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ABSTRACT. We introduce a framework and construct algorithms based onit to handle optimization problems
that deal with the maximization of visibility information for observers when obstacles to vision are present
in the environment. This framework uses at its core the approach developed in [17] which adopts the level
set framework of [12] to construct a function that encodes visibility information in a continuous way. This
continuity allows for powerful techniques to be used in the discrete setting for interpolation, integration, dif-
ferentiation, and set operations. Thus, through the application of [17], several level set tools, gradient flow,
derivative discretizations, and solvers for ordinary differential equations, we produce our visibility framework
for optimization and demonstrate its flexibility with algorithms tackling different test problems.

1. INTRODUCTION

The problem of visibility involves the determination of regions in space visible to a given observer when
obstacles to sight are present. When the observer is replaced by a light source in the simplified geometrical
optics setting with perfectly absorbing boundary condition at the obstacles, the problem translates to that
of finding illuminated regions. In this paper, we consider a class of optimization problems associated with
visibility and solve them under the framework introduced in[17].

Let D be the set of points comprising one or several given solids ina compact subsetΩ of R
d. A solid

here refers to an opaque obstruction. We seek solutions to the following three central questions. The first
question of our study is:

• What is the optimal location x0 for an observer such that the volume of the visible region inΩ is
maximized?

A larger class of problems emerges when variations and extensions involving the observer and the space –
multiple observers, moving observers, optimality under different measures – are taken into account. There-
fore, our second question extends the first one:

• What are the optimal locations{xi} for a collection of observers, so that jointly the volume of the
visible region inΩ is maximized?

Lastly, we ask:

• What is the optimal pathγ(t) of an observer, traveling from A to B, so that the volume of thevisible
region inΩ is maximized?

One can interpret the last question as an extension of the second with uncountable number of observers
distributed along the path. Problems related to the three questions above can be found in applications
dealing with geometric optics, scattering, path planning,digital surface reconstruction, photolithography,
and dynamic games, to name a few (see, e.g., [1, 2, 3, 7, 8]).

In most situations, we find it useful to think of an observers as a light source. Consequently, our attempt
in solving the three central questions amounts to maximizing the illuminated regions inΩ, or maximing the
averaged illumination (exposure) inΩ. The main focus is in revealing details of the relationship between
optimization and visibility. Thus, it does not detract fromthe essence of the study for us to disregard global
optimality and accept local maxima as suitable solutions, with gradient flow a valid process.

Section 2 briefly describes selected parts of [17], which serves as the underlying framework of our studies.
Section 3 introduces an algorithm that answers the central question involving one observer and Euclidean
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space. Section 4 includes several subsections devoted to a variety of extensions of the first and second
problems. Section 5 presents a few visibility optimizationproblems that require different techniques than
those considered previously. Included in this section willbe our attempt at answering the third question.
Section 6 summarizes the ideas and techniques developed in the previous sections and ties them together
to shed light on the relationship between optimization and visibility. Finally, Section 7 acknowledges the
contributions of others in this investigation.

2. VISIBILITY FRAMEWORK

We briefly describe the setup used in the most basic situationconsidered in [17]. For a more complete
description of results, [17] should be consulted. WithD representing given obstructions in the spaceΩ and
x0 the location of the observer, the problem is to identify points of Ω that are visible to the observer. In
addition, this should be done in such a way as to facilitate the extraction of visibility-based information.

Let the boundary ofD be represented as the zero level set of a functionψ : Ω → R, called a level set
function, withψ < 0 on the inside of the solids. When the shape of the objects comprisingD excludes small
scale features such as infinitely thin projections or point-like masses, this representation is in general stable.
In this setting, called the level set framework, we operate on the functionψ instead of the setD. ThusD
can be thought of as a binary description of the obstacle – a point is either inD or not in D – while ψ is
a continuous one. Numerically,ψ is given as a matrix of values at the lattice locations of a static grid in
space, which can be taken to be uniform in each axis directionfor ease of use. We also apply the same
philosophy and introduce the level set functionφ : Ω →R to capture the region of invisibility, namely as the
set of points whereφ < 0. Consequently, the region of visibility is described byφ > 0 and the surface where
φ = 0 is the interface, called the shadow boundary, separating the visible from the invisible. Thus, in this
setting, the problem becomes that of constructingφ from ψ and the observer locationx0. For more on the
level set framework, see, e.g., [11, 12].

The starting point of the algorithm is to first incorporate information that is obviously true, namely mark-
ing points inside obstacles as invisible and the observer asvisible (or invisible, if located inside an obstacle).
Everything else can be temporarily taken to be visible, to becorrected by iterations. In the level set setting,
we may thus takeφ = ψ initially, so φ has the right sign inD and atx0. The type of iteration chosen will
involve updatingφ at points inΩ without changing the sign ofφ whereφ is negative and atx0. Thus at
each step, the negative regions ofφ are guaranteed to be invisible while the visibility status of the positive
regions, exceptingx0, will be in flux until steady state is reached.

The details of this approach involve working onφ along the directional lines-of-sight of the observer,
the curves that light emanating from the observer travel along in a space with no visual obstructions. In
a space of constant index of refraction, these the directional lines-of-sight are simply rays with endpoint
at the observer location, or, mathematically, the integralcurves of the vector fieldr = x− x0 starting atx0

(more precisely, nearx0). In general, the lines-of-sight can be curves, however, weconsider just the case
where they are integral curves of a vector fieldr. One consequence of this is that two lines-of-sight will
not intersect unless they are the same one. The main visibility characteristic to notice is that if one were
to start out at the observer location and walk along a line-of-sight, the points one travels along will be
visible (or invisible, if the observer lies inside an obstacle) until the boundary of an obstacle is reached, after
which the points will be invisible. Altogether, this means we may work on each line-of-sight separately to
determine the visibility status of its points and the correct order is to work outwards along the line-of-sight
from the observer. Furthermore, encountering an obstacle causes invisibility and forces all further points to
be invisible.

Thus, a sketch of a simplistic and discrete, bare-boned algorithm works as follows: the points inΩ were
previously marked invisible insideD and visible elsewhere as a start. Most notably,x0 is marked visible
if chosen outside ofD and invisible if chosen inside. Along each line-of-sight and outwards fromx0, pass
the visibility status ofx0 to its immediate neighbor for comparison. If either the information atx0 or the
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neighbor’s current information (alternatively, the neighbor’s original information which considers whether
it lies in an obstacle) is labeled invisible, then the neighbor relabels itself as invisible. The process is then
repeated with the neighbor passing its new visibility information to its immediate neighbor along the line-
of-sight for comparison. From this, we see the two main algorithmic aspects for this approach involve a
technique for passing values along lines-of-sight and a comparison criterion associated with accepting or
rejecting the passed value. Visibility information can be updated inΩ in this manner.

The algorithm ultimately used in [17] follows this basic sketch with choice improvements. Usingφ to
encode visibility information over a grid, as mentioned before, instead of the binary designations of “visible”
and “invisible”, provides a measure of continuity that realizes subcell resolution for the numerical solution.
For example, the shadow boundary can be accurately capturedthrough high order interpolation recovering
the zero level set of a locally smoothφ. One concern in using a grid is that a given curve in space in general
will not pass through any gridpoints. Thus instead of explicitly considering the lines-of-sight, implicitly
encoding the lines-of-sight as characteristic directionsof a partial differential equation is a better option in
the grid-based setting. An example of one such partial differential equation is

∂t φ̃+ r ·∇φ̃ = 0,

with initial condition φ̃(x,0) = ψ(x). We know this as a transport equation, where visibility information
given by the value of̃φ is transported along the integral curves ofr. Note, in practice, applying a finite
differencing PDE solver (e.g., [10, 13]) is the most direct way to solve this equation over the grid but not
necessarily the best. Instead, efficient grid-based methods such as fast marching, fast sweeping, and other
directional sweeping techniques are preferable, especially since this step of the algorithm forms the bulk of
the computational workload. For more, see [9, 15, 19] for fast marching and [18] for fast sweeping. Finally
the update comparison criterion is added to the passing process. When a gridpoint receives a passed value of
φ for update, it accepts the minimum between this value and itscurrent value. The effect of this is if either
value is negative, then the updated value will be negative and, furthermore, the finalφ will be a continuous
function.

An example of the entire procedure is to start withφ̃(x,0) = ψ(x) and a chosen partition of time steps
0 = t0 < t1 < · · · < tn = T to a final timeT. At each time steptk, k = 0,1, . . . ,n−1, solve

∂t φ̃+ r ·∇φ̃ = 0,

in Ω, perhaps using standard finite differencing techniques, from timetk to tk+1 to pass and then reset

φ̃(x, tk+1) = min{φ̃(x, tk), φ̃(x, tk+1)}

for the comparision update. IfT is large enough,̃φ will reach steady state inΩ and give the correct visibility
information for the region. Thusφ(x) = φ̃(x,T) is what we want to construct.

A variation that possibly facilitates analysis is the self-contained partial differential equation description,

∂t φ̃+max{r ·∇φ̃,0} = 0,

with initial condition φ̃(x,0) = ψ(x), to be solved to steady state inΩ. Here, the passing of values is
enacted through transport with respect tor and the maximum taken in the equation serves as the update
comparison criterion, ensuring each point will only changeits value if passed one that is smaller. However,
the fast marching, fast sweeping, and other techniques we use in practice lead to more efficient algorithms.
Furthermore, we note that the visibility level set functiontakes the analytic form of

φ(x) = min
z∈L(x,x0)

ψ(z),

whereL(x,x0) is the integral curve of the vector fieldr, connectingx andx0. This form, however, in many
circumstances, is not easy to work with.
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FIGURE 2.1. For the obstacle environment and given observer location of the upper left
plot, the visibility level set function is shown along with its contours and, in the lower right
plot, its zero level set, the shadow boundary.

Altogether, we have described a set of algorithms that can find the visible and invisibile regions, when
iterated to steady state, for given obstructions and an observer location. Figure 2.1 shows a typical visibil-
ity level set function generated from the approach, along with its contours and the shadow boundary, for a
chosen observer location. We note that in the constant indexof refraction case withr = x− x0, the com-
putational complexity is the optimalO(Nd) over aNd point grid in d dimensions if fast sweeping is used
for passing. Moreover, multiresolution techniques can be incorporated to further improve speed and lessen
memory requirements. However, the main advantage of the level set representation and PDE description is
a framework that emphasizes continuity over the discrete. The information gathered from the solution goes
beyond the black and white designations of “visible” and “invisible”, but provides gray levels as well. For
example, encoded in the solution is an accurate representation of shadow boundaries that can help measure
how visible or invisible a point is. See, e.g., [4] for a review of other visibility algorithms and [1] for another
level set-based solution. Thus the approach becomes especially advantageous when applied to problems that
need the additional provided information. The optimization of visibility is one such problem.

3. SINGLE POINT V ISIBILITY OPTIMIZATION

To facilitate our discussion in adaptivity in the vantage position, we augment the visibility functionφ
described above so that

φ : Ω2 ⊂ R
d ×R

d 7→ φ(y;x0) ∈ R

denotes the visibility function created from a vantage point located atx0; i.e. φ(·;x0) the level set function
representing visibility in a boundedΩ for an observer atx0, with φ(·;x0) > 0 in the visible regions and
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φ(·;x0) < 0 in the invisible regions. Such a function can be calculatedusing the visibility solver of [17]
described in the previous section. Consider the visible volume functionV(x0) defined as the volume of the
visible region for the observer atx0. Thus we have the expression

V(x0) =
Z

Ω
H(φ(y;x0))dy,

whereH denotes the one-dimensional heaviside function. With this, the problem of interest becomes that of
finding the position of the observerx0 that maximizes this function, thus maximizing the size of the visible
region.

If gradient ascent is used, we obtain a flow, potentially of interest itself, of the position of the observer
from an initial guess to a local maximum. This can be thought of as a greedy algorithm for a moving
observer to maximize its visibility when it is initially located at an non-optimal position. The gradient
direction to consider, as easily derived from variational calculus, is∇x0V(x0). Thus the gradient ascent flow
of the observer location is described by

∂tx0 = ∇x0V(x0).

The∇x0 used here and later on in the paper is the gradient operator with respect to the observer position.
Analysis of this differential equation is hindered by the lack of convenient analytical forms for∇x0φ(·;x0).

Thus we take a numerical approach to its solution. The right hand side derivatives can be approximated by
central differencing of the values ofV at neighboring points,x0± hei , i = 1, . . . ,d, where{ei}

d
i=1 denotes

the standard orthonormal basis ofR
d andh is a chosen stepsize. We denote the resulting approximationof

∇x0V(x0) by Dh
0V(x0), using standard differencing notation. Note multiple applications of the algorithm of

[17] are needed to obtainφ(·;x0 ±hei), i = 1, . . . ,d. In total, this approach leads to the system of ordinary
differential equations,

∂tx0 = Dh
0V(x0),

approximating gradient ascent flow. A choice of solver for this system completes the algorithm for single
point visibility optimization.

We formulate in detail the steps of this algorithm when Euler’s method is used as the ordinary differential
equation solver:

(1) Start with a given positionx0. This can be thought of as an approximation of the optimal location.
(2) For a chosen stepsizeh, use the algorithm of [17] to obtain the 2n visibility level set functionsφx0±hei

over a grid inΩ for eachi = 1, . . . ,n.
(3) EvaluateV(x0±hei) for eachi = 1, . . . ,n using a smoothed-out approximate heaviside function and

numerical integration techniques such as the trapezoidal rule over the grid. We note the ideas of [6]
should be used to create the heaviside function for accuracy.

(4) Form Dh
0V(x0) through central differencing on∇x0V(x0). This uses the values calculated in the

previous step.
(5) Using Euler’s method, updatex0 by x0 +kDh

0V(x0), wherek is a chosen time marching stepsize.
(6) Repeat from the first step with this new value ofx0 until convergence. Convergence implies a local

maximum of the visible volume is reached.

Note the computational workload in each iteration is clearly dominated by the second and third steps. How-
ever, the workload of the third step can be reduced by noticing that step is only needed for computing
Dh

0V(x0), in the fourth step. Instead, if the identity

Dh
0V(x0) =

Z

Ω
Dh

0H(φ(y;x0))dy

is used, we notice thatDh
0H(φ(y;x0)) happens to be zero in a large portion ofΩ. In other words, under small

perturbations of the position of the observer, the visible and invisible regions will undergo similarly small
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changes. This can be seen mathematically in the expansion

(3.1) ∇x0V(x0) =

Z

Ω
∇x0H(φ(y;x0))dy=

Z

Ω
δ(φ(y;x0))∇x0φ(y;x0)dy,

whereδ refers to the one-dimensional delta function. Thus, only points with zero or near-zeroφ(·;x0), need
to be considered in the integral. The visibility functionφ(y;x0) constructed by the algorithm in [17] takes
the form

(3.2) φ(y;x0) = min
z∈L(y,x0)

ψ(z),

as stated previously. In the cases considered in this paper,the vector fieldr(x) is simply (x− x0)/|x− x0|.
The following Lemma, with this vector field, shows thatφ(y;x0) thus constructed is Lipschitz continuous
and so the central differencing approximation for∇x0φ(y;x0) in (3.1) will remain a bounded quantity.

Lemma 3.1. Let K be a Lipschitz constant forψ in Ω, and φ be defined as in (3.2). Then|φ(y;x0)−
φ(y; x̃0)| ≤ K|x0− x̃0| for x0, x̃0,y∈ Ω.

Proof. We can rewrite the expression forφ as follows:

φ(y;x0) = min
t∈[0,1]

ψ(tx0 +(1− t)y).

Thus,

φ(y;x0 + δx) = min
t∈[0,1]

ψ(tx0 +(1− t)y+ tδx)

≤ min
t∈[0,1]

(ψ(tx0 +(1− t)y)+ tK|δx|)

≤ φ(y;x0)+K|δx|.

Similarly, φ(y;x0 + δx) ≥ φ(y;x0)−K|δx|. So|φ(y;x0)−φ(y; x̃0)| ≤ K|x0− x̃0|. �

We also note the continuous representation of visibility information allows for accurate computations
using approximate heaviside and delta functions since shadow boundaries can be accurately located. We
can in fact use the form in 3.2, with standard numerical integration and differentiation techniques and the
approximate delta function or heaviside function of [6], toefficiently compute the value of∇x0V(x0) in place
of the fourth step.

We present two examples of single point visibility optimization using different starting locations for the
observer. Figure 3.1 shows the path of an observer originally at (0.4,0.4) and the area of the region of
visibility during the flow inΩ = [−1,1]× [−1,1]. Figure 3.2 shows the path of an observer originally at
(0.6,0.6) and the corresponding visible region areas in the same setting. In this case, the observer prefers to
run away towards infinity. Thus, the computation was stoppedwhen it hit the boundary ofΩ. Finally, Figure
3.3 shows a graph of the area of visible regions plotted with respect to different observer locations in the
same setting. The obstacles can be identified in the plot by the regions where the area is zero. The algorithm
essentially employs gradient ascent along this landscape.Thus, the observer of Figure 3.1 converges to the
local maximum at the origin and the observer of Figure 3.2 goes away toward the boundary.

4. EXTENSIONS FORV ISIBILITY OPTIMIZATION PROBLEMS

The previous section provided an answer for the central and most basic question concerning optimization
and visibility. The reason this particular question is chosen as the central one is due to the multitude of
extensions that immediately arise from its answer. We consider in this section visibility problems involv-
ing multiple observers, weighted regions of importance in space, accumulating visibility information, and
weighted observer distances.
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FIGURE 3.1. The figure on the left shows the path the observer travelsto optimize visibil-
ity. This path originates at ‘o’ and ends at ‘x’. The obstacles to the vision of the observer are
four disks of various radii. Also drawn are the shadow boundaries separating the regions of
visibility and invisibility. The figure on the right shows the area of the region of visibility
plotted with respect to time in the gradient flow of the observer.
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FIGURE 3.2. This figure shows has the same setting as in Figure 3.1 with a different initial
location for the observer.

The construction of solutions for these various problems will in general follow the same procedure as
listed in the previous section. This implies the construction of a function that is usually associated to vol-
umes of visible regions, different for each problem, and a gradient ascent flow maximizing its value. Numer-
ically, this visible volume function can be accurately evaluated due to continuity in the visibility information
provided by the level set framework of [17]. These evaluations are used in a chosen finite differencing ap-
proximation of derivatives to approximate the gradient ascent direction, which is then combined with an
ODE solver in time for a method-of-lines solution to the flow.

4.1. Multiple Observers. Instead of one observer, we may consider several observers and ask where they
should be placed for maximal visibility. Letx0,x1, . . . ,xm denote the location ofm+ 1 separate observers.
For eachi = 0,1, . . . ,m, we can construct the visibility level set functionφ(·;xi) associated toxi . Visibility
information of all the observers can be determined from the visibility information of individual ones due to
our definition that a point is visible with respect to multiple observers if it is visible to one of them. Thus
the region of visibility for multiple observers is the unionof the regions for each individual observer.
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FIGURE 3.3. The area of visible regions plotted with respect to different observer loca-
tions in the settings of Figures 3.1 and 3.2. Note when the observer is located inside a solid
obstacle, the area is zero.

In the level set framework, there is an analogy to unions and intersections. For two level set functionsφ1

andφ2, the union of their negative regions,{φ1 < 0} and{φ2 < 0}, is implicitly captured as the negative
region of the level set function min{φ1,φ2}. Note, the positive region of this function is thus the intersection
of the positive regions ofφ1 andφ2. On the other hand, the intersection of the negative regionsof φ1 andφ2

is implicitly captured as the negative region of max{φ1,φ2}. Similarly, the positive region of this function is
thus the union of the positive regions ofφ1 andφ2.

From this, we can construct a visibility level set function for multiple observers, which we denote by
φ(·;x0,x1, . . . ,xm), by taking the minimum value of the visibility level set functions for individual observers,

φ(y;x0,x1, . . . ,xm) = min
i=0,1,...,m

φ(y;xi).

We then define a new function corresponding to the volume of the visible part ofΩ with respect to the
multiple observers,

V(x0,x1, . . . ,xm) =
Z

Ω
H(φ(y;x0,x1, . . . ,xm))dy.

The positionsx0,x1, . . . ,xm maximizing this function will be the desired optimal visibility locations for the
multiple observers.

We perform the maximization through gradient ascent onV. This translates to, through calculus of
variations, motion ofxi , for eachi = 0,1, . . . ,m, with direction and speed given by∇xiV(x0,x1, . . . ,xm),
respectively:

∂txi = ∇xiV(x0,x1, . . . ,xm),

where∇xi denotes the gradient in the argumentxi . Using once again the method-of-lines approach, we
simulate this motion by approximating the derivatives of the spatial gradients using finite differencing to
obtain a system of ordinary differential equations. This system can then be solved with an appropriate
solver when given initial observer locations forx0,x1, . . . ,xm.

In Figure 4.1, two observers and the path they take to maximize visibility are shown. The observer
locations converge to final positions that form a local maximum of the visible volume function. There is a
slight, almost invisible, decrease in the area of the regionvisibility along the gradient ascent path. This, we
believe, is simply due to small numerical errors. Also, there is a slight deformation in the shadow boundary
at the lower middle of the graph resulting from the plotter’sattempt to resolve the kink at that location
in the curve. Figure 4.2 shows the result of different initial observer placement. The final positions are
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FIGURE 4.1. Two observers following gradient flow converge to positions for optimal
viewing of the space. Note the figure on the right shows a slight decrease in the area of the
visible region calculated along the path of the observer.
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FIGURE 4.2. Different starting locations for the observers lead todifferent solutions. In
this case, less of the space is visible to the observers than for the final positions found in
Figure 4.1.

different and the area of the region of visibility is smaller. Finally, Figure 4.3 shows results with four and
five differently situated observers in the obstacle environment.

In Figure 4.4, three robots are placed randomly on a circularorbit at initial time. Through optimization
on the collective visibility of the robots, we are able to determine the locally optimal search direction of
each robot. This means that each search direction is computed to maximize not how much more visibility
information a specific robot can obtain, but how much the ensemble of the three robots can. In the simple
case of one obstacle centered at the origin, we see that the robots are able to find a globally optimal solution
(any right triangle on the circular orbit) based on their initial locations.

4.2. Weights in Space. In certain applications, a higher priority may be placed on viewing a specific region
in space, while a lower priority is placed on other regions. The effects of this on the optimal positions of
observers, as well as on the motions associated to them, can be simulated through the use of weights.

Let w : Ω → R
+ be a positive real-valued function defined overΩ. Let the magnitude of the value of

w at a point relate to how important it is for that point to be visible, with larger magnitude associated with
greater importance. By includingw in the measure used in spatial integration, we in effect attach importance
weights to the visibility of space.
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FIGURE 4.3. Two more results of multiple observer visibility are shown. In the left plot,
five observers move to a position where almost everything canbe seen. In the right plot,
four observers maximize their visibility until one tries toescapeΩ.
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FIGURE 4.4. The three observers are confined ona circular orbit surrounding the obstacles.

For single point visibility optimization, the volume function is modified to

Vw(x0) =
Z

Ω
H(φ(y;x0))w(y)dy.

Thus, havingw large in the region of visibility helps increase this function. The gradient flow process then
becomes

∂tx0 = ∇x0Vw(x0),

and we can solve it following our usual steps involving visibility algorithm, finite differencing, and the
method-of-lines.

Figure 4.5 shows the motion of an observer initially placed at (0.2,0.2) for a Gaussian importance weight
centered at(1,0.2). When equally weighted, the observer would instead move toward the origin. Figure 4.6
shows a non-standard obstacle arising from the boundary of an image. A Gaussian importance weight is
centered at the left wall of the squareΩ. Initially, the observer is situated such that most of the wall is not
visible. However, by moving along the plotted path, the observer maximizes its visibility of the wall and, in
the end, can view it completely.

In a more extreme case of the use of weights, certain computergraphics applications are solely interested
in visibility of the obstacle surfaces. Consider the surface area function

VS(x0) =
Z

S
H(φ(y;x0))dA=

Z

Ω
H(φ(y;x0))δ(ψ(y))|∇ψ(y)|dy,
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FIGURE 4.5. The figure on the left shows the path of an observer that places particular
importance in viewing the area surrounding the point(1,0.2). The values calculated in the
figure on the right represent values of the weighted visible volume function and hence are
only related to area.
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FIGURE 4.6. In this figure, an image serves as the obstacle and visibility of the left wall of
the squareΩ is of importance. The observer moves from behind the obstacle to maximize
its visibility of the wall, coming to a halt when the wall is completely visible.

whereSdenotes the obstacle surfaces. Maximization of this function maximizes visibility ofS, the obstacle
surfaces. In practice, we replace the delta function by a smoothed-out approximation that can be considered
a weight with values varying from near zero to near infinity. Choice of this approximate delta function and
heaviside function should follow the work of [6] to satisfy accuracy requirements.

4.3. Effect of Memory. The algorithm for single point visibility optimization, through the use of gradient
flow, leads to a greedy motion for maximizing the visibility of an initially situated observer. However, we
may not be exclusively interested in maximizing the visibility of the observer’s final position. In the case of
an unchanging landscape, the observer may be able to remember what it sees during its motion. With the
introduction of memory, the more interesting problem becomes that of finding a motion that, at a given time,
attempts to instantaneously maximize visibility in the region of points that, up to that time, have remained
invisible. The final path, in general, will not be the same as that constructed by the single point visibility
optimization algorithm since information accumulated during motion has a very real effect.
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To create the path and motion of interest, we record the accumulated visibility information at each time
and use it to determine the maximizing direction and speed for the observer to travel at that time. Then, as
the observer travels along this direction, visibility information is updated accordingly.

Let γ be a piece of a curve representing the path traced by the observer up to a certain time. The accumu-
lated visibility information of the observer up to that timecan be encoded in the level set function

max{φ(y;x)|x ∈ γ},

call it φγ, whose visible regions are the union of visible regions for individual observers located alongγ.
Note, thus the accumulated visibility information comes from visibility information gathered by multiple,
in this case infinite, observers alongγ. In the following, we will often use this multiple observer point of
view.

To determine the maximizing direction and speed for visibility at this time, we consider the location of
an observerx0 and the instantaneous visible volume function

Vγ(x0) =
Z

Ω
H(max{φ(y;γ),φ(y,x0)})dy.

This energy measures the volume of the region visible to either an observer atγ or x0. If we consider
∇x0Vγ(x0), it tells us the direction and speed for an observer located at x0 to travel to maximize visibility
when observers located alongγ are present. Ifx0 is specifically chosen to be the later endpoint ofγ, ∇x0Vγ(x0)
then gives the direction and speed for an observer continuing along the pathγ to maximize its accumulated
visibility.

Note, exact evaluation ofφ(·;γ) is difficult due to the fact thatγ is composed of an infinite number of
points. We handle this by taking instead a discrete samplingof points ofγ, {z0,z1, . . . ,zN}. The visibility
level set function of interest can then be approximated by a finite multiple observer version,

φ(y;z0,z1, . . . ,zN) = max{φ(y;x)|x ∈ {z0,z1, . . . ,zN}}.

We will justify the validity of this approximation in Section 5.1.
The main steps of the numerical algorithm are thus, in a condensed format:

(1) Start with a partition 0= t0 < t1 < · · · < tn = T, for a chosen final timeT, and an initial locationx(0)
0

for the observer att0.
(2) Fork = 0,1, . . . ,n−1, flow the observer at time steptk by numerically solving

∂tx0 = ∇x0V(x(0)
0 ,x(1)

0 , . . . ,x(k)
0 ,x0),

wherex0(t = tk) = x(k)
0 , up to the next time steptk+1, and call the resultx(k+1)

0 . This involves compu-

tation of the multiple observer visibility level set function φ(·;x(0)
0 ,x(1)

0 , . . . ,x(k)
0 ), finite differencing

on the gradient, and a chosen ODE solver such as Euler’s method.

Figure 4.7 shows the effects of memory on an observer trying to maximize what it can see. Note most of
space has been visible to the observer at one time or another during the course of this flow. Figure 4.8
shows a different inital observer location which causes theobserver to run towards infinity. In this case, the
computation was halted when the observer touched the boundary of Ω. Figure 4.9 shows different views of
a computation involving an observer among obstacles in three dimensional space.

4.4. Note on Weights and the Observer. One perhaps undesirable phenomenon we observe in our exam-
ples so far is that in general, the farther away the observer is, the more it can see (see, e.g., Figures 3.2 and
4.8). Thus, in many situations, the position of the observergiving a local maximum for visibility will lie
on the boundary ofΩ. However,Ω may not be physically relevant, just serving as a device thatenforces
finite volume regions so that maximizing visibility makes sense. In fact, we have arbitrarily takenΩ to
be the square computational domain[−1,1]× [−1,1] in the examples we have considered. Thus, in many
situations, if the computational domain is expanded, the optimal location of the observer changes with it,
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FIGURE 4.7. This figure shows the optimizing path of an observer thatrecords visibility
information as it moves. The shadow boundaries now those from visibility information
culled from the memory of the observer.
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FIGURE 4.8. This figure shows the a different initial placement of the observer. In order to
optimize visibility, in this case it chooses to run towards infinity, even with memory effects
present.

FIGURE 4.9. This figure shows different views of the observer path for maximizing accu-
mulated visibility among obstacles in three dimensional space.

preferring to head off to infinity for a local maximum. In terms of human visibility, such a concept is not
natural because distance obscures visual detail. To model this, we introduce weights in space that depend
on distance from the observer.
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Let wx0 : R
+∪{0} → R

+ be a decreasing positive function. We will use it solely in conjunction with the
distance away from the observerx0, in the formwx0(|x− x0|), where it prescribes weights on the visibility
of points in relation to their distance away from the observer x0. If human vision is of interest, the specific
form of wx0 can be chosen according to human visual experiments. By incorporating such a weight into the
visible volume function, we penalize the observer for beingtoo far from what it wishes to see, represented
by another weight functionw, rendering distant regions virtually invisible. For the weighted single point
visibility optimization problem, the visible volume function changes to

Vw,wx0
(x0) =

Z

Ω
H(φ(y;x0))wx0(|y−x0|)w(y)dy,

with the gradient ascent flow

∂tx0 = ∇x0Vw,wx0
(x0),

maximizing its value.
We restrict our formulation here to the single observer case. For multiple observers, a point may be

visible to more than one observer, leading to two different weights placed on it related to its distance from
each of those observers. The correct weight to choose becomes an issue which, though not difficult, we
will not consider at the present. In fact, we defer studies and results in the presence of visual resolution to
a future paper, along with the closely related topic of partial visibility, where an observer cannot perfectly
make out everything in its visual field.

5. OTHER TYPES OFV ISIBILITY OPTIMIZATION PROBLEMS

In the previous section, we considered extensions of the approach for single point observer visibility
optimization. Thus all the problems were solved using appropriately chosen visible volume functions and
spatial and temporal discretizations. However, not all optimization problems dealing with visibility can or
should be solved in this manner. In this section, we considerdifferent approaches for finding paths that
allow a more uniform viewing of the space and shortest paths to visibility as well.

5.1. Exposure. In the accumulated visibility problem, a point in space may be seen, on one hand, for the
duration of an observer’s path or, on the other hand, for justa split second. The former case represents
too much attention perhaps needlessly paid to that point andthe latter represents not enough attention. We
consider here the construction of a path where the observer has a more uniform viewing habit.

Consider the amount of time a pointx is exposed to an observer travelling at unit speed along a path
γ : [0,1] → R

d, parametrized byτ,

X (x;γ) =
Z 1

0
H ◦φ(x;γ(τ))|γ′(τ)|dτ,

which we will refer to as the exposure due toγ on x. Here, unit speed for the observer is considered for
a more geometric and parametrization-independent solution. Thus, we can alternatively think ofγ as an
infinite set of observers instead, andX simply counts how many times observers onγ can seex. It is worth
noting thatX (x;γ) is bounded above by the length ofγ; i.e. X (x;γ) ≤ L(γ).

5.1.1. Uniform Exposure.Points outside of obstacles can be said to be viewed in a more uniform manner
by an observer moving alongγ if the deviation of the exposure from being constant,

Z

Ω\D
(X (x;γ)−C)2dx,

is small for some constantC. Thus, we formulate a boundary value problem as follows:
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Problem 5.1. Given p0, p1 ∈ R
d, and a constantC, find γ : [0,1] 7→ R

d with γ(0) = p0 andγ(1) = p1 such
that the energy

(5.1) E(γ,C) =
1
2

Z

Ω\D
(X (x;γ)−C)2dx+ λ

Z 1

0
|γ′(τ)|dτ

is minimized.

Notice that the last term in (5.1) isλ times the length of the curve,L(γ), and seeks to stablize the problem,
whenλ is chosen large enough, by penalizing against fractal or space-filling paths.

Proposition 5.2. The Euler-Lagrange Equation for Problem 5.1 is
Z

Ω\D
(X (x;γ(τ))−C)[δ◦φ(x;γ(τ))Pγ′ (τ)∇γ(τ)φγ(τ) −H ◦φ(x;γ(τ))κ(τ)n(τ)]dx−λκ(τ)n(τ) = 0,

for everyτ ∈ (0,1), and any given C. Here,Pwv is the normal projection of v from vector w.

Proof. Performing variational calculus on this, we can arrive at the Euler-Lagrange equation and a gradient
descent flow for minimization. For the pathγ, we consider the formal derivation in parts. First,

d
ds

∣

∣

∣

∣

s=0
X (x;γ+sη) =

d
ds

∣

∣

∣

∣

s=0

Z 1

0
H ◦φ(x;γ(τ)+sη(τ))|γ′(τ)+sη′(τ)|dτ

=
Z 1

0
δ◦φ(x;γ(τ))∇γ(τ)φ(x;γ(τ)) ·η(τ)|γ′(τ)|dτ+

Z 1

0
H ◦φ(x;γ(τ))

γ′(τ)
|γ′(τ)|

·η′(τ)dτ.

Integration by parts, along with the fact thatη(0) = η(1) = 0 due to the Dirichlet boundary conditions,
transforms the second integral to

−
Z 1

0

[

δ◦φ(x;γ(τ))∇γ(τ)φ(x;γ(τ))γ′(τ)+H ◦φ(x;γ(τ))
(

γ′(τ)
|γ′(τ)|

)′]

·η(τ)dτ.

Inputting this result back into the equation gives the variational derivative as
Z 1

0

[

δ◦φ(x;γ(τ))
(

∇γ(τ)φ(x;γ(τ))−∇γ(τ)φ(x;γ(τ)) · γ′(τ)
|γ′(τ)|

γ′(τ)
|γ′(τ)|

)

−H ◦φ(x;γ(τ)) 1
|γ′(τ)|

(

γ′(τ)
|γ′(τ)|

)′
]

·η(τ)|γ′(τ)|dτ,

which can be simplified to the final result in 2 dimensions,

d
ds

∣

∣

∣

∣

s=0
X (x;γ+sη) =

Z 1

0
[δ◦φ(x;γ(τ))(∇γ(τ)φ(x;γ(τ)) ·n(τ))n(τ)+H ◦φ(x;γ(τ))κ(τ)n(τ)] ·η(τ)|γ′(τ)|dτ,

whereκ(τ)n(τ) refers to the curvature vector that points in the normal direction n(τ). Also,

d
ds

∣

∣

∣

∣

s=0
L(γ+sη) =

d
ds

∣

∣

∣

∣

s=0

Z 1

0
|γ′(τ)+sη′(τ)|dτ

=

Z 1

0

γ′(τ)
|γ′(τ)|

·η′(τ)dτ

= −
Z 1

0

1
|γ′(τ)|

(

γ′(τ)
|γ′(τ)|

)′

·η(τ)|γ′(τ)|dτ

= −
Z 1

0
κ(τ)n(τ) ·η(τ)|γ′(τ)|dτ,

once again using integration by parts. With these identities, we can conclude that the Euler-Lagrange equa-
tion takes the form

Z

Ω\D
(X (x;γ(τ))−C)[δ◦φ(x;γ(τ))Pγ′ (τ)∇γ(τ)φ(x;γ(τ))−H ◦φ(x;γ(τ))κ(τ)n(τ)]dx−λκ(τ)n(τ) = 0,
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for all τ. �

Thus, the gradient descent procedure introduces the time variablet into γ to form γ(τ, t), and flows it by

∂tγ(τ, t) =

(

−
Z

Ω\D
(X (x;γ(τ))−C)δ◦φ(x;γ(τ))Pγ′ (τ)∇γ(τ)φ(x;γ(τ))dx

)

+

(

Z

Ω\D
(X (x;γ(τ))−C)H ◦φ(x;γ(τ))dx+ λ

)

κ(τ)n(τ)

from an initial guess of the path outside obstacles and through the given endpoints. In particular, in two
dimensions,

∂tγ(τ, t) =

(

−
Z

Ω\D
(X (x;γ(τ))−C)δ◦φ(x;γ(τ))(∇γ(τ)φ(x;γ(τ)) ·n(τ))dx

)

n(τ)+

(

Z

Ω\D
(X (x;γ(τ))−C)H ◦φ(x;γ(τ))dx+ λ

)

κ(τ)n(τ).(5.2)

We may also multiply the right hand side of the flow byH(ψ) to ensure that the path respects the fact that
obstacles are impenetrable. If in addition, we optimize also forC, it is easy to see that the optimalC should
be chosen to be the average exposure,

C =

R

Ω\D X (x;γ)dx
R

Ω\D dx
.

5.1.2. Numerical Considerations.As in Section 4.3, the pathγ(τ) is discretized by a set of pointsg j sampled
from it. Thus it is important to justify that the visibility of a continuous path can be approximated by the
visibility of a finite sampling of this path.

Theorem 5.3. Givenγ : [0,1] 7→R
d a C2 simple curve, letψ be the level set function, with Lipschitz constant

K, for the obstacles. Furthermore, let m be a positive integer and setτ j = j/m= j∆τ and gj = γ(τ j) andφ as
defined in Formula (3.2). Ifφ(x;γ(m)) := φ(x;{g j}) = max0≤ j≤mφ(x;g j ) andφ(x;γ) = maxt∈[0,1] φ(x;γ(τ)),
then

(5.3) 0≤ φ(x;γ)−φ(x;{g j}) ≤ ∆τK||γ′||∞.

Proof. Fix x and letk be such thatφ(x;{g j}) = max0≤ j≤mφ(x;g j ) = φ(x;gk), andτ∗ ∈ [τl ,τl+1] be such that
φ(x;γ) = maxτ∈[0,1] φ(x;γ(τ)) = φ(x;γ(τ∗)). Then applying Lemma 3.1 , we have

0≤ φ(x;γ(τ∗))−φ(x;γ(τl )) ≤ (τ∗− τl)K||γ′||∞.

By construction,φ(x;γ(τl )) ≤ φ(x;gk) ≤ φ(x;γ(τ∗)), so

0≤ φ(x;γ)−φ(x;{g j}) ≤ ∆τK||γ′||∞.

�

The main steps of the numerical algorithm using a straight forward front tracking approach are thus, in a
condensed format:

(1) Start with a partition 0= t0 < t1 < · · ·< tn = T, for a chosen final timeT, an initial pathγ(τ, t0), and
a fixed constantC.

(2) Discretize this path by placing a grid{τ j = j∆τ : 0≤ j ≤ m}over [0,1].
(3) Fork= 0,1, . . . ,n−1, and forj = 1,2, . . . ,m−1, advance the path by Equation (5.1.1). This involves

computation ofφ(x;γ(τ j , tk)), finite differencing on the gradient, and a chosen ODE solversuch as
Euler’s method. We remark thatφ(x;γ(τ j , tk)) is the standard visibility function of [17] with a single
observerx0 = γ(τ j , tk).
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We now discuss the stability of this gradient flow. Note the last termλκ(τ)n(τ) acts as regularization by
flowing the path byλ times curvature. In fact, in 2 dimensions, collectingκ(τ)n(τ) terms, we get

(5.4)
Z

Ω\D
(X (x;γ)−C)H(φ(x;γ))dx+ λ.

This helps us determine what values we can choose forλ. Since 0≤ X (x;γ) ≤ L(γ),

−CArea(Ω\D)≤
Z

Ω\D
(X (x;γ)−C)H(φ(x;γ))dx≤ (L(γ)−C)Area(Ω\D),

and so a valid condition would be
Z

Ω\D
−(X (x;γ)−C)H(φ(x;γ))dx≤CArea(Ω\D) ≤ λ.

If explicit time stepping is used for time integration,

∆t ≤ c0(λ+CArea(Ω\D))∆τ2

guarantees numerical stability.
In Figure 5.1, we have two circular obstacles in the first and third quadrants. A straight line joining

(−1,0) and(1,0), formingγ0, is then deformed using the flow (5.1.1). In order to improve efficiency of the
algorithm, instead of using a constantC = 5 that is our objective average exposure, we increaseC gradually
along the flow byC = max(2+ r0L(γ),5), whereL(γ) is the length of the pathγ. The flow eventually reaches
a steady state and the resulting path depicted in Figure 5.1 matches with our intuition of an ’S’ shaped curve.
In addition, we plottedX (x;γ0)/||X (·;γ)||∞ andX (x;γ)/||X (·;γ)||∞

Figure 5.2 shows an example in which we have the initial pathγ0 a closed curve passing through the
obstacles. We see that the portions ofγ away from its fixed end points at(0,0.9) eventually pull out of the
obstacles. The tip in the middle of the path first reaches further down during the descent and is then pulled
back due to the regularization term. One can see the corresponding effect in the change in||X (·;γ)−4.2||2.

5.1.3. Weights and Memory.We can modify our approach for acquiring uniform exposure toinclude weights
that measure the importance for the visibility of certain regions of space. A slight modification taking this
into account leads to the energy

Z

Ω\D
(X (x;γ)−C)2w(x)dx,

wherew represents the weight. One extreme example of this is when the surfacesSof the obstaclesD are
the only regions of interest for visibility. The energy in this case becomes

Z

S
(X (x;γ)−C)2dA=

Z

Ω
(X (x;γ)−C)2δ(ψ(x))|∇ψ(x)|dx.

We can also consider the more interesting situation of variable weighting in time:

X̃ (t,x;γ) =
Z t

0
Kη(x, t,τ)H ◦φ(x;γ(τ))|γ′(τ)|dτ,

and

X̄ (x;γ) =

Z 1

0
X̃ (t,x;γ)|γ′(t)|dt.

Notice that whenKη(t,τ) is replaced byδ(t − τ), A by 1 , thenX̃ (t,x;γ) reduces toH(φ(x;γ)) andX̄ (x;γ)
becomes identical toX (x;γ). If Kη(t,τ) is a function oft−τ with support sizeη, e.g.Kη(t,τ) = 1{0≤t−τ≤η},

we can interpretX̃ (t,x;γ) as the exposure of locationx at timet from an observer with finite memory of
η duration, mimicking forgetfulness. Correspondingly, theoptimizaton problems can be formulated as in
Problem 5.1, withE(γ,C) replaced by

Ẽ(t;γ,C) = ||X̃ (t, ·;γ)−C|| or Ē(γ,C) = ||X̄ (·;γ)−C||
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FIGURE 5.1. The upper left figure shows the obstacles (red circles),the initial curve (green
circle), and the optimized curve (blue dotted curve). The constantC is chosen to be 5.0, the
curvature regularization term is 5. The images in the second row show the exposure of the
initial and the optimized paths.

or
Z 1

0
Ẽ(t;γ,C)dt,

where|| · || is some norm.
However, so far we have only considered uniform viewing, ignoring greater visibility. If in addition to

uniform viewing, we would like the path to also be balanced with the prevailing desire to maximize visibility,
we can enact one the following changes:

(1) Minimize subject to a constraint ofL(γ) = C0 or L(γ) ≤C0.
(2) ReplaceC by a bounded, increasing function ofL(γ) to force higher exposure levels.
(3) Add a term such as

α
Z

Ω\D

(

1−
X (x;γ)
L(γ)

)

dx=
α

L(γ)

Z

Ω\D
(L(γ)−X (x;γ))dx

to further maximize, with weightα, the total exposure.
(4) Include a multiplicative penalty term to increase the length of the path:

min
γ,C

1
L(γ)

Z

Ω\D
|X (x;γ)−C|2dx.

In terms of numerical representation, we like to note that weare currently representing the paths using
parametrization, with front tracking for its motion. Problems with maintaining an adequate parametrization
do occur during the motion. In the future, we would like to useinstead an implicit representation such as
the level set method [16, 3] or the segment projection method[5].
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FIGURE 5.2. The upper left figure shows the obstacles (red circles),the initial curve (green
circle), and the optimized curve (blue dotted curve). The constantC is chosen to be 4.2, the
curvature regularization term is 0.05. The images in the second row show the exposure of
the initial and the optimized paths.

5.2. Shortest Path. Maximization of a visible volume function or minimization of a suitably constructed
energy are not the only approaches to solving a visibility optimization problem. We consider here the
problem of finding the shortest paths observers located at different points can travel to see a chosen point
object. It is possible to solve this problem by maximizing visibility with a weight in space that is a smoothed-
out approximate delta function centered at the chosen point. However, this is not the best strategy since the
observer may be trapped in a local maximium, unacceptable for this problem, and the form of the smoothed-
out function needs to be carefully chosen.

Let x0 be the location of an observer and lety be the location of the point object that we want to be visible.
Suppose the nontrivial case wherey is initially invisible to x0. The ability forx0 to seey is the same as the
ability for y to seex0. Thus we considerφy, the visibility level set function associated toy. If x0 moves into
the{φ(·;y) > 0} region, theny can seex0 and vice versa. From this, we see that the solution to our problem
is the shortest path fromx0, respecting obstacles, to the region{φ(·;y) > 0}, or alternatively the shadow
boundary{φ(·;y) = 0}. A distance function can be used to find this path.

Let Ty denote the signed distance, or signed traveltime, functionto the zero level set ofφ(·;y) in the
presence of obstacles. This meansTy evaluated at a point in space is the signed distance of the shortest path
from that point to the zero level set ofφ(·;y). This path, of course, must go around obstacles and, in fact,Ty

can be taken, as a fixed condition, to be∞ inside obstacles. This distance function can be easily constructed
using a variety of techniques, including PDE, fast marching, and fast sweeping methods [9, 14, 15, 18, 19]
that solve

|∇Ty| = 1,

with boundary conditionsTy = 0 whereφy = 0 andTy = ∞ inside obstacles.
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With this distance function, the shortest pathx0 needs to take to seey is just the integral curve of∇Ty

drawn fromx0 to the zero level set ofφy. An ODE solver combined with finite differencing and interpolation
in a method-of-lines approach can be used to solve for this flow,

∂tx0 = max{−Ty(x0),0}∇Ty(x0).

The max{−Ty(x0),0} term ensures thatx0 will slow down and stop at the zero level set and thatx0 will not
move ify is already visible.

Note, the shortest paths from many different initial positions x0 can be determined using the sameTy.
Also, even though these paths are all straight lines, our approach applies to more general situations, where
the allowable speed is not uniform in space and the paths willbend around regions of slow moving. In this
case, a differentTy is constructed from either PDE, fast marching, or fast sweeping methods, solving

|∇Ty| = f ,

with the same boundary conditions and a givenf : Ω → R
+, where 1/ f evaluated at a point denotes the

allowable speed at that point. The shortest paths are once again the integral curves of∇Ty.
Figure 5.3 shows a step-by-step example and results of our approach to the shortest path problem.

5.3. Tracking an Object. One could easily concoct a situation in which the observer wishes to keep a
moving object in sight for as long as possible. One interpretation of such an objective is to keep the tar-
get away from occlusion as much as possible. Letφ(y;x0) be the specific level set function for shadow
boundaries such that its positive values denote inescapability from the observer’s view. Thus, at a point in
space, the larger the value ofφ, the less chance it has to disappear from view when the observer is perturbed.
Such a level set function obviously depends on a weighting ofthe distance a point is away from the shadow
boundary with the distance it is away from the observer. It isnot our goal in this paper to derive the exact
nature and form of this function. Thus we consider here the simplification of having the inescapability of an
object aty approximated by

I(y;x0) = −
1
2
|x0−y|2 + λφ(y;x0),

whereφ(y;x0) is computed from our visibility algorithm with the obstaclelevel set functionsψ as signed
distance functions. Thus, maximizing this expression forx0 will give the safest position for the observerx0

to be in to keepy in sight ofx0. Our interest is actually in a moving object,y(t), and the determination of
how an initially placed observer should move with it to keep it safely in sight.

Adding the time variable into the expression for inescapability and performing gradient ascent onI(y;x0)
with respect tox0, we arrive at a dynamics for the observer:

ẋ0 = (y−x0)+ λ∇x0φ(y;x0).

In this formulation,−I(y;x0) = |x0 − y|2 − λφ(y;x0) is the potential energy of the system andφ(y;x0) is
analogous to gravitation field. The twist is that the potential field is driven by the target locationy(t). One
can see that the observer must balance a desire to get closer to y with the influence of how muchφ(y;x0)
changes with respect to any motion. Noteλ should be chosen to vary such that the object is always in the
visible region of the observer.

Another term to consider instead of, or in addition to,1
2|x0− y|2 is U(dD(x0,y)), whereU is a bounded

increasing function anddD(x0,y) is the distance in the presence of the obstaclesD of y from x0. This term
contributes the term

−U ′(dD(x0,y))∇x0dD(x0,y)

to the velocity of the observer. NotedD(x0,y) can be computed efficiently by solving|∇x0dD(x0,y)| = 1 in
Ω\D with boundary conditiondD(x0 = y,y) = 0, as in [9, 14, 15, 18, 19].

We present simulations in the selected snapshots of Figures5.4 and 5.5. In Figure 5.4, the dotted lines
show the shadow boundary 0.3 time units in the past. The shaded region is the current invisible region for
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FIGURE 5.3. The figures in the first row show the observer, obstacles,shadow boundary,
and a point at the origin that is invisible, and then the first step of our procedure, namely
treating the origin as the observer. The figures of the secondrow show the contours of the
visibility level set function and its redistancing into signed traveltime, along whose gradient
directions the observer will travel. The figures of the thirdrow show the shortest path of
the observer to the shadow boundary and the visibility regions of the observer at the final
location where the origin is visible on the shadow boundary.

the observer. The past trajectory of the evader is shown and the past non-trivial trajectory of the observer is
computed. Note the observer follows the evader around the circular obstacle to get a clear view. Figure 5.5
tests the importance of the gradient of the visibility levelset function. When the visibility gradient term is
removed, the evader vanishes behind an obstacle. On the other hand, when the term is included, the evader
is always kept in sight by the observer.
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FIGURE 5.4. Past trajectories of observer and evader are shown. Thediamonds and crosses
indicate the current locations of the observer and the evader, respectively. Thus, the observer
circles around the obstacle chasing the evader.

6. CONCLUSION

In this work, we have outlined two basic strategies that apply to several optimization problems involving
visibility. One strategy involves producing a visible volume function whose maxima are the desired locations
for our observers to maximize visibility. To determine local maxima of this function, we advocated the
use of visibility level set functions, level set volume formulations, and gradient flows. These effectively
combine, due in no small part to the continuity of visibilityinformation afforded by the visibility level
set framework, to create numerical algorithms for a varietyof optimization visibility test cases dealing
with multiple observers, spatial regions of interest, memory effects, and human visual detail. The other
strategy involves the construction of an energy whose minimum achieves the desired effect. This strategy
was used to allow for more uniform viewings of space, and the energies can be modified to fit into situations
mimicking forgetfulness and other constraints. In future work, we target pursuer-evader games and other
more complicated, more realistic applications based on visibility.
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FIGURE 5.5. Past trajectories due to the absence and presence of thevisibility gradient
term are shown. of observer and evader. The diamonds and crosses indicate the current
locations of the observer and the evader, respectively. Thelower left plot is with the absence
of the gradient and should be compared to the lower right plotwhich contains the gradient
term. The upper right plot is a longer time simulation when the gradient term is present.
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