
An Efficient Algorithm for Dense Regions
Discovery from Large-Scale Data Streams

Andy M. Yip‡, Edmond H. Wu†, Michael K. Ng†, and Tony F. Chan‡

†Department of Mathematics, The University of Hong Kong
Pokfulam Road, Hong Kong.

†hcwu@hkusua.hku.hk,mng@maths.hku.hk
‡Department of Mathematics, University of California,

405 Hilgard Avenue, Los Angeles, CA 90095-1555, USA.
‡mhyip@math.ucla.edu,chan@math.ucla.edu

Abstract. We demonstrate that dense regions discovery is an impor-
tant process for finding distinct and meaningful patterns from given
data. Some fundamental theories for dense regions are developed based
on which novel efficient algorithms for identifying such regions are de-
rived. Next, we illustrate how to adapt our algorithms for handling high-
dimensional dense regions and data streams. Finally, experiments on
large-scale data and data streams such as clickstreams are given which
confirm that our algorithms are highly efficient and effective in dense
regions discovery.

1 Introduction

A goal of data mining is to discover useful patterns from a given data set or data
stream. Examples of common data mining tasks include clustering, classification
and association rules mining, see [3] and the references therein for techniques to
accomplish these tasks.

Besides the patterns identified by the aforementioned data mining tasks, we
realize that dense regions1, which are two-dimensional regions defined by subsets
of entities and attributes whose corresponding values are mostly constant, are
another type of patterns which are of practical use and are significant. For ex-
ample, we find that in some microarray data, a number of genes may have about
the same expression level over a period of time [1]. By identifying several of such
subsets of genes and experimental conditions, one might infer, for example, the
underlying regulatory mechanisms. Another example is that in some cases dense
regions can be used to evaluate discriminability of a subset of attributes, thus
identifying such regions enhances the feature selection process in classification
applications. Furthermore, we also observe such patterns in stream data such as
clickstreams. These patterns can then be used to analyze users behavior and to
improve web page or website topology design.
1 Note that a dense region usually refers to a subset of the space where data points

are highly populated whereas dense regions discussed in this paper lie in the entity-
by-attribute space. Our precise definition is given in Section 2.

2 Andy Yip, Edmond Wu, Michael Ng and Tony Chan

To the best of the authors’ knowledge, dense region patterns are not previ-
ously explicitly studied to a rigorous extent. A similar but not identical notion
is error-tolerant frequent itemsets introduced by Yang et al in [7] which focuses
on mining association rules.

Our goal in this paper is to provide some solid theories for dense regions
from which efficient and effective algorithms are derived. We characterize dense
regions into three categories — non-covered (NC), recursively covered (CRC), and
non-recursively covered (CNRC). Due to the lack of space, proof of the theorems
are omitted and will appear in a later paper.

A fundamental algorithm, called DRIFT (Dense Region IdentiFicaTion), is
proposed for finding two-dimensional (entity-by-attribute) dense regions in large
data sets. Such an algorithm is also served as a building block for more sophis-
ticated algorithms which can be applied to high-dimensional dense regions and
data streams. As an illustration to the usefulness of dense regions and the algo-
rithms, we apply our algorithms to clickstream analysis.

2 Definition of Dense Regions

We now fix some notations and give the definition of dense regions. Given an
n-by-p data matrix X where n is the number of entities and p is the number of
attributes of each entity. Let R and C be an index set of a subset of rows and
columns of X respectively. Since we do not distinguish between a matrix and its
permuted versions, we assume that R and C are sorted in the ascending manner.
A submatrix of X formed by its rows R and columns C is denoted by X(R, C).
We also identify X(R, C) by the index set D = R×C. For example, let R = {3}
and C = {1, 2}, then R× C = X(R,C) = (x31 x32).

Definition 1 (Dense regions). A submatrix X(R, C) is called a maximal
dense region with respect to v, or simply a dense region with respect to v, if

– X(R,C) is a constant matrix whose entries are v (density), and,
– Any proper superset of X(R, C) is a non-constant matrix (maximality).

In the sequel, we assume that all dense regions are with respect to a common
target value v unless specified otherwise.
Example 1. Let X be a data matrix given by the first matrix below. Then,
the dense regions of X with respect to 1 are given by the four matrices in the
brace.0BB@ 1 0 0 1

1 1 0 1
1 1 0 1
1 1 2 0

1CCA ;

8>><>>:
0BB@ 1 ∗ ∗ ∗

1 ∗ ∗ ∗
1 ∗ ∗ ∗
1 ∗ ∗ ∗

1CCA ,

0BB@ 1 ∗ ∗ 1
1 ∗ ∗ 1
1 ∗ ∗ 1
∗ ∗ ∗ ∗

1CCA ,

0BB@ ∗ ∗ ∗ ∗1 1 ∗ 1
1 1 ∗ 1
∗ ∗ ∗ ∗

1CCA ,

0BB@ ∗ ∗ ∗ ∗1 1 ∗ ∗
1 1 ∗ ∗
1 1 ∗ ∗

1CCA
9>>=>>; .

Alternatively, we may denote the above dense regions by {1, 2, 3, 4} × {1},
{1, 2, 3} × {1, 4}, {2, 3} × {1, 2, 4} and {2, 3, 4} × {1, 2} respectively.

Dense Regions Discovery from Large-Scale Data Streams 3

We note that the number of dense regions may grow exponentially with the
matrix size. For example, an n-by-n identity matrix has 2n − 2 dense regions
with value 0. However, by discarding dense regions having size smaller than
a specified threshold, which is what we do in our experiments, the number of
legitimate dense regions is greatly reduced to a reasonable value. Moreover, dense
regions having larger size are of more significance (against dense regions found
in random matrices).

3 The DRIFT Algorithm

3.1 The BasicDRIFT Algorithm

The BasicDRIFT algorithm starts from a given point (s, t) (which contains the
target value v) and returns two dense regions containing (s, t) where one of them
is obtained by a vertical-first-search; the other is by a horizontal-first-search. The
algorithm is outlined in Fig. 1.

Algorithm: BasicDRIFT(X, s, t)

/* Vertical-first-search */
Rv ← {1 ≤ i ≤ n|Xit = Xst}
Cv ← {1 ≤ j ≤ p|Xij = Xit∀i ∈ Rv}
/* Horizontal-first-search */
Ch ← {1 ≤ j ≤ p|Xsj = Xst}
Rh ← {1 ≤ i ≤ n|Xij = Xsj∀j ∈ Ch}
Return {Rv × Cv, Rh × Ch}

Fig. 1. The BasicDRIFT algorithm.

Suppose the two returned dense regions have dimensions nv-by-pv and nh-
by-ph respectively. The number of computations required by the algorithm is
n + nvp + p + phn. Thus, the complexity of the algorithm is linear in size of the
data matrix. Moreover, in practice, nv and nh are much smaller than n, and,
pv and ph are much smaller than p. In this case, the complexity is of O(n + p)
essentially.

A property of the BasicDRIFT is that the two returned regions are in fact
dense regions — though they may be identical. This fact is stated in the following
theorem which is a direct consequence of the construction of the algorithm.

Theorem 1. The submatrices Rv × Cv and Rh × Ch obtained from the Basic-
DRIFT algorithm are dense regions containing the starting point.

3.2 Isolated Points and Covered Dense Regions

To further understand the properties of the BasicDRIFT algorithm, we introduce
the notions of isolated point and covered dense region.

Definition 2 (Isolated points). A point (i, j) in a dense region D is isolated
if it is not contained in any other dense region.

4 Andy Yip, Edmond Wu, Michael Ng and Tony Chan

Definition 3 (Covered dense regions). A dense region D with respect to v is
said to be a covered dense region, or simply covered, if there exists a set of dense
regions {Di} with respect to v where Di 6= D for all i such that D ⊂ ∪iDi. A
dense region that is not covered is called non-covered. For a fixed X, the class of
all covered dense regions in X is denoted by C while the class of all non-covered
dense regions is denoted by NC.

Note that D 6= ∪iDi, for otherwise some Di’s are not maximal. The following
theorem says that whether a dense region is in the class C or in the class NC
can be exactly characterized by its number of isolated points.

Theorem 2. A dense region is in C if and only if it has no isolated point.

Example 2. The dense region {1, 2, 3, 4} × {1} in Example 1 is covered by
the union of the dense regions {1, 2, 3} × {1, 4} and {2, 3, 4} × {1, 2}. The point
(1, 4) is an isolated point as it only belongs to the dense region {1, 2, 3}×{1, 4}.

3.3 Discovery of the Class NC by the BasicDRIFT Algorithm

In this subsection, we prove an important property that all dense regions in NC
can be found by the BasicDRIFT algorithm.

Theorem 3. The BasicDRIFT algorithm starting at (s, t) returns two identical
dense regions if and only if (s, t) is an isolated point.

The above theorem has two implications. First, it characterizes whether a
starting point is isolated or not. Second, it guarantees that all non-covered dense
regions can be found by starting the BasicDRIFT at every point in X having
the target value v. More precisely, a non-covered dense region is discovered when
one of its isolated points is encountered.

We remark that, although there is no guarantee, a covered dense region may
be discovered by the BasicDRIFT algorithm.

Example 3. The covered dense region {1, 2, 3, 4} × {1} in Example 1 can be
identified by starting the BasicDRIFT algorithm at (1, 1).

3.4 The Classes CNRC and CRC

First, an example where a dense region is unidentifiable by the BasicDRIFT
algorithm is given below.

Example 4. The dense region in bold face cannot be identified by the Basic-
DRIFT 0BB@ 0 1 0 0

0 1 1 1
1 1 1 0
0 0 1 0

1CCA .

Dense Regions Discovery from Large-Scale Data Streams 5

We observe that in Example 4, the covered dense region is surrounded by four
isolated points (these points are identifiable in view of Theorem 3). If we remove
these isolated points (by resetting their values to be any value other than v), then
the covered dense region in bold face becomes non-covered (with respect to the
modified data matrix) and is identifiable by another sweep of the BasicDRIFT
— thus removal of isolated points enlarges the set of identifiable dense regions
by the BasicDRIFT. Moreover, such a procedure can be done repeatedly which
allows us to find more dense regions.

Next, we show an example that some covered dense regions are still uniden-
tifiable by the BasicDRIFT even after removal of isolated points.

Example 5. The following data matrix contains no isolated point and the
dense region in bold face cannot be identified by the BasicDRIFT:0BB@1 1 0 1

0 1 1 1
1 1 1 0
1 0 1 1

1CCA .

In view of Examples 4 and 5, we may further divide the class C into two
subclasses CNRC and CRC according to their identifiability by the BasicDRIFT.

Definition 4 (The class CNRC). A covered dense region is in CNRC if it be-
comes non-covered after a finite number of rounds of removal of isolated points.
We also say that such a region is non-recursively covered.

Definition 5 (The class CRC). A covered dense region is in CRC if it remains
covered after any number of rounds of removal of isolated points. We also say
that such a region is recursively covered.

3.5 Discovery of the Class CRC by the ExtendedBasicDRIFT

Since dense regions in the class CRC are not guaranteed to be found by the
BasicDRIFT algorithm, we now introduce an extended version called Extend-
edBasicDRIFT (depicted in Fig. 2) to discover dense regions in CRC . The idea
is that after finding the set Rv (respectively Ch) in the original BasicDRIFT al-
gorithm starting at (s, t), we perform a horizontal (respectively vertical) search
over all possible subsets of Rv \ {s} (respectively Ch \ {t}). Theoretically, the
ExtendedBasicDRIFT algorithm is capable of finding all dense regions. However,
since it requires more computations than the BasicDRIFT does, we only use this
algorithm to find dense regions in the class CRC . The question now becomes how
to combine the two algorithms in an effective way.

3.6 The DRIFT Algorithm

In this subsection, we present the DRIFT algorithm which utilizes the Basic-
DRIFT and the ExtendedDRIFT algorithms to find dense regions efficiently.
The algorithm is depicted in Fig. 3.

6 Andy Yip, Edmond Wu, Michael Ng and Tony Chan

Algorithm: ExtendedBasicDRIFT(X, s, t)

D ← {}
/* Vertical-first-search */
Rv ← {1 ≤ i ≤ n|Xit = Xst}
For each subset Rvk

of Rv \ {s} do
Cvk

← {1 ≤ j ≤ p|Xij = Xit∀i ∈ Rvk
}

If Rvk
× Cvk

is not a subset of any dense region in D
Insert Rvk

× Cvk
into D

EndIf
EndFor
/* Horizontal-first-search */
Ch ← {1 ≤ j ≤ p|Xsj = Xst}
For each subset Chk

of Ch \ {t} do
Rhk

← {1 ≤ i ≤ n|Xij = Xsj∀j ∈ Chk
}

If Rhk
× Chk

is not a subset of any dense region in D
Insert Rhk

× Chk
into D

EndIf
EndFor
Return D

Fig. 2. The ExtendedBasicDRIFT algorithm for discovery of dense regions in CRC.

The DRIFT algorithm works as follows. The first pass of the while-loop
invokes the BasicDRIFT to spot out all dense regions in the class NC. After
the each pass, all isolated points found are removed and thus allows discovery of
dense regions in the class CNRC . When no further isolated point is found, it is
guaranteed that all dense regions in NC and CNRC are discovered. We remark
that beginning from the second pass of the while-loop, where the original matrix
X is modified, the regions returned by the BasicDRIFT may be proper subsets
of a previously found dense region. In this case, these subsets are regarded as
“illegitimate” and are not inserted into D.

After identifying all dense regions in NC and CNRC , we start the Extended-
DRIFT at every point in Sreduced, which contains no more isolated point, to find
the dense regions in CRC .

We remark that, as mentioned at the end of Section 2, one might want to
discard dense regions with small size. To do so, one may define a dense region
to be “illegitimate” if its size is below a user-specified threshold and thus it is
not inserted into the output sequence D.

4 Adapting the DRIFT for Different Data Types

4.1 Generalization to µ Dense Regions

So far we considered regions with constant value. In practice, regions with only
majority of constant value may also be interested. In this subsection, we discuss
the notion of µ dense regions where the density property of dense regions is
relaxed. A region R × C is called µ dense regions with value v if at least a
percentage µ of the entries of R × C take the value v. For example, a vector
with entries (0,1,1,1) is a 75% dense region (in fact it is a µ dense region for any
0 ≤ µ ≤ 75%). We now present a modified version of DRIFT algorithm, called

Dense Regions Discovery from Large-Scale Data Streams 7

Algorithm: DRIFT(X, v)

D ← {}, Flag = TRUE
/* Finding dense regions in NC and in CNRC */
While Flag = TRUE

Flag = FALSE, S ← {(i, j)|Xij = v}
If S = {}, Break, EndIf
For each (s, t) ∈ S

{Rv × Cv, Rh × Ch} ← BasicDRIFT(X, s, t)
If Rv × Cv is a legitimate dense region

Insert Rv × Cv into D
EndIf
If Rh × Ch is a legitimate dense region

Insert Rh × Ch into D
EndIf
If Rv × Cv = Rh × Ch

Xst ←∞, Flag = TRUE
EndIf

EndFor
EndWhile
/* Finding dense regions in CRC */
Sreduced ← {(i, j)|Xij = v}
For each (s, t) ∈ Sreduced

D′ ← ExtendedBasicDRIFT(X, s, t)
For each R× C ∈ D′

If R× C is a legitimate dense region
Insert R× C into D

EndIf
EndFor

EndFor
Return D

Fig. 3. The DRIFT Algorithm.

µDRIFT, to deal with µ dense regions (see Fig. 4). Starting with a dense region
R × C found by the DRIFT, the µDRIFT algorithm repeatedly enlarges the
region in a greedy way where the density of the enlarged region is guaranteed to
be at least µ.
4.2 Generalization to Continuous Data

In the previous algorithms, we assume that each attribute is categorical. Also, for
a target value (category) v, an entry (i, j) is selected if Xij = v. However, such
an assumption can be relaxed by allowing other logical and relational operators,
thus the algorithms can be easily adapted to other data types.

For example, if v takes a continuum of value, we can set X(i, j) ≤ v (or
≥) as the entry selecting condition. An alternative way is to apply quantization
techniques to deal with continuous data, see [2].

By extending the data types and conditions that the DRIFT algorithms can
handle, we can perform diverse mining tasks with more flexibility.

4.3 Generalization to High-Dimensional Data

In the previous sections, we consider dense regions of the form R×C which are
two-dimensional. Another kind of extension is to discover high-dimensional dense
regions, i.e., dense regions of the form D1 × . . . × Dk for k ≥ 2. In this paper,

8 Andy Yip, Edmond Wu, Michael Ng and Tony Chan

Algorithm: µDRIFT(X, v, R, C, µ)

/* R and C define a previously identified dense region or a µ dense region */
/* found by the DRIFT or µDRIFT respectively */

Cµ ← C, Rµ ← R
For each column j not in C /* Search horizontally*/

Count ← number of v’s in X(R, {j})
If Count ≥ µ|R|

Cµ ← {j} ∪ Cµ

EndIf
EndFor

For each row i not in R /* Search vertically*/
Count ← number of v’s in X({i}, Cµ)
If Count ≥ µ|Cµ|

Rµ ← {i} ∪ Rµ

EndIf
EndFor

/*Repeat the process to enlarge the region until no further improvement*/
If Cµ 6= C or Rµ 6= R

µDRIFT(X, v, Rµ, Cµ, µ)
Else

Return Rµ, Cµ

EndIf

Fig. 4. The µDRIFT Algorithm.

we suggest two types of high-dimensional dense regions, namely, single-measure
dense regions (SMDR) and pairwise-measure dense regions (PMDR).

Definition 6 (SMDR). Given a multi-dimensional dataset ϑ = {D1, D2, . . . , Dr}
with r attributes, a single-measure region (SMR) is a tuple T = {ϑ′, V } where
ϑ′ ⊂ ϑ and V is a common measure of all the attributes in ϑ′. A SMR is a
high-dimensional single-measure dense region (SMDR) if and only if any two-
dimensional region in SMR is a dense region with respect to V .

Definition 7 (PMDR). Given a multi-dimensional dataset ϑ = {D1, D2, ..., Dr}
with r attributes and a set of measures P = {P1, ..., Pr(r−1)/2}, a pairwise-
measure region (PMR) is a multi-dimensional subset T = {ϑ′, P ′} where ϑ′ ⊂ ϑ
and P ′ ⊂ P is the set of measures for all pairwise combinations of the attributes
in ϑ′. A PMR is a high-dimensional pairwise-measure dense region (PMDR) if
and only if every two-dimensional regions in PMR is a dense region with respect
to their corresponding measure P ′i , where 1 ≤ i ≤ |P ′|.
Example 6. In web usage analysis, given a three-dimensional dataset with
attributes {User, Page, T ime}. If we want to find a group of users who visit the
web pages {A,B, C} at least one time on Sundays, then the query is equivalent
to find the SMDRs with respect to the common measure, the visiting frequency.

Using the same data, if we want to find the users, pages, and time slots which
satisfy: (a) the {User, Page} measure — the probability of the users visiting the
pages is more than 50%; (b) the {Page, T ime} measure — the pages should
be accessed at least 1000 times totally at each time slot; (c) the {User, T ime}

Dense Regions Discovery from Large-Scale Data Streams 9

measure — the users should have already stayed in the website for than half
an hour at each time slot. This complicated query is to find the PMDRs with
respect to three different measures.

From the definitions of SMDR and PMDR, we can easily extend the DRIFT
algorithm for high-dimensional dense regions since both SMDR and PMDR dis-
covery problems can be reduced into the sub-problems of two-dimensional dense
region discovery. First, find two-dimensional dense regions using the DRIFT,
then search another dimension to find higher dimensional dense regions based
on the submatrices found. In practice, applying the DRIFT in high-dimensional
dense region discovery is also a desirable solution due to the efficiency of the
DRIFT. Moreover, together with the data cube model proposed in [4], dense re-
gions discovery from multi-dimensional data streams can be made very efficient.

4.4 Generalization to Stream Data

In many practical situations, data are generated in the form of continuous, rapid
data streams, such as clickstreams. Therefore, the efficiency of a data stream al-
gorithm is one of the most important considerations, especially when performing
some online data mining tasks. In this subsection, we purpose two feasible strate-
gies to improve the efficiency of dense regions discovery from data streams. These
strategies focus on how to update the changing dense regions in a data stream
environment.

Snap-Shot Update (SSU)
One strategy is to give snap-shots to the changing data streams. Given a stream
window Wi and an incremental window ∆Wi, we have Wi+1 = Wi + ∆Wi for
i = 0, 1, . . ., starting from an initial window ∆W0. In each stream window Wi,
the corresponding snap-shot of the data matrix is denoted by Xi. We regard Xi

as a static matrix in this stream window, then we can use the DRIFT algorithm
to discover dense regions in the partitions of original data streams.

The benefit of this strategy is that it is easy to implement. However, the
drawback is that this method may not be so efficient, especially for large ma-
trices. It is because for each new stream window Wi, we need to search all the
dense regions in the matrices again where many of them may not be changed
at all. Another drawback is that it is not easy to determine the size of the in-
cremental window ∆Wi. If we set ∆Wi to be too small (e.g., 10 seconds), then
the computational cost will significantly increase due to the massive updates.
Conversely, if we set ∆Wi to be too large, then the dense regions found may not
be useful, especially for those dense regions that change frequently.

Point-Trigger Update (PTU)
Another strategy is called Point-Trigger Update. In a data stream environment,
dense regions change constantly. However, a new arriving data point will only
cause changes to a small portion of the existing dense regions at that moment.

10 Andy Yip, Edmond Wu, Michael Ng and Tony Chan

Therefore, we may just update those dense regions associated with the actually
changed data entries. In this way, a lot of redundant computation cost is saved.

In fact, the notion of isolated points is very useful for reducing computations.
Since an isolated point belongs to only one dense region, a change in the value
of an isolated point only affects the region that it belongs (before the change).
We may also employ indexing to pair up an isolated point and its corresponding
non-covered dense region. More precisely, if an entry (s, t) is an isolated point
(determine by the BasicDRIFT algorithm), then we index the dense region as
D(s, t). After indexing, we implement the Point-Trigger Update in data streams.
Such a process is shown in Fig. 5.

Point− TriggerUpdate
Input: A changing entry (s, t) in X

If (s, t) is an isolated point (before the change)
Run BasicDRIFT(X, s, t) to update dense region D(s, t)

Else
For each D(s′, t′) containing (s, t) where (s′, t′) is an isolated point (before the change)

Run ExtendedBasicDRIFT(X, s′, t′) to update dense region D(s′, t′)
EndFor

EndIf
Output: Updated dense regions associated with the changing entry (s, t)

Fig. 5. Point-Trigger Update

The most important advantage of PTU is that the update cost is greatly
reduced, especially for large matrices. Moreover, the PTU is more adaptable than
SSU. In SSU, the size of the incremental window ∆W affects the performance
of the algorithm to a large extent. In some cases, large volumes of data streams
arrive very quickly, the preset size of the incremental windows may not be able
to adapt to the fast changes in the data streams. However, PTU can accelerate
the update speed based on the volumes of arriving stream data. The updates
are continuous and on time, hence the dense regions found based on PTU can
well represent the potential patterns in data streams.

5 Experimental Results

5.1 Web-log Datasets

In this section, we use the web-log data from ESPNSTAR.com.cn, a sports web-
site in China, to test and validate the performance and effectiveness of our
DRIFT algorithm. In our experiments, we take the data stream as a sequence
of data items X = x1, . . . , xn, . . ., where the sequence is scanned only once in
the increasing order of the indices. Each data stream contains a set of continu-
ous access sessions during some period of time. Using the cube model purposed
[4], we can convert original web-log streams into access session data streams for
dense regions discovery.

We use two months’ web-log data to do the experiments. Table 1 lists the
datasets for experiments. ES1, ES2 and ES3 are the log datasets during Decem-
ber, 2002 while ES4 and ES5 are the log datasets during April, 2003.

Dense Regions Discovery from Large-Scale Data Streams 11

Dataset No. Accesses No. Sessions No. Visitors No. Pages
ES1 583,386 54,300 2,000 790
ES2 2,534,282 198,230 42,473 1,320
ES3 6,260,840 517,360 50,374 1,450
ES4 78,236 5,000 120 236
ES5 7,691,105 669,110 51,158 1,609

Table 1. Characteristics of the datasets ES1–ES5.

5.2 Performance Evaluation

Experiment 1. We evaluate the scalability of the DRIFT with respect to in-
creasing matrix size. We use the ES2 dataset to find dense regions (DRs) in page
probability matrix (refer to [6]). The experiment results show that even for a
matrix with one million entries, the running time is still acceptable (See Fig. 6).
We can also compare the running time of finding dense regions in C and NC
with the DRIFT.

Experiment 2. We test the efficiency of the DRIFT and the µDRIFT algo-
rithms. We use the ES1 to discover DRs in page access frequency matrix (refer
to [5]). We set the minimal size of the DRs to be 10× 10. The results show that
the DRIFT is efficient (see the second column of Table 2). Starting with the
100% DRs found by the DRIFT, the time for searching µDRs with the µDRIFT
is also quite fast. The µDRIFT algorithm can find larger matrices which can be
very helpful for finding more useful patterns.

µ Threshold 100% 95% 90% 85% 80% 75%
Number of DRs 261 383 506 596 687 758
Average Size 12× 13 15× 16 19× 21 21× 24 24× 26 26× 29

Maximal 28× 31 32× 38 42× 51 56× 43 69× 47 84× 102
Average Density 100% 96% 92% 89% 83% 78%

Running Time (sec.) 275 296 322 341 367 390

Table 2. Varying the µ threshold.

0

100

200

300

0 200 400 600 800 1000

Matrix Size

R
u
n
n
i
n
g

T
i
m
e

(
s
)

Total C DRs NC DRs

0

100

200

300

400

500

600

700

0 2 4 6 8 10
Dimensions

R
u
n
n
i
n
g

T
i
m
e
(
s
)

PMDR SMDR

Fig. 6. Increasing matrix size Fig. 7. Increasing dimensions

Experiment 3. Next, we test the scalability of the DRIFT in high-dimensional
data using the ES3 dataset. We select up to eight attributes (dimensions) from
the web usage data to perform high-dimensional DRs mining using the DRIFT.

12 Andy Yip, Edmond Wu, Michael Ng and Tony Chan

The running time of finding SMDRs is less than that of PMDRs. It can be ex-
plained that, in SMDRs discovery, we can save the computation cost by pruning
more SDRs in sparse dimensions that share the same measure. However, the
running times for SMDRs and PMDRs discovery suggest that the DRIFT algo-
rithm can be applied to high-dimensional data (see Fig. 7).

Experiment 4. This experiment is to compare the update cost of two update
methods proposed in Section 4.4. We simulate the stream updates by using the
ES4 dataset. The experiment results suggest that PTU is more adaptable than
SSU to update the dense regions in a data stream environment (See Fig. 8). On
average, the update cost by PTU is only around 16% of that by SSU. Moreover,
the PTU can response to the peak period for updates (see the 18th time slot in
Fig. 8) while SSU cannot. This experiment strongly demonstrate that the DRIFT
algorithm is suitable for data stream mining due to its desirable properties.

Experiment 5. The last experiment is to employ the largest dataset ES5 to test
the the scalability of the DRIFT with PTU to update the continuous arriving
clickstream data. The experimental results show that both the searching time
on C and on NC dense regions are acceptable. Moreover, even for several million
of clickstreams per hour, the DRIFT is still robust for dense regions discovery
(see Fig. 9).

The experiments above validated that the DRIFT algorithm is effective and
efficient for large-scale data streams and can be applied in practical applications.

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 101112131415161718192021

SSU PTU

0

50

100

150

200

1 2 3 4 5

Clickstreams(millions/hour)

R
u
n
n
i
n
g

T
i
m
e

(
s
)

NC

C

Fig. 8. Comparison between PTU Fig. 9. Increasing data streams
and SSU. per hour.

6 Conclusion

We demonstrated that dense regions are significant patterns which are useful
for knowledge discovery. Some theories on dense regions were also developed
based on which efficient and effective algorithms are proposed. Our experiments
confirmed that the DRIFT algorithm is very useful in data stream applications
such as online Web usage mining. As future works, we would like to further
develop some theoretical results for dense regions and explore the use of dense
regions in other data mining tasks such as data clustering, classification, and
association rule mining.

Dense Regions Discovery from Large-Scale Data Streams 13

Indeed, we observe that the algorithms proposed by Wu et al in [5, 6] for
mining usage patterns from websites and optimizing website browsing efficiency
from using web-logs and website topology information share a common compu-
tational bottleneck when finding potential association patterns (e.g. a group of
users who have common interests in a group of web pages) from large-scale ma-
trices (page probability matrix [6] or access interest matrix [5]). We believe that
the DRIFT algorithm can be incorporated into these algorithms to accelerate
the processing time and to improve the quality of the mining results, especially
for large-scale stream data.

References

1. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, Cluster analysis and
display of genome wide expression patterns, Proceedings of National Academy of
Sciences, 85, pp. 14863–14868, 1998.

2. U. M. Fayyad and K. B. Irani, Multi-interval discretization of continuous-valued
attributes for classification learning, Proc. of the 13th Intl. Joint Conf. on Artificial
Intelligence, IJCAI-93: Chambery, France, 1993.

3. J. Han and M Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, 2001.

4. J. Huang, M. Ng, W. Ching, J. Ng, and D. Cheung, A cube model and cluster
analysis for web access sessions, Proceeding of the WEBKDD 2001 Workshop, San
Francisco, USA, 2001.

5. E. H. Wu, M. K. Ng, and J. Z. Huang, On improving website connectivity by us-
ing web-log data streams, Proc. of the 9th International Conference on Database
Systems for Advanced Applications (DASFAA 2004), Jeju, Korea, 2004.

6. E. H. Wu, M. K. Ng, A graph-based optimization algorithm for Website topology
using interesting association rules, Proc. the Seventh Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD 2003), Seoul, Korea, 2003.

7. C. Yang, U. Fayyad, and P. S. Bradley, Efficient discovery of error-tolerant fre-
quent itemsets in high dimensions, Proceedings of the Seventh ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining: San Francisco,
California, pp. 194–203, 2001.

