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Abstract: In this paper, we propose a new segmentation model including geometric
constraints, namely interpolation conditions, to detect objects in a given image sequence.
We propose to apply the deformable models to an explicit function to avoid the problem of
parameterization (see Gout and Vieira-Testé [13]). A problem of energy minimization on a
closed subspace of a Hilbert space is defined and introducing Lagrange multipliers enables
us to formulate the corresponding variational problem with interpolation conditions. We
apply this method in order to ouline the cross-sectional area of a great thoracic vessel,
namely the main pulmonary artery, in order to non invasively assess pulmonary arterial
hypertension (see Laffon et al. [16], [15] and [14] for more details).

Key words : Segmentation, deformable models, energy minimization, level set method,
PDE.

CRC (1998): I.4.6, G.1.2 & G.1.8.

Acknowledgements
This work was supported in part by CHU of Bordeaux (grant from ”appel d’offre

interne 2000” n◦01-06).



1 Introduction

Segmentation processing is a crucial step in image analysis (Sonka & al. [23]). It
consists mainly in detecting and visualizing the common boundaries of distinct objects in
the image. A survey of segmentation methods can found in Gout and Vieira-Testé [13].
Two kinds of problems remain currently encountered in segmentation using deformable
models (Terzopoulos et al. [24]) :

1. Firstly, issues linked to the model and, to be more precise, to the parameterization.
Indeed, parameterization does not allow for topological changes, which is annoying
when there are several objects to detect. It does not allow either for cusps and
corners, a case that is encountered when there are triple points, when the curve is
supposed to be a connected curve, etc... It means that the final curve will have the
same topology as the initial contour. Besides, as mentioned by Caselles et al. [2],
this approach is also non intrinsic since the energy depends on the parameterization
of the curve and is not directly related to the object geometry.

2. Secondly, issues linked to the image itself. For instance, segmentation is hard to
handle when some image data are missing or when some regions are homogeneous.
We can also have a priori knowledge on our image, that is to say interpolation
conditions that have to be integrated in the segmentation process. In geophysical
fields for example, well data that correspond to the interface between two different
layers may be given. The segmentation process enables us to isolate the various
layers of the ground and thus these well data are exactly interpolation conditions.
This should be taken into account in the model under study. Previous work has
been made in this direction by Vieira-Testé [25] or Apprato et al. [1] with the
classical deformable models and parameterization was here again a real hindrance,
particularly in the parameterization of interpolation conditions.

In this paper, we propose a new approach : to sort out the issue of parameterization,
we use a Level Set approach, developed by Osher & Sethian [22]. Instead of working with
a parameterized curve Γ, we represent it implicitly via an explicit function Φ. Γ is the zero
Level Set of the function Φ, ie Γ = {(x, y),Φ(x, y) = 0} and the evolution of the curve is
given at any time t by the zero Level Set of Φ(x, y, t).
Besides, the interpolation conditions are integrated in our model. If some image data are
missing, defining geometrical constraints helps the contour to evolve towards the outlines
of the object to detect. These interpolation conditions play the same role as the pushing
force of the Balloon Model. If a priori knowledge of the image is given, it is fully taken
into account in our model.
So, in our model, we propose to apply the Deformable Models (Cohen, Cohen, and Ayache
[7], Cohen, Bardinet and Ayache [9] ) to an explicit function Φ instead of a parameterized
curve Γ. Then, we will generate our curve, taking the zero Level Set of the surface. The
different steps of the presentation are the following ones : in section 2, we make an accu-
rate depiction of our modelling. The Level Set approach forces us to work in a space of
higher dimension. We will see how to handle this property. In section 3, we will mainly
focus on the mathematical framework. That section is divided into 3 parts. First, we
define our problem of non-convex functional minimization on a Hilbert space.
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Then, the interpolation constraints lead us to solve this problem on a closed vector sub-
space of this Hilbert space. The Lagrange multipliers (Ciarlet [4]) enable us to formulate
the variational problem. Section 4 is devoted to the discretization of the problem which
is done with finite elements for space discretization and implicit finite differences scheme
for time discretization.
In section 5 experimental results with the proposed approach are given in a medical imaging
framework. Medical imaging can no longer be considered only as morphological imaging,
it has become functional, and nowadays physicians have to quantify parameters. Magnetic
resonance imaging (MRI) is a non invasive medical imaging technique, hence repetitive,
which has recently allowed for the assessment of pressure values at the level of the main
pulmonary artery (MPA) in patients suspected of pulmonary arterial hypertension (see
Laffon et al. [16], [15] and [14]). That assessment requires both blood flow velocity and
vessel cross-sectional area (CSA) measurements, throughout the cardiac cycle, which can
be carried out by means of velocity-encoded sequences (see Laffon et al. [14]). In old
patients, suffering from breathlessness, the data acquisition cannot be performed in an
optimal manner, which can lead to some images of the frame in which the MPA CSA
cannot be clearly identified in its whole. However, in those images, the physician who
manually outlines the vessel wall, reasonably assumes a circle-like outlining over the un-
clear parts of the vessel wall. In other words, the physician interpolates with a priori
knowledge, since it is reasonable to assume that a vessel CSA exhibits an anatomical
round shape. Nevertheless, although they are reasonable, such assumptions lead to intra
and inter-observer variability, and consequently to uncertainty in pressure estimations in
a given patient. The difficulty of this vessel outlining exactly matches the issue raised in
Fig. 1, which has been addressed in the present work

2 The Data

We have a sequence of images: an example can be found on the web at URL http://www.univ-
pau.fr/~cgout/chubdx/index1.htm.

Figure 1 refers to a slice set perpendicularly to the MPA axis (arrow) of a 78 year old
patient. This patient was suspected of pulmonary arterial hypertension, suffering from
breathlessness. The presented magnitude image was acquired from a velocity encoded se-
quence (Venc = 1.5 m/s), during a 5 min time duration, with a 30 ms temporal resolution
(1 Tesla Magnetom Expert imager; Siemens; Germany). The image quality is moderate,
and in particular the vessel wall is irregular around the arrow, that is not anatomically
possible, and therefore an interpolation in the outlining by the physician is needed. Im-
pairement in the contrast between the vessel blood and the surrounding medium can be
related to (i) partial volume effect, that is observed in particular at the level indicated
by the arrow (beginning of the right pulmonary artery), (ii) flow turbulences, that are
correlated with the severity of the pulmonary arterial hypertension, (iii) the absence of
the so-called ”proton inflow phenomenon”, which leads to poor blood images contrast at
the end-diastolic cardiac phase in the image frame (19, 20). It should be noted that very
recent MR imagers (1.5 Tesla imagers) might allow to perform similar acquisition within
a 30 s-breathhold (segmented velocity-encoded acquisition, Venc = 1.5 m/s, 39 ms tem-
poral resolution), leading to better quality images. Nevertheless, (i) unclear parts of the
MPA wall will still remain around the MPA CSA at the end-diastolic cardiac phase, (ii)
as presented in Fig. 1, patients suffering from pulmonary arterial hypertension are usually
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unable to perform a 30s-breathhold.

Figure 1: The arrow indicates the part of the contour which implies the requirement of
interpolation data in the segmentation process because of the non sufficient quality of the
contrast in this zone.

From a more theoretical point of view, we define an image as it follows. Let Ω be a
bounded open subset of <2. Let us denote by I our given image,

I =

(
Ω→ <
(x, y) 7→ I(x, y)

.

The use of the Level Set approach in our modelling implies that we work in a space of
higher dimension. We need, therefore, to build a 3D image. This image Ĩ is defined as
follows :

Ĩ =


Ω×<→ <
(x, y, z) 7→ Ĩ(x, y, z)

such that, ∀(x, y) ∈ Ω, Ĩ(x, y, 0) = I(x, y).

We just impose that for the value z = 0, Ĩ coincides with the initial image I. The image
Ĩ is the superimposition of I:

Ĩ =


Ω×<→ <
(x, y, z) 7→ Ĩ(x, y, z)

and ∀(x, y) ∈ Ω,∀z ∈ <, Ĩ(x, y, z) = I(x, y).

By this process, we aim at getting the singularities of I (we mean k∇Ik ' +∞) thanks
to the singularities of Ĩ. At each time t ∈ [0, T ], the function Φ will segment Ĩ and the
zero level set of Φ, denoted by Γ, will segment I.

Furthermore, a priori knowledge of interpolation conditions leads to some geometric
constraints on the model under study. We denote by P = {a1, a2, .., aN} a set of N distinct
points to interpolate that we assume to be included in the set of singularities of I.

∀i ∈ {1, ..., N}, ai = (xi, yi) ∈ Ω.

The points of P have to belong to the zero Level Set Γ of Φ (interpolation conditions), so,

∀i ∈ {1, ...,N},Φ(ai) = Φ(xi, yi) = 0.
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Figure 2: Left: Initial image. Right: construction of the 3D image.

3 Mathematical Modelling

3.1 Energy minimization problem

As mentioned in section 1, we define an energy minimization problem on a space of
acceptable representations. We take

V = H2(Ω) (1)

as our space of acceptable representations, where H2(Ω) is the usual Sobolev space on
Ω. The interpolation conditions must be taken into account in our stationary space of
acceptable representations. Let us denote by K the vector subspace of V defined by
K = {v ∈ V,β(v) = 0}, where β is the linear mapping defined by :

β : v ∈ V 7→ β(v) = (v(ai))i∈{1..N} ∈ (<)N . (2)

The linear form β is continuous on V since H2(Ω) ª C0(Ω). Clearly, K is a closed subspace
of V since K = Ker {β}.

The deformable models consist in attracting a representation towards the singularities
of a given image I. The representation responds naturally to applied forces :

1. internal forces which describe the properties of elasticity and rigidity of the repre-
sentation. Formally, it is linked to the first and second derivatives.

2. external forces derived from a potential function which attracts the representation
towards the singularities of the image eI. The potential function is chosen such that
it tends to its minimum when the representation is located at the points of maxima°°°∇eI°°°.

For the criterion linked to internal forces, for any v ∈ V , we define the internal energy
(regularization energy) Eint by
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Eint(v) =R
Ω ²1(x, y)[(

∂v(x,y)
∂x )2 + (∂v(x,y)∂y )2] + ²2(x, y)[(

∂2v(x,y)
∂x2

)2 + 2(∂
2v(x,y)
∂x∂y )2 + (∂

2v(x,y)
∂y2

)2]dxdy
.

(3)

This energy is dictated by two parameters of control: ²1 is the elasticity parameter and ²2
the rigidity parameter. If we increase ²1, we tend to eliminate the loops and ripples of the
surface (see for instance ([20])). In experimental examples, we consider ²1 and ²2 constant
on Ω.

For the criterion linked to external forces, for any v ∈ V, we define the external energy
Eext by

Eext(v) =

Z
Ω
P (x, y, v(x, y))dxdy. (4)

with P the potential function expressed with the gradient of the image Ĩ. The following
expression is often given for P (see for instance [23]):

P (x, y, z) = −α||∇Ĩ(x, y, z)||2,α > 0, (5)

but we can also find (see for instance [17]):

P (x, y, z) =
α

1 + ||∇Ĩ(x, y, z)||2 ,α > 0, (6)

where k·k denotes the Euclidean norm. With these notations, we define the functional E
on V such that (

∀v ∈ V,
E(v) = Eint(v) +Eext(v)

. (7)

We denote by a the following bilinear form associated to the functional Eint defined on
V × V :
a : (u, v) 7→ a(u, v) ∈ <,
a(u, v) =R
Ω ²1(x, y)[(

∂u
∂x)(

∂v
∂x) + (

∂u
∂y )(

∂v
∂y )] + ²2(x, y)[(

∂2u
∂x2
)( ∂

2v
∂x2
) + 2( ∂2u

∂x∂y )(
∂2v
∂x∂y ) + (

∂2u
∂y2
)(∂

2v
∂y2
)]dxdy

.

Thus E can be rewritten by (
∀v ∈ V,
E(v) = a(v, v) +Eext(v)

. (8)

Remark that a is a continuous bilinear form on V × V . We formulate the problem of
minimization as follows: (

Find Φ ∈ K,∀v ∈ K,
E(Φ) ≤ E(v) . (9)

It is a non-linear problem of minimization on the vector subspace K of V that includes
the geometric constraints. The non-linearity stems from the non-linearity of the potential
P .
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3.2 Evolution problem

We have considered the problem of energy minimization as a static problem. The
potent of deformable models is to introduce a dynamic term in the functional we want
to minimize. The model evolves according to time t until it reaches its equilibrium. The
stationary state is then established and the surface no longer evolves. So now, we assume
that Φ is a function of the variables x, y and t. The dynamic component added to the
functional is defined by:

1

2

∂

∂t

Z
Ω
²(x, y)(Φ(x, y, t))2dxdy.

with a parameter of control ² with respect to the L2 norm of Φ for space. The parameter
² controls the deformation of the surface. The more we increase ², the less the model is
deformed. In experimental examples, we will consider ² constant on Ω.
We now reformulate our energy minimization problem, that is now an evolution prob-
lem. Let V be the space defined in (1) equipped with the scalar product ((., .)) and the
associated norm ||.||, we denote by W (]0, T [, V ) the following space:

W (]0, T [, V ) =

½
u ∈ L2(]0, T [, V ) such that du

dt
∈ L2(]0, T [, V 0)

¾
,

where V 0 is the dual of V. The Hilbert space W (]0, T [, V ) is equipped with the scalar
product:

(u, v)W (]0,T [,V ) =

Z T

0
((u(t), v(t)))dt+

Z T

0

µ
du(t)

dt
,
dv(t)

dt

¶
V 0
dt,

and with the associated norm

|u|W (]0,T [,V ) = (u, u)
1/2
W (]0,T [,V )

.

The evolution problem associated with the problem (9) is then given by

Find Φ ∈W (]0, T [, V ),
∀t ∈]0, T [,Φ(t) ∈ K,
∀w ∈W (]0, T [, V ), w(t) ∈ K for t ∈]0, T [,
J(Φ) ≤ J(w),
Φ(., ., 0) = Φ0 ∈ L2(Ω),

(10)

where the functional J is defined by

J(w) =
1

2

∂

∂t

Z
Ω
²(x, y)(w(x, y, t))2dxdy +E(w).

In the discretization stage of our study, we approximate the space V by the space Vh. One
could think of including the geometrical constraints in the definition of Vh but we did not
want to link the interpolation conditions and the space of approximation.
The variational formulation of our problem is obtained with the use of Lagrange multipliers
(Ciarlet [4]). Then, the problem (10) implies the following one

Find Φ ∈W (]0, T [, V ),
∀t ∈]0, T [,Φ(t) ∈ K
∀w ∈W (]0, T [, V ), w(t) ∈ K for t ∈]0, T [,
J 0Φ(w) = 0.
Φ(., ., 0) = Φ0 ∈ L2(Ω).
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3.3 Variational formulation

Let us evaluate the Gâteaux derivative of J at Φ in the direction v

J 0Φ(v) = limh→0
J(Φ+ hv)− J(Φ)

h
.

We get:

J 0Φ(v) =
d
dt

R
Ω ²(x, y)Φvdxdy +

R
Ω ²1(x, y)[2

∂Φ
∂x

∂v
∂x + 2

∂Φ
∂y

∂v
∂y ]dxdy

+
R
Ω ²2(x, y)[2

∂2Φ
∂x2

∂2v
∂x2

+ 4 ∂2Φ
∂x∂y

∂2v
∂x∂y + 2

∂2Φ
∂y2

∂2v
∂y2
]dxdy

+
R
Ω

∂P
∂z (x, y,Φ(x, y, t))vdxdy.

We get the variational formulation of our problem taking as test function, v, on the
stationary space V for any t ∈]0, T [ and using Lagrange multipliers, we obtain the following
problem: 

Find (Φ,λ) ∈W (]0, T [, V )×F([0, T ],<N ),
∀t ∈]0, T [,Φ(t) ∈ K
∀v ∈ V :R
Ω ²(x, y)

∂Φ
∂t vdxdy + 2a(Φ(t), v)

+
R
Ω

∂P
∂z (x, y,Φ(x, y, t))vdxdy+ < λ(t),β(v) >N= 0,

with
Φ(., ., 0) = Φ0 ∈ L2(Ω),λ(0) = λ0 ∈ <N ,

(11)

where F([0, T ],<N) is the space of functions from [0, T ]→ <N , and where < ., . >N is the
inner product on <N . This formulation of the problem with Lagrange multipliers enables
us to solve an equation on the space V instead of solving an equation on a closed subspace
of V .
The discretization is given in Le Guyader et al. [17]. We use classical schemes: finite
differences (see Euvrard [11] for more details) on time and finite elements (see Ciarlet [5],
Gout [12] for more details) on space.

4 Numerical results

We choose the potential defined in (6). Parameters introduced in our model are con-
sidered constant on Ω. The values of ²1 and ²2 were chosen so as to bestow the same
weight to internal and external forces. For the estimation of these parameters, we have
followed Cohen’s results [6] and have used a mere discretization with a finite differences
method of Eint. It enables us to take

² = 1,

²1 ' h2x,
²2 ' h4y,

Φ0(x, y) =

³
(x− 48.5)2 + (y − 61.5)2 − 252

´
1000

,

δt = 0.001.

We obtain the following result.
The MPA CSA variations versus time, throughout a cardiac cycle, obtained from the

present automatic segmentation method are in agreement with previous results obtained
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Figure 3: This is a zoom of the zone to segment taken from Figure 1. Left: the initial
condition with 3 interpolation conditions: the two interpolation conditions (at the bottom
on the left) help the segmentation process on a zone where the contrast is not good while
the third interpolation condition -top of the MPA- allows us to take an initial condition
which is as far as we want from the final result. Right: the final result.

from a manual outlining (see Laffon et al. [14], [15] and [16]). Moreover, the present
method enables us to get a reliable assessment of the systolic-diastolic difference in the
vessel CSA, which should lead to a further improvement in the accuracy of a non invasive
blood pressure estimation, as discussed in details in a recently published paper by Laffon
et al. [14].

The complete sequence after the segmentation process can be found at URL : http://www.univ-
pau.fr/~cgout/chubdx/index1.htm.
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