with layer shapes C(x) = 0.1225 sin(4πx). Suppose the domain is split into four parts
by yi(x) = 0.1225 sin(4πx) + pi where i = 1, 2, 3 and pi = (−0.25, 0, 0.25). In each
layer, the anisotropic speed at (x, y) is given by an ellipse with long axis (of length 2F2)
tangential to the curveC(x) and the short axis (of length 2F1) normal to the curve. F1 and
F2 are constants in each layer. This leads to

F2

√
((1 + n2)φ2

x + (1 +m2)φ2
y − 2mnφxφy)/(1 +m2 + n2) = 1

where

(m,n) =

√
(F2/F1)2 − 1√
1 + (dC(x)

dx )2
(
dC(x)

dx
,−1).

From the results, we know that the algorithm is stable even with discontinuous coefficients.
Figure 6 and Figure 7 are the solutions for 3 dimensional eikonal equation with one point
and two points boundary conditions. Figure 8 and Figure 9 are the more general cases
for 3 dimensions. Figure 8 has a boundary point φ(0, 0, 0) = 0 and Figure 9 has a cubic
boundary condition with sides of length one. The governing equation we solved is

√
aφ2

x + bφ2
y + cφ2

z − 2dφxφy − 2eφyφz − 2fφzφx = 1

where

a =
1+f2

y +f2
z

1+f2
x+f2

y +f2
z
, b =

1+f2
x+f2

z

1+f2
x+f2

y+f2
z
, c =

1+f2
x+f2

y

1+f2
x+f2

y+f2
z
,

d =
fxfy

1+f2
x+f2

y+f2
z
, e =

fyfz

1+f2
x+f2

y+f2
z
, f = fzfx

1+f2
x+f2

y+f2
z
.

and f(x, y, z) = cos(2πx) cos(2πy) cos(2πz). The corresponding

w(θ1, θ2) =

√
1

1 + (fx sin θ1 cos θ2 + fy sin θ1 sin θ2 + fz cos θ1)2

These seems to be the first successful rapid computation in 3 dimensions for such problems.
In [30], it was proved that the results from the fast sweeping method for the eikonal equa-
tion with R(x) = 1 needs only one iteration, which is exactly 2n Gauss-Seidel alternating
sweepings for the problem in Rn, to reach a solution with global errorO(h log(1/h)). We
provide the numerical evidence by testing our methods on eikonal equation withR(x) = 1
on two and three dimensions. The results are given in table 1 and table 2. For anisotropic
cases, we found out that the number of iterations depend on the anisotropy of Hamiltonian,
but it is always reasonable and appears to be independent of the grid size.

6. CONCLUSION

In this paper, we have presented a new numerical method for Hamilton Jacobi equations
written in the form of Bellman’s formula. We proved that the numerical Hamiltonian
we proposed is monotone, consistent, and is in fact, also the Godunov Hamiltonian. We
implemented this new scheme and showed some results in two and three dimensional cases.
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2D eikonal equation dx= 2/50 2/100 2/200
L1 error 0.102158 0.060888 0.0358203
L∞ error 0.0437414 0.0262969 0.0154506

2/400 2/800 2/1600 1/3200
0.0207759 0.0118848 0.0067128 0.00374894

0.00890583 0.00505242 0.00282877 0.00156648

0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

0.1

0.12

hlog(1/h)

er
ro

r

L
1
 error

L∞ error 

TABLE 1. the errors of 2D eikonal case

3D eikonal equation dx= 2/50 2/64 2/100
L1 error 0.399696 0.330305 0.233834
L∞ error 0.0761747 0.0635267 0.0454065

2/128 2/200 2/256 2/300
0.192961 0.135946 0.111793 0.0985156

0.0375639 0.0264938 0.0217706 0.0191687

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

hlog(1/h)

er
ro

r

L∞  error

L
1
  error

TABLE 2. the errors of 3D eikonal case
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FIGURE 1. A sweeping result after 2 sweeping iterations on a 50x50
grid. The boundary is a single point in the center. a = 1.0, b = 1.0,
c = 0.9 and R = 1.
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FIGURE 2. a = 0.375, b = 0.25, c = 0.29, and R(x, y) = (2.1 −
cos(4π2xy))/4.0 on a 100x100 grid. Convergence is reached after 45
sweeping iterations.
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obtained after 9 iterations on 100x100x100 grid. The contours shown
here are 0.2, 0.4, 0.6, 0.8, and 1.0.
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