VISIBILITY OPTIMIZATION USING VARIATIONAL APPROACHES

LI-TIEN CHENG AND YEN-HSI TSAI

ABSTRACT. We introduce a framework and construct algorithms basetitorhandle optimization problems
that deal with the maximization of visibility informatiororf observers when obstacles to vision are present
in the environment. This framework uses at its core the ambraleveloped in [17] which adopts the level
set framework of [12] to construct a function that encodesbility information in a continuous way. This
continuity allows for powerful techniques to be used in thigcikte setting for interpolation, integration, dif-
ferentiation, and set operations. Thus, through the agipdic of [17], several level set tools, gradient flow,
derivative discretizations, and solvers for ordinaryetiéntial equations, we produce our visibility framework
for optimization and demonstrate its flexibility with alggthms tackling different test problems.

1. INTRODUCTION

The problem of visibility involves the determination of regs in space visible to a given observer when
obstacles to sight are present. When the observer is repigca light source in the simplified geometrical
optics setting with perfectly absorbing boundary conditai the obstacles, the problem translates to that
of finding illuminated regions. In this paper, we considettass of optimization problems associated with
visibility and solve them under the framework introducedlitA].

Let D be the set of points comprising one or several given soligséompact subsed of RY. A solid
here refers to an opaque obstruction. We seek solutionstiotlowing three central questions. The first
guestion of our study is:

e What is the optimal locationgxfor an observer such that the volume of the visible regiofiis
maximized?
A larger class of problems emerges when variations and gxtes involving the observer and the space —
multiple observers, moving observers, optimality undéfiedént measures — are taken into account. There-
fore, our second question extends the first one:

e What are the optimal location&x } for a collection of observers, so that jointly the volumeted t
visible region inQ is maximized?
Lastly, we ask:

e What is the optimal pat(t) of an observer, traveling from A to B, so that the volume ofvikible
region inQ is maximized?
One can interpret the last question as an extension of ttandeaith uncountable number of observers
distributed along the path. Problems related to the thresstgqans above can be found in applications
dealing with geometric optics, scattering, path plannitigjtal surface reconstruction, photolithography,
and dynamic games, to name a few (see, e.g., [1, 2, 3, 7, 8]).

In most situations, we find it useful to think of an observessdight source. Consequently, our attempt
in solving the three central questions amounts to maxirgigue illuminated regions i, or maximing the
averaged illumination (exposure) d. The main focus is in revealing details of the relationshipMeen
optimization and visibility. Thus, it does not detract frahe essence of the study for us to disregard global
optimality and accept local maxima as suitable solutiont) gradient flow a valid process.

Section 2 briefly describes selected parts of [17], whicheseas the underlying framework of our studies.

Section 3 introduces an algorithm that answers the centigdtopn involving one observer and Euclidean
1
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space. Section 4 includes several subsections devoted adetyvof extensions of the first and second
problems. Section 5 presents a few visibility optimizat@moblems that require different techniques than
those considered previously. Included in this section kellour attempt at answering the third question.
Section 6 summarizes the ideas and techniques developbd previous sections and ties them together
to shed light on the relationship between optimization aisibiity. Finally, Section 7 acknowledges the
contributions of others in this investigation.

2. VISIBILITY FRAMEWORK

We briefly describe the setup used in the most basic situabosidered in [17]. For a more complete
description of results, [17] should be consulted. Witlnepresenting given obstructions in the sp&cand
Xo the location of the observer, the problem is to identify poiof Q that are visible to the observer. In
addition, this should be done in such a way as to facilitagesttiraction of visibility-based information.

Let the boundary oD be represented as the zero level set of a funatiorQQ — R, called a level set
function, withyy < 0 on the inside of the solids. When the shape of the objectpasimg D excludes small
scale features such as infinitely thin projections or pbka&-masses, this representation is in general stable.
In this setting, called the level set framework, we operatéhe function instead of the sdd. ThusD
can be thought of as a binary description of the obstacle —ra @oeither inD or not inD — while s is
a continuous one. Numerically is given as a matrix of values at the lattice locations of &cstid in
space, which can be taken to be uniform in each axis dire¢tipease of use. We also apply the same
philosophy and introduce the level set functipnQ — R to capture the region of invisibility, namely as the
set of points where < 0. Consequently, the region of visibility is describeddghy O and the surface where
¢ = 0 is the interface, called the shadow boundary, separatimgisible from the invisible. Thus, in this
setting, the problem becomes that of constructprigom () and the observer locatioy. For more on the
level set framework, see, e.g., [11, 12].

The starting point of the algorithm is to first incorporatéoimmation that is obviously true, namely mark-
ing points inside obstacles as invisible and the observeisdse (or invisible, if located inside an obstacle).
Everything else can be temporarily taken to be visible, tadyeected by iterations. In the level set setting,
we may thus takep =  initially, so ¢ has the right sign id and atxg. The type of iteration chosen will
involve updatingg at points inQ without changing the sign ap where@ is negative and aty. Thus at
each step, the negative regionsqgodire guaranteed to be invisible while the visibility statfishe positive
regions, exceptingo, will be in flux until steady state is reached.

The details of this approach involve working gralong the directional lines-of-sight of the observer,
the curves that light emanating from the observer travai@lio a space with no visual obstructions. In
a space of constant index of refraction, these the direatitmes-of-sight are simply rays with endpoint
at the observer location, or, mathematically, the integuaVes of the vector field = x — Xy starting atxg
(more precisely, neaf). In general, the lines-of-sight can be curves, howevercaresider just the case
where they are integral curves of a vector fieldOne consequence of this is that two lines-of-sight will
not intersect unless they are the same one. The main wigibHiaracteristic to notice is that if one were
to start out at the observer location and walk along a linsigiit, the points one travels along will be
visible (or invisible, if the observer lies inside an ob$tantil the boundary of an obstacle is reached, after
which the points will be invisible. Altogether, this means may work on each line-of-sight separately to
determine the visibility status of its points and the car@der is to work outwards along the line-of-sight
from the observer. Furthermore, encountering an obstatlses invisibility and forces all further points to
be invisible.

Thus, a sketch of a simplistic and discrete, bare-boneditigoworks as follows: the points iQ were
previously marked invisible insidB and visible elsewhere as a start. Most notakdyis marked visible
if chosen outside oD and invisible if chosen inside. Along each line-of-sightlautwards fronxg, pass
the visibility status ofxg to its immediate neighbor for comparison. If either the infation atxg or the
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neighbor’s current information (alternatively, the ndighis original information which considers whether
it lies in an obstacle) is labeled invisible, then the nemhielabels itself as invisible. The process is then
repeated with the neighbor passing its new visibility infiation to its immediate neighbor along the line-
of-sight for comparison. From this, we see the two main dtlgavic aspects for this approach involve a
technique for passing values along lines-of-sight and apesison criterion associated with accepting or
rejecting the passed value. Visibility information can Ipglated inQ in this manner.

The algorithm ultimately used in [17] follows this basic s&ltewith choice improvements. Usingto
encode visibility information over a grid, as mentioneddref instead of the binary designations of “visible”
and “invisible”, provides a measure of continuity that iea$ subcell resolution for the numerical solution.
For example, the shadow boundary can be accurately caghin@mah high order interpolation recovering
the zero level set of a locally smoagh One concern in using a grid is that a given curve in spacenegéd
will not pass through any gridpoints. Thus instead of exiconsidering the lines-of-sight, implicitly
encoding the lines-of-sight as characteristic directioha partial differential equation is a better option in
the grid-based setting. An example of one such partial rdiffiéal equation is

at(])—l—l' . sz: 0,

with initial condition @(x,0) = Y(x). We know this as a transport equation, where visibility infation
given by the value ofp is transported along the integral curvesrofNote, in practice, applying a finite
differencing PDE solver (e.g., [10, 13]) is the most direeiywo solve this equation over the grid but not
necessarily the best. Instead, efficient grid-based msthodh as fast marching, fast sweeping, and other
directional sweeping techniques are preferable, espesiakce this step of the algorithm forms the bulk of
the computational workload. For more, see [9, 15, 19] for fizerching and [18] for fast sweeping. Finally
the update comparison criterion is added to the passinggso®Vhen a gridpoint receives a passed value of
@ for update, it accepts the minimum between this value anclitent value. The effect of this is if either
value is negative, then the updated value will be negatige famthermore, the finap will be a continuous
function.

An example of the entire procedure is to start vii(lx, 0) = Y(x) and a chosen partition of time steps
O=th<ti<---<ty=Ttoafinal timeT. At each time stefx, k=0,1,...,n—1, solve

0i@+r-Op=0,
in Q, perhaps using standard finite differencing techniquesn imety to ty, 1 to pass and then reset

QX tie1) = min{@(X, ti), @(X, ticy1) }

for the comparision update. Tfis Iargegnough?pwill reach steady state i and give the correct visibility
information for the region. Thug(x) = @(x, T) is what we want to construct.
A variation that possibly facilitates analysis is the saifitained partial differential equation description,

0@+ max{r - 0,0} =0,

with initial condition fp(x, 0) = Y(x), to be solved to steady state . Here, the passing of values is
enacted through transport with respect tand the maximum taken in the equation serves as the update
comparison criterion, ensuring each point will only chaitgevalue if passed one that is smaller. However,
the fast marching, fast sweeping, and other techniques veyswractice lead to more efficient algorithms.
Furthermore, we note that the visibility level set functiakes the analytic form of
X) = min 2),

@) zeL(x,xo)lp( )
whereL(X,Xp) is the integral curve of the vector fietd connectingk andxo. This form, however, in many
circumstances, is not easy to work with.
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FIGURE 2.1. For the obstacle environment and given observer tmtatf the upper left
plot, the visibility level set function is shown along witls icontours and, in the lower right
plot, its zero level set, the shadow boundary.

Altogether, we have described a set of algorithms that cahtfia visible and invisibile regions, when
iterated to steady state, for given obstructions and anredstcation. Figure 2.1 shows a typical visibil-
ity level set function generated from the approach, alorty vis contours and the shadow boundary, for a
chosen observer location. We note that in the constant inflesfraction case withh = X — Xg, the com-
putational complexity is the optimaP(NY) over aN® point grid ind dimensions if fast sweeping is used
for passing. Moreover, multiresolution techniques camigerporated to further improve speed and lessen
memory requirements. However, the main advantage of tlet $&t representation and PDE description is
a framework that emphasizes continuity over the discrethe. ififormation gathered from the solution goes
beyond the black and white designations of “visible” andrisible”, but provides gray levels as well. For
example, encoded in the solution is an accurate repregentdtshadow boundaries that can help measure
how visible or invisible a point is. See, e.q., [4] for a ravief other visibility algorithms and [1] for another
level set-based solution. Thus the approach becomes alipecivantageous when applied to problems that
need the additional provided information. The optimizatdd visibility is one such problem.

3. SNGLE POINT VISIBILITY OPTIMIZATION

To facilitate our discussion in adaptivity in the vantagesipon, we augment the visibility functiop
described above so that
9: Q% CRYIxRY— @(y;x0) € R
denotes the visibility function created from a vantage plmnated atxy; i.e. @(-;%o) the level set function
representing visibility in a bounde@ for an observer axg, with @(-;Xp) > 0 in the visible regions and
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@®(-;%) < 0 in the invisible regions. Such a function can be calculatsidg the visibility solver of [17]
described in the previous section. Consider the visiblamel functionV (xo) defined as the volume of the
visible region for the observer &. Thus we have the expression

V(o) = [ Hiyro)dy

whereH denotes the one-dimensional heaviside function. With thisproblem of interest becomes that of
finding the position of the observes that maximizes this function, thus maximizing the size &f tisible
region.

If gradient ascent is used, we obtain a flow, potentially tdériest itself, of the position of the observer
from an initial guess to a local maximum. This can be thoudh&soa greedy algorithm for a moving
observer to maximize its visibility when it is initially leted at an non-optimal position. The gradient
direction to consider, as easily derived from variatiorstulus, isy,V (xo). Thus the gradient ascent flow
of the observer location is described by

0tXo = Ox,V (Xo)-
The Uy, used here and later on in the paper is the gradient operatioregpect to the observer position.

Analysis of this differential equation is hindered by thekaf convenient analytical forms fay, @(-; Xo).
Thus we take a numerical approach to its solution. The rightltside derivatives can be approximated by
central differencing of the values ¥f at neighboring pointsg +he, i =1,...,d, where{g }{’:1 denotes
the standard orthonormal basisRf# andh is a chosen stepsize. We denote the resulting approximation
Oy V (X0) by DSV(XO), using standard differencing notation. Note multiple amtlons of the algorithm of
[17] are needed to obtaip(-;xp+he), i =1,...,d. In total, this approach leads to the system of ordinary
differential equations,

OtXo = DBV(XO),

approximating gradient ascent flow. A choice of solver fas gystem completes the algorithm for single
point visibility optimization.

We formulate in detail the steps of this algorithm when Eslerethod is used as the ordinary differential
equation solver:

(1) Start with a given positiory. This can be thought of as an approximation of the optimadtioo.

(2) Forachosen stepsikeuse the algorithm of [17] to obtain tha fisibility level set functionsp,1nq
over a grid inQ for eachi=1,...,n.

(3) Evaluate/(xo+he) for eachi = 1,...,nusing a smoothed-out approximate heaviside function and
numerical integration technigues such as the trapezaitalver the grid. We note the ideas of [6]
should be used to create the heaviside function for accuracy

(4) Form D}V (xo) through central differencing ofly,V (xo). This uses the values calculated in the
previous step.

(5) Using Euler's method, updatg by xo + kDgV(xo), wherek is a chosen time marching stepsize.

(6) Repeat from the first step with this new valuexgiuntil convergence. Convergence implies a local
maximum of the visible volume is reached.

Note the computational workload in each iteration is ceddminated by the second and third steps. How-
ever, the workload of the third step can be reduced by ngtitiat step is only needed for computing
DBV(XO), in the fourth step. Instead, if the identity

DV (x0) = | DEH (@(y:0))dy

is used, we notice thﬂBH (@(y; %0)) happens to be zero in a large portiortafin other words, under small
perturbations of the position of the observer, the visilrid mvisible regions will undergo similarly small
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changes. This can be seen mathematically in the expansion

(3.1) DV (Xo) = /Q OxH (9(y; %0))dy = /Q 3(@(Y; X)) @Y X0)dy,

whered refers to the one-dimensional delta function. Thus, oniptsovith zero or near-zerg(-; %o ), need
to be considered in the integral. The visibility functigfy; Xp) constructed by the algorithm in [17] takes
the form

(3.2) ;%) = min W(2),
Ze L(Y.%0)

as stated previously. In the cases considered in this pygevector fieldr (x) is simply (Xx—Xg)/|X — Xo|.
The following Lemma, with this vector field, shows thelly; Xo) thus constructed is Lipschitz continuous
and so the central differencing approximation f&g@(y; xo) in (3.1) will remain a bounded quantity.

Lemma 3.1. Let K be a Lipschitz constant fap in Q, and ¢ be defined as in (3.2). Them(y;X) —
Py; %0)| < Klxo —Xo| for xo,%,y € Q.

Proof. We can rewrite the expression fpras follows:
@(y; ) = min Y(txo + (1—t)y).

te[0,1]
Thus,
Oy, xo+x) = tg&g}w(txoﬂl—t)yﬂéx)
< tg[gg](lv(txw(1—t)y)+tK|<3><|)
< @(Y;%0) +K|0X.
Similarly, @(y; Xo + 8X) > @(y; %o) — K|8x]. So|@(y; Xo) — @(Y; %o)| < K|xo — Kol. O

We also note the continuous representation of visibilifiprimation allows for accurate computations
using approximate heaviside and delta functions sincecsthdbundaries can be accurately located. We
can in fact use the form in 3.2, with standard numerical irstign and differentiation techniques and the
approximate delta function or heaviside function of [6]efficiently compute the value @i,V (Xo) in place
of the fourth step.

We present two examples of single point visibility optimiea using different starting locations for the
observer. Figure 3.1 shows the path of an observer origirl(0.4,0.4) and the area of the region of
visibility during the flow inQ = [—1,1] x [-1,1]. Figure 3.2 shows the path of an observer originally at
(0.6,0.6) and the corresponding visible region areas in the samegetti this case, the observer prefers to
run away towards infinity. Thus, the computation was stoppleeln it hit the boundary d@. Finally, Figure
3.3 shows a graph of the area of visible regions plotted vaipect to different observer locations in the
same setting. The obstacles can be identified in the plotdoketlions where the area is zero. The algorithm
essentially employs gradient ascent along this landscHpes, the observer of Figure 3.1 converges to the
local maximum at the origin and the observer of Figure 3.Zgweay toward the boundary.

4. EXTENSIONS FORVISIBILITY OPTIMIZATION PROBLEMS

The previous section provided an answer for the central avst basic question concerning optimization
and visibility. The reason this particular question is @rmss the central one is due to the multitude of
extensions that immediately arise from its answer. We deamsh this section visibility problems involv-
ing multiple observers, weighted regions of importancepacg, accumulating visibility information, and
weighted observer distances.
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FIGURE 3.1. The figure on the left shows the path the observer tréwelptimize visibil-
ity. This path originates at ‘0’ and ends at ‘x’. The obstadlethe vision of the observer are
four disks of various radii. Also drawn are the shadow bouiedaseparating the regions of
visibility and invisibility. The figure on the right showsdtarea of the region of visibility
plotted with respect to time in the gradient flow of the observ
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FIGURE 3.2. This figure shows has the same setting as in Figure 3nlawiifferent initial
location for the observer.

The construction of solutions for these various problem$iwigeneral follow the same procedure as
listed in the previous section. This implies the constarctf a function that is usually associated to vol-
umes of visible regions, different for each problem, andealgmt ascent flow maximizing its value. Numer-
ically, this visible volume function can be accurately exséd due to continuity in the visibility information
provided by the level set framework of [17]. These evaluatiare used in a chosen finite differencing ap-
proximation of derivatives to approximate the gradienteasdirection, which is then combined with an
ODE solver in time for a method-of-lines solution to the flow.

4.1. Multiple Observers. Instead of one observer, we may consider several obsemdrask where they
should be placed for maximal visibility. Leb,Xs,...,Xn denote the location ah+ 1 separate observers.
For each =0,1,...,m, we can construct the visibility level set functig-; X ) associated te;. Visibility
information of all the observers can be determined from thibnity information of individual ones due to
our definition that a point is visible with respect to mulémbservers if it is visible to one of them. Thus
the region of visibility for multiple observers is the uniohthe regions for each individual observer.
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Y

FIGURE 3.3. The area of visible regions plotted with respect toedéht observer loca-
tions in the settings of Figures 3.1 and 3.2. Note when therobs is located inside a solid
obstacle, the area is zero.

In the level set framework, there is an analogy to unions atetsections. For two level set functiops
and @, the union of their negative region&p, < 0} and{¢, < 0}, is implicitly captured as the negative
region of the level set function mjip;, @, }. Note, the positive region of this function is thus the inttion
of the positive regions af; andq,. On the other hand, the intersection of the negative regbps and@,
is implicitly captured as the negative region of n@x ¢, }. Similarly, the positive region of this function is
thus the union of the positive regions @f and@,.

From this, we can construct a visibility level set functimr multiple observers, which we denote by
@(-; X0, X1,--.,%Xm), by taking the minimum value of the visibility level set fuians for individual observers,

QY; X0, X1, ..., Xm) = min  @(Y; %).
i=0,1,....m

We then define a new function corresponding to the volume @fvikible part ofQ with respect to the
multiple observers,

V(xo,xl,...,xm):/QH(cp(y;xo,xl,...,xm))dy

The positions¢, X1, . . ., Xm Mmaximizing this function will be the desired optimal vidityi locations for the
multiple observers.

We perform the maximization through gradient ascen®onThis translates to, through calculus of
variations, motion ofx;, for eachi = 0,1,...,m, with direction and speed given by, V (X0, X1, - .,Xm),
respectively:

atxi = DXiV(X07X17" . 7Xm)>
wherel[y, denotes the gradient in the argument Using once again the method-of-lines approach, we
simulate this motion by approximating the derivatives & #patial gradients using finite differencing to
obtain a system of ordinary differential equations. Thistegn can then be solved with an appropriate
solver when given initial observer locations 5@, x1, .. ., Xm.

In Figure 4.1, two observers and the path they take to marimizibility are shown. The observer
locations converge to final positions that form a local maxmof the visible volume function. There is a
slight, almost invisible, decrease in the area of the regisibility along the gradient ascent path. This, we
believe, is simply due to small numerical errors. Also, ¢hisra slight deformation in the shadow boundary
at the lower middle of the graph resulting from the plottextteempt to resolve the kink at that location
in the curve. Figure 4.2 shows the result of different ihibbserver placement. The final positions are
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FIGURE 4.1. Two observers following gradient flow converge to posg for optimal
viewing of the space. Note the figure on the right shows astighrease in the area of the
visible region calculated along the path of the observer.
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FIGURE 4.2. Different starting locations for the observers leadifferent solutions. In
this case, less of the space is visible to the observers trahé final positions found in
Figure 4.1.

different and the area of the region of visibility is small€inally, Figure 4.3 shows results with four and
five differently situated observers in the obstacle envirent.

In Figure 4.4, three robots are placed randomly on a ciraait at initial time. Through optimization
on the collective visibility of the robots, we are able toatetine the locally optimal search direction of
each robot. This means that each search direction is cothput®aximize not how much more visibility
information a specific robot can obtain, but how much the etde of the three robots can. In the simple
case of one obstacle centered at the origin, we see thathibtsrare able to find a globally optimal solution
(any right triangle on the circular orbit) based on theitiatilocations.

4.2. Weightsin Space. In certain applications, a higher priority may be placed iewing a specific region
in space, while a lower priority is placed on other regionge Effects of this on the optimal positions of
observers, as well as on the motions associated to themgecsimhblated through the use of weights.

Letw: Q — R* be a positive real-valued function defined ogr Let the magnitude of the value of
w at a point relate to how important it is for that point to beiblis, with larger magnitude associated with
greater importance. By includingin the measure used in spatial integration, we in effecthtitaportance
weights to the visibility of space.
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FIGURE 4.3. Two more results of multiple observer visibility arevatm. In the left plot,
five observers move to a position where almost everythingbeaseen. In the right plot,
four observers maximize their visibility until one triesdscape.
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FIGURE 4.4. The three observers are confined ona circular orbibsoding the obstacles.

For single point visibility optimization, the volume fumeh is modified to

Vul0) = [ H(@lyi0)wiy)oy

Thus, havingw large in the region of visibility helps increase this functi The gradient flow process then
becomes

OtXo = DXOVW(XO)7

and we can solve it following our usual steps involving Vi algorithm, finite differencing, and the
method-of-lines.

Figure 4.5 shows the motion of an observer initially place@®2, 0.2) for a Gaussian importance weight
centered at1,0.2). When equally weighted, the observer would instead movartdihe origin. Figure 4.6
shows a non-standard obstacle arising from the boundarm ahage. A Gaussian importance weight is
centered at the left wall of the squate Initially, the observer is situated such that most of thdl isanot
visible. However, by moving along the plotted path, the olEemaximizes its visibility of the wall and, in
the end, can view it completely.

In a more extreme case of the use of weights, certain comgraphics applications are solely interested
in visibility of the obstacle surfaces. Consider the swgfarea function

Vs(0) = [ H (@0 20))dA= | H(0(y;xa)8((y)) C(y)[dy
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FIGURE 4.5. The figure on the left shows the path of an observer tlsaepl particular
importance in viewing the area surrounding the poin©.2). The values calculated in the
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FIGURE 4.6. In this figure, an image serves as the obstacle andlifisiiifithe left wall of
the square is of importance. The observer moves from behind the olestaanaximize
its visibility of the wall, coming to a halt when the wall is mpletely visible.

whereSdenotes the obstacle surfaces. Maximization of this fonathaximizes visibility ofS the obstacle
surfaces. In practice, we replace the delta function by aotimedl-out approximation that can be considered
a weight with values varying from near zero to near infinitjoi¢e of this approximate delta function and
heaviside function should follow the work of [6] to satisfgcairacy requirements.

4.3. Effect of Memory. The algorithm for single point visibility optimization, thugh the use of gradient
flow, leads to a greedy motion for maximizing the visibilitiy an initially situated observer. However, we
may not be exclusively interested in maximizing the visipibf the observer’s final position. In the case of
an unchanging landscape, the observer may be able to remerhbeit sees during its motion. With the
introduction of memory, the more interesting problem beestat of finding a motion that, at a given time,
attempts to instantaneously maximize visibility in theioggof points that, up to that time, have remained
invisible. The final path, in general, will not be the samelas tonstructed by the single point visibility
optimization algorithm since information accumulatedidgmotion has a very real effect.
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To create the path and motion of interest, we record the agladed visibility information at each time
and use it to determine the maximizing direction and speethfoobserver to travel at that time. Then, as
the observer travels along this direction, visibility imMmation is updated accordingly.

Letybe a piece of a curve representing the path traced by thewalnsey to a certain time. The accumu-
lated visibility information of the observer up to that timnan be encoded in the level set function

max{ @y, X)|X € Y},

call it @, whose visible regions are the union of visible regions fatividual observers located alorny
Note, thus the accumulated visibility information comeasfrvisibility information gathered by multiple,
in this case infinite, observers alogg In the following, we will often use this multiple observeoipt of
view.

To determine the maximizing direction and speed for vidgib#t this time, we consider the location of
an observekg and the instantaneous visible volume function

Vy(%o) = /Q H(max{@(y;y), o(y; o) })dy.

This energy measures the volume of the region visible tceeiim observer aj or xp. If we consider
Oy, Vy(Xo), it tells us the direction and speed for an observer located t travel to maximize visibility
when observers located alopgre present. I, is specifically chosen to be the later endpoiny,dfi,Vy(Xo)
then gives the direction and speed for an observer congraliong the patly to maximize its accumulated
visibility.

Note, exact evaluation aj(-;y) is difficult due to the fact thay is composed of an infinite number of
points. We handle this by taking instead a discrete sampifrgpints ofy, {2, z,...,zy}. The visibility
level set function of interest can then be approximated bgitefmultiple observer version,

oY; 20,21, ..,2v) = max{@(y;x)|x € {z0,21,...,Zn}}-

We will justify the validity of this approximation in Sectib.1.
The main steps of the numerical algorithm are thus, in a cosetkkformat:

(1) Startwith a partition 8=ty <t; <--- <ty =T, for a chosen final tim&, and an initial Iocatiorxéo)
for the observer at,.
(2) Fork=0,1,...,n—1, flow the observer at time st&pby numerically solving

aIXO = DXOV(X(OO)yx(()l)v' .- >X(()k)>X0)>

wherexp(t =tx) = xék), up to the next time stetp, 1, and call the resubték”). This involves compu-

tation of the multiple observer visibility level set funmt (p(-;xéo),xél),...,xék)), finite differencing
on the gradient, and a chosen ODE solver such as Euler’s thetho

Figure 4.7 shows the effects of memory on an observer tnongdximize what it can see. Note most of
space has been visible to the observer at one time or anatinegdhe course of this flow. Figure 4.8
shows a different inital observer location which causesthserver to run towards infinity. In this case, the
computation was halted when the observer touched the bounti®. Figure 4.9 shows different views of
a computation involving an observer among obstacles iretlirmensional space.

4.4. Note on Weights and the Observer. One perhaps undesirable phenomenon we observe in our exam-
ples so far is that in general, the farther away the obsesy¢he more it can see (see, e.g., Figures 3.2 and
4.8). Thus, in many situations, the position of the obsegigng a local maximum for visibility will lie

on the boundary 0f. However,Q may not be physically relevant, just serving as a device ¢h&drces
finite volume regions so that maximizing visibility makesise. In fact, we have arbitrarily taken to

be the square computational doméirl, 1] x [—1,1] in the examples we have considered. Thus, in many
situations, if the computational domain is expanded, thera location of the observer changes with it,
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FIGURE 4.7. This figure shows the optimizing path of an observer tbebrds visibility
information as it moves. The shadow boundaries now thosa frizibility information
culled from the memory of the observer.
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FIGURE 4.8. This figure shows the a different initial placement &f tivserver. In order to
optimize visibility, in this case it chooses to run towardgnity, even with memory effects
present.

FIGURE 4.9. This figure shows different views of the observer patimiaximizing accu-
mulated visibility among obstacles in three dimensionaksp

preferring to head off to infinity for a local maximum. In tesrof human visibility, such a concept is not
natural because distance obscures visual detail. To modelie introduce weights in space that depend
on distance from the observer.



VISIBILITY OPTIMIZATION USING VARIATIONAL APPROACHES 14

Letwy, : RTU{0} — R be a decreasing positive function. We will use it solely injcaction with the
distance away from the observey, in the formwy, (|x— Xo|), where it prescribes weights on the visibility
of points in relation to their distance away from the obserge If human vision is of interest, the specific
form of wy, can be chosen according to human visual experiments. Bygocating such a weight into the
visible volume function, we penalize the observer for bdomfar from what it wishes to see, represented
by another weight functiomv, rendering distant regions virtually invisible. For theiglged single point
visibility optimization problem, the visible volume furich changes to

Vassy (%0) = (@150~ o]yl

with the gradient ascent flow
OtXo = DXOVW.WXO (Xo0),

maximizing its value.

We restrict our formulation here to the single observer cadser multiple observers, a point may be
visible to more than one observer, leading to two differeatghits placed on it related to its distance from
each of those observers. The correct weight to choose bacam&sue which, though not difficult, we
will not consider at the present. In fact, we defer studied r@sults in the presence of visual resolution to
a future paper, along with the closely related topic of pastisibility, where an observer cannot perfectly
make out everything in its visual field.

5. OTHER TYPES OFVISIBILITY OPTIMIZATION PROBLEMS

In the previous section, we considered extensions of theoapp for single point observer visibility
optimization. Thus all the problems were solved using appately chosen visible volume functions and
spatial and temporal discretizations. However, not allization problems dealing with visibility can or
should be solved in this manner. In this section, we congiifegrent approaches for finding paths that
allow a more uniform viewing of the space and shortest pativistbility as well.

5.1. Exposure. In the accumulated visibility problem, a point in space maysben, on one hand, for the
duration of an observer’s path or, on the other hand, forgusplit second. The former case represents
too much attention perhaps needlessly paid to that pointtenthtter represents not enough attention. We
consider here the construction of a path where the obseagea more uniform viewing habit.

Consider the amount of time a poirtis exposed to an observer travelling at unit speed alonglta pat
y:[0,1] — RY, parametrized by,

1
X0ey) = [ Hogaym)ly (),

which we will refer to as the exposure dueyt@n x. Here, unit speed for the observer is considered for
a more geometric and parametrization-independent salufidhus, we can alternatively think gfas an
infinite set of observers instead, aidsimply counts how many times observersyoran see. It is worth
noting thatx (x;y) is bounded above by the lengthyfi.e. X(x;y) < L(y).

5.1.1. Uniform Exposure.Points outside of obstacles can be said to be viewed in a nmif@rm manner
by an observer moving alongf the deviation of the exposure from being constant,

/ (X(x;y) —C)?dx,
Q\D

is small for some consta@. Thus, we formulate a boundary value problem as follows:
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Problem 5.1. Given po, p1 € RY, and a constarg, findy: [0,1] — RY with y(0) = pp andy(1) = p; such
that the energy

5.1) E(rC)= 3 [ (X0ey)~CPaxeA [ (ot

~ 2Jap
is minimized.

Notice that the last term in (5.1) Astimes the length of the curvi(y), and seeks to stablize the problem,
whenA is chosen large enough, by penalizing against fractal aresfiling paths.

Proposition 5.2. The Euler-Lagrange Equation for Problem 5.1 is
/Q \D(X (X% ¥(1)) = C)[30 (X V(1)) By (1) Uyt Byr) — H 0 @06 Y(T))K(T)n(T)] dx— AK(T)N(T)

for everyt € (0,1), and any given CHere, B,V is the normal projection of v from vector w

0,

Proof. Performing variational calculus on this, we can arrive atBuler-Lagrange equation and a gradient
descent flow for minimization. For the paghwe consider the formal derivation in parts. First,

_o/olH o @(x;Y(1) +sn (1) Y (1) +sn'(1)[dt

ds

d
X(Xy+sn) = ds

s=0

1 1
/0 5ocp(x;v(r))Dy(T)<P(x;v(T))-n(T)W(T)\dTJF/O HO‘P(X;V(T))&E&

Integration by parts, along with the fact thet0) = n(1) = 0 due to the Dirichlet boundary conditions,
Y (1)l

transforms the second integral to
!/
> ] -n(t)dt.
Inputting this result back into the equation gives the ‘amal derivative as

- [ |3 wtevin ey (0 He oty
A 1 [6o<p<x: V(D) Dy @06 V(D) — Dy @06 V(D) - Y8 508 ) = H o @6 v(0) ey (564

n'(1)dt

Y (1)

@Iy (@l

which can be simplified to the final result in 2 dimensions,
1
gs|,  KoevHs) = /O [50 @0x Y(1)) (Bym @O ¥(T)) - n(0))N(T) +H o 9 (1)) (TN(W)] - n(D)IY (1),

wherek (1)n(1) refers to the curvature vector that points in the normalotia n(t). Also,

) | noymp

L(y+sn)

s=0

ds

once again using integration by parts.
tion takes the form

[ (X06¥(T) ~C)Bo @0 V()
\D

10y @¥(1)) — H 0 @06 (1) )k (T)n(T)] dx— Ak (T)n(T)

S sl
LY@
Jy v e

L Y1)
N ‘/ol 1 < T\

V() wm) O ()t

- [ <@nm -n@y @,

With these idestitiee can conclude that the Euler-Lagrange equa-

0,
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for all T. O

Thus, the gradient descent procedure introduces the tineblat into y to formy(t,t), and flows it by
e = (- L8V )3 Q08 YT) By 0y @06 (D)) +
(/Q\D(X(x;y(r)) —C)H o @(x;y(1))dx+ )\> K(T)n(1)

from an initial guess of the path outside obstacles and girdabe given endpoints. In particular, in two
dimensions,

) = (= [ Croev(n) ~CIBo@bxyD) (g 60v(r)-n(r)) i) +
(5.2) (/Q\D(x(x; Y(1)) —C)H o @(x; y(T) )dx+ )\> K(T)n(T).

We may also multiply the right hand side of the flow Hyy) to ensure that the path respects the fact that
obstacles are impenetrable. If in addition, we optimize &sC, it is easy to see that the optintalshould
be chosen to be the average exposure,
Jo\p X (X y)dx
C="—"——_—.
Jo\pdX

5.1.2. Numerical ConsiderationsAs in Section 4.3, the patf{t) is discretized by a set of poings sampled
from it. Thus it is important to justify that the visibilityfa continuous path can be approximated by the
visibility of a finite sampling of this path.

Theorem 5.3. Giveny: [0,1] — RY a C? simple curve, le) be the level set function, with Lipschitz constant
K, for the obstacles. Furthermore, let m be a positive integet sett; = j/m= jAtand g =y(1;) and@as
defined in Formula (3.2). H(xy™) := @(x; {g;}) = Max<j<m®X gj) and (x;y) = Maxeo,1 A% Y(T)),
then

(5.3) 0< @(x;y) — @(x:{g;}) < ATKY|w.

Proof. Fix x and letk be such tha@(x; {g; }) = max<j<m®(X;gj) = ®(X; gk), andt* € [1;,Tj11] be such that
P(XY) = MaXe(o,y X Y(T)) = @(X,y(T*)). Then applying Lemma 3.1, we have

0 < Q6 Y(T")) — @ ¥(1)) < (T" = 1KY [[eo-
By construction@(X; y(T1)) < @(X; k) < @(X;y(1*)), SO

0 < @xy) —@x{g;}) < AK[]Y||o.
0

The main steps of the numerical algorithm using a straightdod front tracking approach are thus, in a
condensed format:

(1) Startwith a partition 6=ty <t; <--- <t, =T, for a chosen final tim&, an initial pathy(t,to), and
a fixed constant.

(2) Discretize this path by placing a gr{d; = jAt: 0 < j <m}over[0,1].

(3) Fork=0,1,...,n—1,andforj=1,2,...,m—1, advance the path by Equation (5.1.1). This involves
computation ofp(x; y(t;,t)), finite differencing on the gradient, and a chosen ODE sddueh as
Euler's method. We remark theitx; y(T;,t)) is the standard visibility function of [17] with a single
observernxg = Y(Tj,t).
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We now discuss the stability of this gradient flow. Note th&t l2rmAk(t)n(t) acts as regularization by
flowing the path by\ times curvature. In fact, in 2 dimensions, collectii@)n(t) terms, we get

(5.4) /Q HX06Y) ~CIH (@)
This helps us determine what values we can choosg.f8ince 0< X (x;y) < L(y),
~CArea\D) < | (X(6y) ~CH(9(xy))dx < (L(Y) - C)Area(@\ D).
and so a valid condition would be
/Q\D —(X(xy) — C)H(g(xy))dx < CArea @\ D) < A.
If explicit time stepping is used for time integration,

At < co(A+CAreaQ\ D))AT?

guarantees numerical stability.

In Figure 5.1, we have two circular obstacles in the first dntquadrants. A straight line joining
(—1,0) and(1,0), formingyo, is then deformed using the flow (5.1.1). In order to improffieiency of the
algorithm, instead of using a const&ht 5 that is our objective average exposure, we incr€ageadually
along the flow byC = max(2+roL(y),5), whereL(y) is the length of the pathh The flow eventually reaches
a steady state and the resulting path depicted in Figure &tdhms with our intuition of an 'S’ shaped curve.
In addition, we plottedt (X; o) /|| X (-;y) || @andX (%) /|| X (-;Y)|]oo

Figure 5.2 shows an example in which we have the initial yath closed curve passing through the
obstacles. We see that the portionsg/afivay from its fixed end points &0,0.9) eventually pull out of the
obstacles. The tip in the middle of the path first reachefiéurtiown during the descent and is then pulled
back due to the regularization term. One can see the comdsmpeffect in the change X (-;y) —4.2|.

5.1.3. Weights and MemoryWe can modify our approach for acquiring uniform exposuiia¢tude weights
that measure the importance for the visibility of certaigioas of space. A slight modification taking this
into account leads to the energy

(X(xy) = C)2w(x)dx
Q\D
wherew represents the weight. One extreme example of this is wheautacess of the obstacle® are
the only regions of interest for visibility. The energy ingditase becomes

Jx0ay) —Cp7dA= [ (x0xy) — OB W)
S Q

We can also consider the more interesting situation of blerieveighting in time:

. t
X(txy) = [ Kot OH @Y O)IY ()],
and .
Xooy) = [ EtxyV Ot
Notice that wherKp (t, 1) is replaced by(t —1), Aby 1, thenX (t,x;y) reduces tdH (@(x;y)) and X (x;y)
becomes identical t& (x;y). If Ky (t,1) is a function oft — T with support size, €.9.Ky (t,T) = Ljo<t—1<n}
we can interpretX (t,x;y) as the exposure of locationat timet from an observer with finite memory of

n duration, mimicking forgetfulness. Correspondingly, t@imizaton problems can be formulated as in
Problem 5.1, wittE(y,C) replaced by

E(t;y,C) = |IX(t,;y) —Cl| or E(y,C) =[|X(;;y) —Cl|
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FIGURE5.1. The upper left figure shows the obstacles (red cirdles)initial curve (green
circle), and the optimized curve (blue dotted curve). ThestantC is chosen to be.b, the
curvature regularization term is $he images in the second row show the exposure of the
initial and the optimized paths.

or L
/ E(t;y,C)dt,
0

where|| - || is some norm.

However, so far we have only considered uniform viewingpigmg greater visibility. If in addition to
uniform viewing, we would like the path to also be balancethihe prevailing desire to maximize visibility,
we can enact one the following changes:

(1) Minimize subject to a constraint &fy) = Cp or L(y) < Co.

(2) ReplaceC by a bounded, increasing function lofy) to force higher exposure levels.
(3) Add aterm such as

X9 4, O e
o (1‘ LY >°'X‘L<v> GRS

to further maximize, with weightt, the total exposure.
(4) Include a multiplicative penalty term to increase thegld of the path:

1
min —— X(xy) —Cl2dx
N /. BECARE

In terms of numerical representation, we like to note thataneecurrently representing the paths using
parametrization, with front tracking for its motion. Prebis with maintaining an adequate parametrization
do occur during the motion. In the future, we would like to usstead an implicit representation such as
the level set method [16, 3] or the segment projection mefbpd
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FIGURE5.2. The upper left figure shows the obstacles (red cirdles)initial curve (green
circle), and the optimized curve (blue dotted curve). ThestantC is chosen to be.2, the
curvature regularization term is@b. The images in the second row show the exposure of
the initial and the optimized paths.

5.2. Shortest Path. Maximization of a visible volume function or minimizatiori a suitably constructed
energy are not the only approaches to solving a visibilitfiroization problem. We consider here the
problem of finding the shortest paths observers locatedffarelit points can travel to see a chosen point
object. Itis possible to solve this problem by maximizingibility with a weight in space that is a smoothed-
out approximate delta function centered at the chosen.pdimvever, this is not the best strategy since the
observer may be trapped in a local maximium, unacceptabthifproblem, and the form of the smoothed-
out function needs to be carefully chosen.

Letxg be the location of an observer andyeie the location of the point object that we want to be visible.
Suppose the nontrivial case wheres initially invisible to xg. The ability forxg to seey is the same as the
ability for y to seexg. Thus we consides,, the visibility level set function associatedytolf xo moves into
the {¢q(-;y) > O} region, thery can seeg and vice versa. From this, we see that the solution to ourg@mob
is the shortest path fromy, respecting obstacles, to the regipp(-;y) > 0}, or alternatively the shadow
boundary{¢(-;y) = 0}. A distance function can be used to find this path.

Let Ty denote the signed distance, or signed traveltime, fundtioiine zero level set ofy-;y) in the
presence of obstacles. This medpgvaluated at a point in space is the signed distance of tireeshpath
from that point to the zero level set @f-;y). This path, of course, must go around obstacles and, inTiact,
can be taken, as a fixed condition, todhénside obstacles. This distance function can be easilytaaried
using a variety of techniques, including PDE, fast marchamyl fast sweeping methods [9, 14, 15, 18, 19]
that solve

|OTy| =1,
with boundary condition3y = 0 whereg, = 0 andTy = « inside obstacles.
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With this distance function, the shortest paghneeds to take to segis just the integral curve oflTy
drawn fromxg to the zero level set afy,. An ODE solver combined with finite differencing and intelgdt@n
in a method-of-lines approach can be used to solve for thig flo

Oixo = max{ —Ty(Xo), 0} OTy(Xo).

The maxX—Ty(Xo),0} term ensures thag will slow down and stop at the zero level set and thavill not
move ifyis already visible.

Note, the shortest paths from many different initial positix, can be determined using the saifje
Also, even though these paths are all straight lines, ouroagf applies to more general situations, where
the allowable speed is not uniform in space and the pathderltl around regions of slow moving. In this
case, a differenty is constructed from either PDE, fast marching, or fast swepmethods, solving

with the same boundary conditions and a giienQ — R™, where ¥ f evaluated at a point denotes the

allowable speed at that point. The shortest paths are orate #ng integral curves afi Ty.
Figure 5.3 shows a step-by-step example and results of puoagh to the shortest path problem.

5.3. Tracking an Object. One could easily concoct a situation in which the observeshas to keep a
moving object in sight for as long as possible. One integtieh of such an objective is to keep the tar-
get away from occlusion as much as possible. qgtXy) be the specific level set function for shadow
boundaries such that its positive values denote inesdédpdiom the observer’s view. Thus, at a point in
space, the larger the value@fthe less chance it has to disappear from view when the odasisrgerturbed.
Such a level set function obviously depends on a weightirtheflistance a point is away from the shadow
boundary with the distance it is away from the observer. tdsour goal in this paper to derive the exact
nature and form of this function. Thus we consider here timpkification of having the inescapability of an
object aty approximated by

1
1 (y;Xo) = _§|XO_Y|2+)‘¢(V;XO)7

where@(y; xo) is computed from our visibility algorithm with the obstadéel set functionsp as signed
distance functions. Thus, maximizing this expressiongawill give the safest position for the observeyr
to be in to keepy in sight ofXo. Our interest is actually in a moving objegtt), and the determination of
how an initially placed observer should move with it to keegaifely in sight.

Adding the time variable into the expression for inescdjgtand performing gradient ascent bfy; xo)
with respect to, we arrive at a dynamics for the observer:

Xo = (Y —X0) + Al ®(Y: X0)-
In this formulation,—I(y;Xo) = |Xo — Y|?> — A@(y;Xo) is the potential energy of the system ap@;xo) is
analogous to gravitation field. The twist is that the potdrfield is driven by the target locatioy{t). One
can see that the observer must balance a desire to get aogexith the influence of how muclp(y; xo)
changes with respect to any motion. Natshould be chosen to vary such that the object is always in the
visible region of the observer.
Another term to consider instead of, or in addition %4);0 —y[?isU(dp(xo,Y)), whereU is a bounded

increasing function andp(Xo,Y) is the distance in the presence of the obstabled y from xo. This term
contributes the term
—U'(db(%0,Y)) Oxdp (X0, )
to the velocity of the observer. Notl (xo,Yy) can be computed efficiently by solvinglx,dp(Xo,y)| = 1 in
Q )\ D with boundary conditiorp (X =Y,y) =0, as in [9, 14, 15, 18, 19].
We present simulations in the selected snapshots of Figudeand 5.5. In Figure 5.4, the dotted lines
show the shadow boundary3time units in the past. The shaded region is the currensilsiei region for
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FIGURE 5.3. The figures in the first row show the observer, obstaslesgow boundary,

and a point at the origin that is invisible, and then the fitspf our procedure, namely
treating the origin as the observer. The figures of the seomndhow the contours of the

visibility level set function and its redistancing into s&gd traveltime, along whose gradient
directions the observer will travel. The figures of the thiodv show the shortest path of
the observer to the shadow boundary and the visibility regiof the observer at the final
location where the origin is visible on the shadow boundary.

the observer. The past trajectory of the evader is showntengdst non-trivial trajectory of the observer is
computed. Note the observer follows the evader around thalar obstacle to get a clear view. Figure 5.5
tests the importance of the gradient of the visibility leset function. When the visibility gradient term is

removed, the evader vanishes behind an obstacle. On thehatheé, when the term is included, the evader
is always kept in sight by the observer.
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2 0 2

FIGURES.4. Pasttrajectories of observer and evader are showrdidim®nds and crosses
indicate the current locations of the observer and the eyvesfpectively. Thus, the observer
circles around the obstacle chasing the evader.

6. CONCLUSION

In this work, we have outlined two basic strategies thatyppkeveral optimization problems involving
visibility. One strategy involves producing a visible viia function whose maxima are the desired locations
for our observers to maximize visibility. To determine lbogaxima of this function, we advocated the
use of visibility level set functions, level set volume fartations, and gradient flows. These effectively
combine, due in no small part to the continuity of visibilityformation afforded by the visibility level
set framework, to create numerical algorithms for a varigtyptimization visibility test cases dealing
with multiple observers, spatial regions of interest, mgmeffects, and human visual detail. The other
strategy involves the construction of an energy whose mininachieves the desired effect. This strategy
was used to allow for more uniform viewings of space, and tieggies can be modified to fit into situations
mimicking forgetfulness and other constraints. In futumerky we target pursuer-evader games and other
more complicated, more realistic applications based dbilitg.
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FIGURE 5.5. Past trajectories due to the absence and presence wiidity gradient
term are shown. of observer and evader. The diamonds ansesrawdicate the current
locations of the observer and the evader, respectivelyloWer left plot is with the absence
of the gradient and should be compared to the lower rightyléth contains the gradient
term. The upper right plot is a longer time simulation whes dnadient term is present.
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