
A Multiscale Algorithm for
Mumford-Shah Image Segmentation 1

Tony F. Chan and Selim Esedoglu
Mathematics Department, UCLA

December 17, 2003

Abstract

We propose a new multiscale procedure for image segmentation that
is based on the algorithm introduced by Song and Chan in [11]. After
pointing out the presence of spurious stationary states for the original
algorithm on certain types of images, we explain how the proposed
procedure abates this issue and leads to a faster segmentation method.

Keywords: segmentation, variational methods, Mumford-Shah model
AMS Subject Classification: 65K10

1 Introduction

Image segmentation is a fundamental procedure in computer vision. Its goal
is to automatically partition a given image into regions that contain distinct
objects. A common approach is to pose segmentation as a best approxi-
mation problem: an approximation to the given, possibly very complicated,
image is sought among “simple” images in which distinct regions are self
evident.

The Mumford-Shah segmentation model [5] is a variational approach
that adapts this point of view by exhibiting the simplified image as the
minimizer of an energy. In one of its most common versions, the class of
simplified images consists of functions that take at most two values, thereby
partitioning the image domain into two phases. The energy involved in this
case is the least squares distance to the given image (which enforces fidelity
to the original image), plus a penalty for the length of the interface that
separates the two phases of the approximate image. The problem is then
to determine the optimal choices for the two values that the approximate
image takes, and the interface that defines the regions where these values
are taken.

Variational approaches to segmentation thus invariably involve minimiz-
ing over curves in the plane, which is a challenging task from a numerical

1This work was supported in part by NSF contract DMS-9973341, NSF contract ACI-
0072112, ONR contract N00014-03-1-0888, and NIH contract P20 MH65166.

1



perspective. As such, there has been a great deal of research activity on
how to best numerically minimize the Mumford-Shah functional or one of
its simplified versions. For example, the work of Chan and Vese [1] em-
ploys partial differential equations and the level set technology of Osher and
Sethian [6, 7] to implement a curve evolution on the plane that guides the
curve along the path of steepest descent for the segmentation energy, thus
approximating the solution by an iterative procedure that can be thought
of as the numerical solution at large times of the PDE involved.

Steepest descent based techniques for minimizing Mumford-Shah like
segmentation energies are often implemented by explicit time stepping for
the time dependent PDE’s involved, and therefore result in slow algorithms
whose computational complexity scale poorly with respect to the image
size. One natural way to speed up these algorithms would be to implement
implicit schemes. Recently, however, new techniques have been proposed
that dispense with the steepest descent approach altogether.

Gibou and Fedkiw [2] propose ignoring the interface length term in the
segmentation energy, which slows down gradient descent based approaches;
this allows rapid solution of the remaining terms. The regularizing role
played by the length term in the original model is then taken over by prepro-
cessing and post-processing steps that smooth out by some diffusion process
the original image to be segmented and the segmentation boundary (inter-
face), respectively.

In [11], Song and Chan take a related but different approach. The Song-
Chan (SC) algorithm consists in starting with an initial guess for the solu-
tion, and then refining that initial guess by visiting each pixel in the image
in a given order, and updating the region membership of the pixel in ques-
tion by computing the energy for each possible value that can be taken at
that pixel and selecting the one that gives the minimum value. This can
be interpreted as taking very large time steps in the gradient flow, after
checking explicitly that the energy is decreased by each. Compared with
more traditional implementations, in many cases this algorithm can bring
an arbitrary initial guess to within a small neighborhood of the solution with
significantly fewer iterations. As such, it can be either used on its own, or
as a preliminary step – that does most of the job very rapidly – for more ac-
curate but slower segmentation algorithms. Moreover, unlike the approach
of Gibou and Fedkiw, the SC algorithm remains faithful to the segmenta-
tion model that inspired it: at every step it is guaranteed, by definition, to
decrease a version of the Mumford-Shah segmentation energy.

In this paper we propose a multiscale method that follows up on the
SC algorithm. It is based on the observation that the original algorithm

2



operates at only one scale: that of a single pixel. By generalizing the SC
algorithm to operate on more scales, we arrive at a multilevel procedure that
can eliminate certain spurious stationary states of the original algorithm and
thus attain lower energy values. We show how the generalized algorithm
can be implemented efficiently and made to reach reasonable segmentations
faster than the original SC algorithm.

We should point out that there are other multiscale approaches to the
segmentation problem. The one proposed in this paper is closest in spirit
to the work of Koepfler et. al. [3]. There, the authors propose a technique
for minimizing the piecewise constant Mumford-Shah energy with no bound
on the number of phases in the segmentation. Their algorithm is based
on region merging: starting from a very fine segmentation, it selectively
merges neighboring distinct regions in order of greatest energy decrease.
The multiscale nature of their algorithm is achieved by gradually varying the
balance between the fidelity and penalty terms in the energy, and requires
the selection of a “schedule” for the parameter that represents this balance
in the segmentation model. Another, and more recent, multiscale procedure
for segmentation has been proposed in [10].

After introducing notation and basic definitions, we recall in Section 2
the two-phase, piecewise constant Mumford-Shah model. Then in Section 3
we describe the Gauss-Seidel version of the original SC algorithm as intro-
duced in [11]. We compare and contrast the SC algorithm with the K-Means
procedure in Section 4. Section 5 is devoted to exhibiting stationary states
of the original SC algorithm and to explaining the underlying reason for
their presence. Then in Section 6, we propose the multiscale procedure
that addresses these underlying reasons. Finally in Section 7 we present
numerical results to verify that indeed in certain difficult segmentation sce-
narios, the proposed multiscale procedure leads to cleaner segmentations
while maintaining efficiency.

2 Notation and definitions

In this section we introduce some notation that will be used in the descrip-
tion of the algorithms. We also recall the two phase piecewise constant
version of the Mumford-Shah variational model, as it was used in [11].

The computational grid is assumed to be regular, rectangular, and of
size N × N . It will be represented by the set of indices

I = {1, 2, . . . , N} × {1, 2, . . . , N}.

3



The original image presented for segmentation will be denoted {fi,j}, where
(i, j) ∈ I. A two-phase segmentation of an image defined on the grid can be
described by a triplet of the form (P, c0, c1) where P ⊂ I, and c0, c1 ∈ R,
such that the corresponding two valued approximation to the image (i.e. the
“segmented” version of the image) is

ui,j =
{

c1 if (i, j) ∈ P ,
c0 if (i, j) ∈ I \ P .

We will write 1P to denote the discrete indicator function of a subset P of
the grid; in other words

(1P )i,j :=
{

1 if (i, j) ∈ P ,
0 if (i, j) ∈ P c.

Given the original image {fi,j} and a regularization parameter µ, our discrete
version of the two-phase, piecewise constant Mumford-Shah segmentation
energy [1] is

MSµ(c0, c1, P ) =
∑

(i,j)∈P c

(
c0 − fi,j

)2 +
∑

(i,j)∈P

(
c1 − fi,j

)2

+ µ
∑
(i,j)

√(
(1P )i,j − (1P )i+1,j

)2 +
(
(1P )i,j − (1P )i,j+1

)2 (1)

This type of energy was used by Chan and Vese in [1]. The first two terms
in the right hand side are the fidelity terms: they require that the two
valued minimizer of the energy should be a good approximation, in the least
squares sense, to the original image. The third term on the right hand side
imposes a penalty on the (anisotropic) length of the interface that separates
the two domains on which the approximating function makes a transition
from one of its values, c0, to the other, c1. By choosing the parameter µ that
multiplies this term, it is thus possible to control the level of detail desired
in the two-valued approximation to the original image that is the result of
this approach.

This form of the two-phase, piecewise constant Mumford-Shah functional
agrees with the version considered in the original paper [11]. Notice that
describing the interface between the two phases by a binary function defined
on the grid makes the regularization term (which measures the length of the
interface) very anisotropic.

Given a partition P , the optimal constants c0 and c1 are determined in
terms of P . They are given by the appropriate averages of the original image

4



fi,j:

c0 = c0(P ) :=


 ∑

(i,j)∈I

fi,j(1P c)i,j





 ∑

(i,j)∈I

(1P c)i,j




−1

,

c1 = c1(P ) :=


 ∑

(i,j)∈I

fi,j(1P )i,j





 ∑

(i,j)∈I

(1P )i,j




−1
(2)

Hence we will sometimes write MSµ(P ) to indicate succinctly that the con-
stants c0 and c1 in the evaluation of MSµ have been chosen as such.

Let us define rectangular subgrids R(i, j; a, b) of the full grid I as follows:

R(i, j; a, b) := {(k, l) ∈ I : i ≤ k ≤ i + a − 1 and j ≤ l ≤ j + b − 1}

So, R corresponds to an a×b rectangular subgrid of I whose upper left hand
corner is located at the (i, j)-th position of I.

3 The Song-Chan algorithm [11]

In this section we briefly recall the two phase version of the original algorithm
with Gauss-Seidel style updates.

As explained in the previous section, two phase segmentations can be
described by the partition P , which is a subset of the grid; the set P then
determines the two constants c0, c1 that the two valued approximation takes
inside and outside P , respectively.

The main idea of the SC algorithm is as follows: It visits each pixel in
the grid in a given order, and compares the current energy value with what
it would be if the P -membership of the pixel is reversed. If the reversal
improves the energy, it is affected by updating P and also the values of the
two constants c0, c1 to reflect the change in P . We now give a more precise
and systematic description of this procedure below:
Algorithm: For each (i, j) ∈ I, compare the two energies MSµ(P ∪{(i, j)})
and MSµ(P ∩ {(i, j)}c). There are two possibilities:
Case 1: (i, j) ∈ P c. In this case, compute MSµ(P ∪ {(i, j)}). If MSµ(P ∪
{(i, j)}) < MSµ(P ), then update P as follows:

P −→ P ∪ {(i, j)}.

Calculate the new values of c0, c1, and MSµ.

5



Case 2: (i, j) ∈ P . In this case, compute MSµ(P ∩ {(i, j)}c). If MSµ(P ∩
{(i, j)}c) < MSµ(P ), then update P as follows:

P −→ P ∩ {(i, j)}c.

Calculate the new values of c0, c1, and MSµ.
In a single sweep of the algorithm through the pixels in the image, each

pixel is visited once, in some order, and the procedure explained above is
applied. The algorithm repeats itself until it gets to a sweep that fails to
update any of the pixels, or until one of the phases (either P or I \ P )
becomes empty.

An important feature of the algorithm is that if MSµ(P ), c0(P ), and
c1(P ) are known, then the competing energies MSµ(P ∪{(i, j)}), MSµ(P ∩
{(i, j)}), and their corresponding optimal constants c0(P ∪ {(i, j)}), c1(P ∪
{(i, j)}), c0(P ∩ {(i, j)}c), and c1(P ∩ {(i, j)}c) can be calculated locally,
i.e. by a small number of operations that is independent of the size of the
grid I. This is very important for computational efficiency, and hence it is
important to preserve this feature in improvements to the original algorithm.

It is easy to see that the algorithm has to terminate in a finite number
of steps. This follows from two facts: Every update strictly decreases the
segmentation energy, and the algorithm has only a finite number of states.
Moreover, in [11] it is shown that in the µ = 0 case the original algorithm
can converge in a single sweep for certain (simple) kinds of images.

4 Comparison with K-Means

In the absence of the regularization term (i.e when µ = 0), the variational
model (1) reduces to a quantization or clustering problem: it is the problem
of finding two constants c0 and c1 that best “explain” the data in the least
squares sense.

The K-Means algorithm is a technique for solving this quantization prob-
lem (and its generalization to the case with K-phases and vectorial data).
We explain how it works in the two phase situation: First, as an initial guess,
the data points are randomly assigned to one of the two phases. Then, given
the initial partition, the optimal choice for the constant c0 and c1 is made;
clearly, the prudent choice is, just like in formula (2), to set c0 and c1 to
be the mean of the data points in their respective partitions. Having de-
termined the constants, one then goes back to readjust the partitions by
visiting each data point and reassigning it to one of the two phases, depend-
ing on whether it is closer to c0 or c1. These two stages of the algorithm,

6



namely updating the means and the assignment of the data points to the
phases, is now repeated.

There are many versions of the K-Means procedure outlined above; one
basic variation on this theme concerns whether the means should be updated
every time a data point gets reassigned to a different phase (in which case
one predicts the new value of the two means before the reassignment), or
only at the end of a complete sweep through all the data points. The former
strategy, sometimes called sequential K-Means, is completely equivalent to
what we have called the “Gauss-Seidel” version of SC algorithm when the
regularization term µ = 0 (while the latter strategy would be the “Jacobi”
version). The close relation between the K-Means algorithm and the model
of [1] was noted and exploited previously in [8]. It is also central to the
algorithm of [2].

SC algorithm can thus be understood as an adaptation of the sequential
K-Means procedure to the special case of image data and to the presence of
the geometric regularization term that measures the length of the boundary
between the various phases. When µ > 0, because of the geometric term the
reassignment of pixels to various phases depends not only on the number
of pixels in each phase and the values of the corresponding means, but also
on the membership of the neighboring pixels. This is an essential difference
between the SC algorithm and K-Means. Results presented in [11] show
that for many types of images, such as those well approximated by piecewise
constant functions, the SC algorithm is a very fast segmentation technique.
There, it is also shown that for simple images and in the absence of the
perimeter term, the algorithm in fact converges in a single sweep. The K-
Means algorithm has been previously studied for its convergence properties;
for example in [9] the authors describe some general results. It would be
very interesting to explore the implications of these convergence results for
the specific segmentation setting that is the focus of [11] and this paper.

The K-Means algorithm is often used as a preprocessing step for more
elaborate and costly methods. It is possible to use it in this capacity also in
the two-phase segmentation setting; this is essentially what is done in [2].
However, the standard K-Means algorithm has no notion of geometry built
into it. This can be seen in the numerical examples shown in Figures 5 and
12. Hence using the K-Means algorithm does not address the main difficulty
with segmentation energy (1): presence of the length term. It is the length
term that slows down the standard ways of minimizing (1). The motivation
behind the SC algorithm is to come up with a K-Means type fast procedure
that incorporates the length term and which is thus compatible with (1).

7



5 Stationary states of the SC algorithm

When the regularization parameter µ is nonzero, it is well known that the
piecewise constant Mumford-Shah segmentation model has local minima,
for instance with respect to the L2 distance, except for very special types
of images. These minima are usually few and far apart; their presence does
not necessarily constitute a drawback of the model since in segmentation
applications it makes little sense to expect a unique solution. Typically, a
minimization technique would be considered quite successful if it finds one
such local minimum.

In this section we will show that when the regularization parameter is
non-zero, the SC algorithm can introduce many spurious stationary states
in addition to the local minima inherent to the segmentation model. Our ex-
amples exploit a particular feature of the algorithm: it modifies the segmen-
tation only one pixel at a time. Therefore, it can have difficulty segmenting
noisy images that include noise at larger scales.

A simple example can be constructed out of binary images, where the
“noise” is in the geometry. Consider the indicator function of a region with
smooth but undulatory boundary as the original image to be segmented. As-
sume that the undulations have moderate wavelength. Then, for moderate
values of the regularization parameter, we would expect the Mumford-Shah
model to ”straighten out” the undulations: the interface between the two
phases of the segmentation should be a smoother, simpler version of the
original boundary.

If such an image is sampled on a fine enough grid so that the undula-
tions are well resolved, say at the level of several pixels, and if the original
image thus sampled is taken as the initial guess for one of the phases of the
segmentation, then the original SC algorithm would be unable to modify it
at all. Indeed, under such conditions switching any pixel of the initial seg-
mentation from one phase to another would at best leave the length term
unaltered, and for certain increase the fidelity term.

Figure 1 illustrates our point. It shows an original binary image that
consists of the indicator function of a half-space with thin and long “hairs”
sticking out. These “hairs” of course make the length of the boundary (i.e.
the “edge”) in the image extremely and unnecessarily long. However the
hairs are four pixels wide, and their tips are carefully designed. It can be
easily verified that if this original image itself is taken as the initial guess
for one of the phases of the segmentation, then in fact none of the pixels
can be updated: removing any of the pixels that make up the boundary of
the region shown, including the hairs, would eliminate at most two edges

8



and introduce at least two new edges. Moreover, such an operation would
increase the fidelity term of the energy, which is at its lowest when the
segmentation agrees with the original image. Hence, the algorithm is stuck
in its initial state, for any non-zero choice of the regularization parameter.
Meanwhile, for any large enough (but moderate) choices of that parameter
the indicator function of the half-space without the hairs can be shown to
have less energy.

Other, more suggestive examples are possible. Given any original binary
image that has a large enough neighborhood contained entirely in one of its
phases, say the zero phase, we can place an “island” of ones, whose shape
approximates that of a circle, eight pixels in diameter, in the middle of that
neighborhood. Taking this modified original image as the initial guess for
one of the phases, we can verify that the SC algorithm would be unable to
remove the island. In a high resolution image, many such islands can be
placed, imitating presence of a particular type of noise. See Figure 2 for this
type of example.

In [3] the authors describe a technique for eliminating local minima from
a region growing technique for minimizing the piecewise constant Mumford-
Shah functional (with no restriction on the number of regions). Their idea is
to gradually increase the parameter µ: they start with 0, and then follow a
schedule of increasing values, each time minimizing the energy involved and
using the resulting segmentation as initial guess for the next µ value. Let us
conclude this section by pointing out that such an approach will not avoid
the stationary states considered above. Indeed, the examples constructed
above are stationary for all values of µ ≥ 0.

6 Multiscale versions of the SC algorithm

We can begin to address the issues explained in the previous section in a
straightforward way. As our discussions in that section indicate, the cure
is to allow the SC algorithm to operate at more scales than just that of a
single pixel. Intuitively, we thus empower the algorithm to remove noise at
different scales in the geometry of the interface.

This can be accomplished by allowing the algorithm to update entire
“neighborhoods” of pixels at once. For instance, at each pixel visit we can
ask whether updating all the pixels in an a × b neighborhood of that pixel
to either the zero phase or the one phase decreases the energy. If it does,
then all pixels in the neighborhood can be set to belong to that phase. This
procedure is repeated for every pixel in the image. Let us describe the

9



Original image

Zoom inZoom in

Figure 1: A steady state of the original SC algorithm. The original binary image, which
is shown, is also taken as the initial segmentation. Even though the boundary of the
region depicted is very large due to the presence of “hairs”, the algorithm in its original
form is unable to update a single pixel. This is true for all values of the regularization
parameter µ ≥ 0. The reason is that removing any single pixel from the region does not
decrease the length term, and would increase the fidelity term in the energy.

Figure 2: Another spurious steady state of the original algorithm, in the presence of
regularization. Once again the original image, which is binary as shown, is taken also
as the initial guess for 1-phase of the the segmentation. In this example white pixels
correspond to the 1-phase. The “islands” of 1’s have the shape of plus signs, and are
made up of 12 pixels. As with the previous example (Figure 1), the state is stationary for
all µ ≥ 0: removing any single pixel cannot decrease the edge length.

10



algorithm more precisely:
Algorithm: Fix integers a, b ≥ 1. For each (i, j) ∈ I, listed in some order,
compare the following three energies:

MSµ(P ),MSµ

(
P ∪ R(i, j; a, b)

)
, and MSµ

(
P ∩ Rc(i, j; a, b)

)
.

Then, there are three cases:
Case 1: MSµ(P ∪ R(i, j; a, b)) < min

{
MSµ(P ),MSµ(P ∩ Rc(i, j; a, b))

}
.

In this case, update P as follows:

P −→ P ∪ R(i, j; a, b).

Calculate the new values of c0, c1, and MSµ.

Case 2: MSµ(P ∩ Rc(i, j; a, b) < min
{
MSµ(P ),MSµ(P ∪R(i, j; a, b))

}
. In

this case, update P as follows:

P −→ P ∩ Rc(i, j; a, b).

Calculate the new values of c0, c1, and MSµ.
Case 3: Otherwise, do not update P .

For one by one neighborhoods, the procedure explained above reduces
to essentially the standard form of the algorithm. But there is an obvious
disadvantage to using large neighborhoods: Namely, with a casual imple-
mentation of the generalized algorithm, the computational cost of a single
sweep through all the pixels in the image is proportional to a× b×N2. The
difference in cost compared to the original version of the algorithm is due
to the fact that the local computations necessary to compute the competing
energies MSµ(P ∪R(i, j; a, b)) and MSµ(P ∩Rc(i, j; a, b)) from the current
energy value of MSµ(P ) require us to use values from a neighborhood of
R(i, j; a, b).

Yet this is being too pessimistic. With a little bit of care, and by choosing
the update order appropriately, the computational cost can be reduced to a
constant multiple of min{a, b} × N2 per sweep. In particular, when either
a or b is one, the generalized sweep can be accomplished at only twice the
cost of a single sweep of the original algorithm, measured in terms of the
number of floating point operations involved. We now explain how this is
done.

Consider applying the generalization of the algorithm with a rectangle
of size a × 1. Suppose that the (i, j)-th pixel has just been visited, so that

11



the following quantities have already been computed:

MSµ(P ),MSµ(P ∪ R(i, j; a, 1)),MSµ(P ∩ Rc(i, j; a, 1)),
c0(P ), c1(P ), c0(P ∪ R(i, j; a, 1)), c1(P ∪ R(i, j; a, 1)),
c0(P ∩ Rc(i, j; a, 1)), c1(P ∩ Rc(i, j; a, 1)).

Suppose also that we have chosen a row-wise update order, so that the
(i + 1, j)-th pixel is visited next. Then, the following quantities need to be
calculated:

MSµ(P ),MSµ(P ∪ R(i + 1, j; a, 1)),MSµ(P ∩ Rc(i + 1, j; a, 1)),
c0(P ∪ R(i + 1, j; a, 1)), c1(P ∪ R(i + 1, j; a, 1)),
c0(P ∩ Rc(i + 1, j; a, 1)), c1(P ∩ Rc(i + 1, j; a, 1)).

Our observation is:

All these quantities can be computed from their analogues at the
previous pixel visit at the expense of only a fixed number of opera-
tions (independent of a and N). In other words, all the quantities
required for energy comparison can be updated locally.

It is very easy to demonstrate this fact. The subsets of the grid involved in
the (i+1, j)-th pixel visit are P , P ∪R(i+1, j; a, 1), and P ∩Rc(i+1, j; a, b).
They differ from the partitions involved in the previous pixel visit by only
a few points. Indeed,

(
P ∪ R(i + 1, j; a, b)

)
�

(
P ∪ R(i, j; a, b)

)
⊂

{
(i, j), (i + a, j)

}
, and(

P ∩ Rc(i + 1, j; a, b)
)
�

(
P ∩ Rc(i, j; a, b)

)
⊂

{
(i, j), (i + a, j)

}
.

Hence, the energies and the constants required at the (i + 1, j)-th pixel
visit can be computed from their values at (i, j)-th pixel visit by a local
calculation that involves only the immediate neighbors of the (i, j)-th and
(i + a, j)-th pixels.

This observation can be easily generalized to updates with rectangles of
size a×b; if the appropriate pixel visit direction is chosen, the computational
cost is seen to be at the advertised level. We summarize the discussion of
this section:

• The standard SC algorithm can be generalized so that rectangular
neighborhoods, instead of single pixels, are switched to one of the two
phases at each step.

12



• This generalization helps eliminate some of the spurious stationary
states of the original algorithm.

• There is an efficient way to implement the generalized algorithm so
that the cost of a sweep through all pixels using a × b rectangular
neighborhoods is only 2min{a, b} times more costly than a sweep of
the original algorithm.

7 Numerical results

In this section we illustrate on real and synthetic images how the multiscale
version of Song and Chan’s algorithm leads to better segmentations. Our
emphasis is on showing how efficient multilevel procedures can be designed
with the help of the observations in the previous two sections. Hence we
experiment with several possible techniques without necessarily committing
ourselves to a specific one of them.

We first note the the synthetic images shown in Figures 1 and 2 that con-
stitute spurious stationary states of the original SC algorithm are de-noised
effectively, provided that we use updates with rectangular neighborhoods of
size 2 × 1 or larger.

Figures 3 and 4 show results of experiments using the image of a galaxy
at 512× 512 resolution (N = 512). Regularization parameter was µ = 512

5000 .
Images of this type pose a particular challenge to segmentation algorithms,
as they do not contain well defined edges and regions. As a result, a good
segmentation relies heavily on the regularization term (i.e. the length of
the interface). This is therefore the type of image for which the original
version of the SC algorithm can reach a premature stationary state. The
main purpose of this experiment is to show how the generalized version of
the algorithm presented in this paper can avoid these stationary states, and
reach significantly cleaner segmentations while maintaining low computa-
tional cost.

The upper left hand picture in Figure 3 shows the original galaxy image
to be segmented. The upper right hand binary image shows the two phases
found by the original version of the SC algorithm. The corresponding energy
value is a relatively high 43.22Nµ. Moreover, the algorithm requires 93
iterations to reach this stationary state. The lower left hand binary image
shows what happens if we take the stationary state found by the standard
algorithm and make it the initial guess for the generalized version that uses
32×1 rectangular neighbors and traverses the pixels in a row-wise direction
(so that the cost of a single sweep is only twice that of the original algorithm).

13



The image shows the result after only one pass: the energy is down to
35.7Nµ, and the boundary in visibly improved. Of course, just as a rectangle
of size 32× 1 can be used to do updates at only twice the cost of an update
of the original algorithm if pixels are visited in the row-wise direction, a
rectangle of size 1 × 32 can be used at only twice the cost of the original
algorithm if the pixels are visited in the column-wise direction. The bottom
right hand image of Figure 3 shows what happens when the bottom left
image of Figure 3 is taken as initial guess for a single sweep using 1 × 32
rectangles: The energy is further decreased to 32.78Nµ, and we have yet a
cleaner segmentation.

This process can now be repeated: the image is alternately traversed
in row-wise and column-wise fashion, using 16 × 1 and 1 × 16 rectangles,
respectively. After a few steps, one arrives at the upper left image of Figure
4. Its energy is 31.54Nµ. The remaining images in Figure 4 show the result
of continuing this process using smaller rectangles (8×1 and 1×8, 4×1 and
1× 4, etc.) and making a few sweeps at a time. After a few steps the lower
right hand side image of Figure 4 is reached. Its energy is about 31.35Nµ.

In the experiment of Figures 3 and 4, we waited until the original SC
algorithm reached its stationary state before commencing with sweeps using
larger neighborhoods. However, as we have seen, the SC algorithm can re-
quire quite a lot of iterations to reach a stationary state (93 in that example).
In the following experiments, only a few steps of the original SC algorithm
are taken to form an initial, very fine segmentation. Then, this fine seg-
mentation is pruned at various scales by making sweeps with neighborhoods
of various sizes. Also, in the experiments so far only neighborhoods of size
a × 1 or 1 × a were used; this made it possible to sweep through the image
at only twice the cost of the original algorithm. Further experiments sug-
gest, on the other hand, that sweeps using a × a neighborhoods, although
2a-fold more expensive than sweeps of the original algorithm, can lead to
very rapid energy decrease. These matters are explored in the remaining
numerical examples.

The left hand image of Figure 5 shows a 256 × 256 original image to be
segmented (i.e. N = 256). The right hand image is the result of applying 3
iterations of standard K-Means algorithm. This was taken as initial guess
for the experiments presented in Figures 5, 6, 7, 8, and 9.

The graph in Figure 6 shows how the energy decreases, starting from
the initial guess shown in Figure 5 and using sweeps at different scales,
as a function of computational cost used. Each unit of the horizontal axis
represents the cost of a single sweep through the pixels using the standard SC
algorithm (which is proportional to the number of pixels). The graphs were

14



plotted to reflect the fact that a single sweep using a×a neighborhoods is in
principle only about 2a times more costly than a a single sweep using 1× 1
neighborhoods in terms of the number of floating point operations involved;
this is why the points on graphs corresponding to larger neighborhoods are
spaced out. The graph obtained using 16× 16 neighborhoods turned out to
lie strictly above the graph of 8×8 neighborhoods. The result clearly shows
that the prudent choice is to use 8 × 8 neighborhoods. Also shown by the
result is that at the 8 × 8 level, sweeps beyond the first two are essentially
redundant: they accomplish very little in the way of energy decrease. The
regularization parameter used in this experiment was µ = 256

200 .
Figure 7 shows the stationary states reached in the experiment that led

to the graph of Figure 6. The top left image is the stationary state for
the original algorithm (1 × 1 updates), the top right for 2 × 2 updates, the
bottom left for 4 × 4 updates, and bottom right for 8 × 8 updates.

Naturally, the optimal neighborhood size turns out to be related to the
regularization parameter µ, which sets the scale for the model. When the
last experiment is repeated with µ = 256

800 , the energy vs. computational
cost graph is shown in Figure 8. The prudent choice for neighborhood size
turned out to be 4; the graph for 8×8 and larger updates were strictly above
that of 4 × 4 updates. The stationary states corresponding to the various
updates are shown in Figure 9.

Of course, we cannot expect to know the optimal neighborhood size.
One natural approach is then to start with the very fine initial segmentation
obtained by a few steps of the K-means algorithm and/or the original SC
algorithm, and then prune it with neighborhoods of various sizes in a coarse
to fine fashion. For example, we can start with a few sweeps using 16 × 16
rectangles, followed by a few sweeps using 8 × 8 rectangles, etc. Figures 10
through 14 report results of experiments using this procedure. During the
coarse to fine pruning process, only one sweep at each scale was found to be
quite sufficient.

Figure 10 shows the result of applying the coarse to fine pruning proce-
dure outlined above to the original image shown in Figure 5. As in the ex-
periments of Figure 7, the regularization parameter was taken to be µ = 256

200 .
The energy reached is 6.75Nµ. Figure 11 shows the energy vs. computa-
tional cost graph for this experiment. It can be seen that the procedure is
essentially complete by the time the equivalent of 38 sweeps of the original
SC algorithm have been made. These results should be compared with those
of Figures 6 and 7.

Finally, Figures 12 and 13 show a slightly simpler segmentation scenario.
Were it not for the moderate amount of noise, the original image to be

15



segmented (shown in the upper left hand side of Figure 12) – which has
a resolution of 512 × 512 (i.e. N = 512) – would be well approximated
by a piecewise constant image. The upper right hand figure shows the
result found by the K-Means procedure, which was started from a random
binary image as initial guess. Regularization parameter was taken to be
µ = 512

3000 . The lower left hand figure shows the result found by the original
SC algorithm, which was also started from the same random binary image. It
reached the stationary state shown in 35 iterations, yielding an energy value
of about 205.78Nµ. The lower right hand side image shows the segmentation
obtained via the multilevel procedure that was used in the experiment of
Figure 10; the energy found is 157.45Nµ.

Figure 13 shows the energy vs. computational cost graph for the mul-
tilevel procedure that produced the segmentation shown in the lower right
hand side of Figure 12. Figure 14 shows the segmentation at two intermedi-
ate stages of the multilevel procedure. The right hand side figure makes it
clear that at a computational cost equivalent to making 22 sweeps with the
original SC algorithm, a successful segmentation can be obtained.

The multilevel procedure explained above and illustrated with the nu-
merical examples require a number of choices to be made. For instance,
the coarsest scale that the algorithm will operate at, and the number of
sweeps to make at each scale need to be chosen. There are also a number
of reasonable ways to come up with a very fine segmentation as an ini-
tial guess. Depending on how these choices are made, the algorithm can
produce slightly different final results. This is a common feature of many
segmentation algorithms. For instance, the algorithm of [3] can produce
slightly different results depending on the particular choice of schedule for
the regularization parameter.

8 Conclusion:

We identified a challenging class of images for the algorithm of Song and
Chan and showed how it sometimes reaches a steady state prematurely.
By allowing the algorithm to operate at more scales than that of a single
pixel, we showed how some of the premature steady states can be avoided.
Moreover, we showed how all this can be done at more or less the same
computational cost as the original algorithm.

There are many ways in which our study can be furthered. First and
foremost, it is necessary to understand at a more precise and quantitative
level how the computational cost of these algorithms compare to, say, the

16



Chan-Vese technique. A particularly interesting and important question in
this context is how the computational cost of the present algorithm scales
with respect to resolution of the given image.

References

[1] Chan, T. F.; Vese, L. A. Active contours without edges. IEEE Transac-
tions on Image Processing. 10 (2), Feb. 2001, pp. 266 – 277.

[2] Gibou, F.; Fedkiw, R. Fast hybrid k-means level set algorithm for segmen-
tation. Preprint, in review. (URL=http://math.stanford.edu/˜fgibou)

[3] Koepfler, G.; Lopez, C.; Morel, J.-M. A multiscale algorithm for image
segmentation by variational methods. SIAM J. Numer. Anal. 31 (1994),
no. 1, 282-299.

[4] MacQueen, J. Some methods for classification and analysis of multivari-
ate observations. In Le Cam, L. M. and Neyman, J., editors. Proceedings
of the fifth Berkeley symposium on mathematical statistics and probability.
Vol. 1, pp. 281-297.

[5] Mumford, D.; Shah, J. Optimal approximations by piecewise smooth
functions and associated variational problems. Comm. Pure Appl. Math.
42 (1989), no. 5, pp. 577-685.

[6] Osher, S. J.; Fedkiw, R. Level set methods and dynamic implicit surfaces.
Appplied Mathematical Sciences 153, Springer Verlag. New York, 2003.

[7] Osher, S. J.; Sethian, J. A. Fronts propagating with curvature-dependent
speed; algorithms based on Hamilton-Jacobi formulations. J. Comput.
Phys. 79 (1988), no. 1, pp. 12-49.

[8] Rommelse, J. R.; Lin, H.-X.; Chan, T. F. A robust level set algorithm for
image segmentation and its parallel implementation. UCLA CAM Report
03-05, February 2003.

[9] Selim, S. Z.; Ismail, M. A. K-means-type algorithms: a generalized con-
vergence theorem and characterization of local optimality. IEEE Trans. on
Pattern Analysis and Machine Intelligence. Vol 6, no. 1, pp. 81-86.

[10] Sharon, E.; Brandt, A.; Basri, R. Fast multiscale image segmentation.
Proceedings IEEE Conference on Computer Vision and Pattern Recogni-
tion. 1:70-77, South Carolina, 2000.

17



[11] Song, B.; Chan, T. F. A fast algorithm for level set based optimization.
UCLA CAM Report 02-68, December 2003. Under revision for publication
in SIAM J. Sci. Comput.

18



Figure 3: Results of the standard and enhanced algorithm compared using the 512 ×
512 image of a galaxy, shown in the upper left hand figure, as the original image. The
regularization parameter used was µ = 512

5000
. The upper right hand figure shows the result

found by the standard algorithm, which has an energy of 43.22Nµ. The lower left hand
figure is the result of starting with the upper right hand figure as initial guess and making
one sweep, in the horizontal direction, using a rectangular neighborhood of size 32 by 1;
this decreases the energy to 35.70Nµ. The lower right hand figure shows the stationary
state reached by making a further sweep, this time in the vertical direction, using a 1×32
neighborhood. That brings the energy to 32.78Nµ.

19



Figure 4: Alternating 32 × 1 and 1 × 32 updates in the horizontal and vertical direc-
tions, respectively, for a few more times gives the result shown in the upper left figure.
Continuing, we make a few sweeps with 16× 1 and 1× 16 neighborhoods (result shown in
upper right figure), and then with 8 × 1 and 1× 8 neighborhoods, etc. The final result of
this procedure is shown in the lower right hand figure, and has energy 31.35Nµ.

20



Figure 5: Original cameraman image, and the initial guess for two-phase segmentation
obtained via standard sequential K-Means procedure (without perimeter regularization
term).

6

7

8

9

10

11

12

0 10 20 30 40 50 60 70 80 90 100

Figure 6: Plot of Energy vs. computational effort involved. The initial guess had an
energy of about 19.2Nµ (not plotted). Regularization parameter was µ = 256

200
.

21



Figure 7: The stationary states for 1×1, 2×2, 4×4, and 8×8 updates. The corresponding
energies reached were about 10.44Nµ, 9.26Nµ, 8.27Nµ, and 6.77Nµ respectively. It took
21, 6, 8, and 6 sweeps through the pixels to reach them, respectively. Regularization
parameter used was µ = 256

200
.

22



16

16.5

17

17.5

18

18.5

0 5 10 15 20 25 30 35 40

Figure 8: Plot of Energy vs. computational effort involved. Regularization parameter
was µ = 256

800
.

23



Figure 9: The stationary states for 1×1, 2×2, 4×4, and 8×8 updates for µ = 256
800

. The
corresponding energies reached were about 17.45Nµ, 16.69Nµ, 16.42Nµ, and 16.46Nµ,
respectively.

24



Figure 10: Segmentation obtained after a multilevel procedure to minimize energy (1)
with µ = 256

200
. A very fine segmentation is obtained as initial guess by using a few steps

of the original SC algorithm. In this example, we took 3 steps with the algorithm using
µ = 0 (which makes these 3 steps equivalent to the K-means procedure), followed by 3
more sweeps using µ = 256

200
. Then, this very fine segmentation is pruned at various scales

using the generalized algorithm described in Section 6, by sweeping the image once with
each of 16 × 16, 8 × 8, 4 × 4, 2 × 2, and 1 × 1 neighborhoods, in that order.

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70

Figure 11: Plot of Energy vs. computational effort involved during the multilevel pro-
cedure. Regularization parameter was µ = 256

200
.

25



Figure 12: A moderately noisy image to be segmented. The upper left figure is the
original image. The upper right hand figure shows the result of K-Means procedure (µ = 0
case of the SC algorithm) after 3 sweeps. Bottom left image shows the result obtained by
the original Song-Chan algorithm with µ = 512

3000
, which was started from a random binary

image as initial guess; the stationary state shown was reached after 35 sweeps through the
image and has an energy of about 205.78Nµ. The bottom right image show the result of
the proposed multilevel procedure using the generalized algorithm. The energy obtained
is 157.45Nµ. The computational cost incurred is equivalent to about 35 sweeps of the
original algorithm.

26



150

200

250

300

350

400

450

0 5 10 15 20 25 30 35

Figure 13: Plot of Energy vs. computational effort involved on the example of previous
figure.

Figure 14: Intermediate stages of the multilevel procedure. Computational cost of
reaching the left hand side image is about 6 sweeps of the original algorithm; it’s energy is
182.34Nµ. Computational cost of reaching the right hand side image is about 22 sweeps
of the original algorithm; it’s energy is 160.34Nµ.

27


