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Abstract

Shock waves in granular gases generated by either a vertically vibrated
granular layer or by hitting an obstacle at rest are treated by means of a
shock capturing scheme that approximates the Euler equations of granular
gas dynamics with an equation of state (EOS), introduced by Goldshtein
and Shapiro [ J. Fluid Mech. 282 (1995) 75], that takes into account
the inelastic collisions of granules. We include a sink term in the energy
balance to account for dissipation of the granular motion by collisional
inelasticity, proposed by Haff [J. Fluid Mech. 134 (1983) 401], and the
gravity field added as source terms. We have implemented an approxi-
mate Riemann solver, due to the second author [J. Comput. Phys. 125
(1996) 42], that works robust under low granular temperatures, high Mach
numbers and near close-packed limit, damping post-shock oscillations. We
have performed several numerical tests to show numerical evidence of the
above features. We have computed the approximate solution to the fol-
lowing problems: a one-dimensional granular gas falling on a plate under
the acceleration of gravity until close-packed limit, various one-dimensional
blast waves evolving in time in the absence of gravity, a one-dimensional
vertically vibrated granular layer under a sinusoidal perturbation and the
two-dimensional reflecting shock wave generated when granular gas hits an
angular obstacule through the acceleration of gravity.

1 Introduction

Many experimental and theoretical work has been performed to study the fluid
properties of granular gases. Several kinetic models were introduced to explain
the complicated physical behavior of granular media. Shock waves are one of
the difficult features appearing in fluidized granular gases and easily observed
in laboratory, since typical speeds of sound of some granular gases are measured
in cm/s. Hydrodynamical models are the most convenient and efficient ones to
describe shock waves.
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In this research work we are interested in simulating numerically shock wave
dynamics using the Euler equations for a compressible granular flow described
by means of a granular equation of state, (EOS), to compute the pressure, pro-
posed by Goldshtein and Shapiro [7], that includes both dense gas and inelastic
effects. We shall use an energy loss term, proportional to the T

3
2 being T the

granular temperature, [11] that takes into account the inelastic collisions of par-
ticles. We also consider the possible effect of the acceleration of gravity added
as source terms in both, the momentum equation and the energy equation. The
above hydrodynamic model was designed to describe the fluid-like properties
of granular flows of a vibrated bed, and it should be able to take into account
the physical mechanism responsible for the transformation of the kinetic energy
applied on the vibrating bed into granular temperature. This hydrodynamic
model might be considered the resulting investigation of many researchers along
the years, [1, 2, 7, 8, 9, 10, 11, 12, 13, 15, 22, 23].

In this paper, we use an approximate Riemann solver, written in the form of
the so-called Marquina’s Flux Formula, (MFF), [4], to compute the evolution of
shock waves in granular gases, generated by either a vibrating piston under the
gravity field or a granular gas accelerated by the gravity field hitting an obstacle
at rest. MFF has been widely used in a variety of complex flows, like relativistic
flows, [3, 18], stiff reactive terms, [6, 21], real gases, [26], Richtmyer-Meshkov
instabilities in two-component compressible flow, [17], and laser imprint insta-
bilities, [20]. In order to implement MFF we need to know the complete spectral
decomposition of the Jacobian and the qualitative properties of the associated
wave structure. We exhibit the eigenvalues and a complete system of eigenvec-
tors showing the characteristic fields, corresponding to the hyperbolic system of
equations for compressible granular flow in one and two spatial dimensions. We
have analyzed the thermodynamical variables associated to the granular EOS
relevant for the propagation of acoustic waves. Indeed, we have obtained an-
alytical formulas for the adiabatic exponent, the Grüneisen coefficient and the
fundamental derivative, showing that none of those variables are constant and
the fundamental derivative is strictly positive, (it does not change sign), and,
therefore, the nonlinear characteristic fields are genuinely nonlinear with pos-
itive nonlinearity, [27]. Thus, we have a simple and consistent formulation of
the MFF in terms of the spectral decomposition of the Jacobian, and the above
thermodynamical properties show that MFF approximates the unique solution
of the Riemann problem correctly. The granular EOS shows that the granular
gas becomes less compressible near close-packed limit since the speed of sound
tends to infinity when the density tends to that limit for constant granular
temperature. We have observed through our numerical experiments, that MFF
works robust for low densities, near the close-packed limit and high Mach num-
bers in inelastic granular gases, and it behaves in agreement with experimental
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and theoretical studies, [1, 2, 8, 22].

The paper is organized as follows. In Section 2 we settle up our equations
and notation, analyzing the spectral decomposition of the Jacobian and the
qualitative properties of the waves. In Section 3 we describe the algorithm
used, describing the first order Marquina’s Flux Formula and the high order
accurate extension using either the third-order accurate PHM reconstruction
procedure, [16], or the fifth-order accurate Weighted Power ENO recontruction
method, [24]. In Section 4 we present several numerical simulations in order
to show numerical evidence of the ability and robustness of our algorithm to
simulate shock wave propagation in inelastic granular gases. In Section 4.1 we
analyze the reflected shock wave generated when a granular gas hits a solid wall
under the acceleration of gravity. In Section 4.2 we have computed different
time evolution of blast waves in one-dimensional granular gases for different
restitution coefficients in the absence of gravity, observing the clustering effect
at the contact wave in finite time for the inelastic cases. In Section 4.3 we have
computed a one-dimensional vertically vibrated granular layer under sinusoidal
perturbations of the gravity, evolving in time. In Section 4.4 we analyze the
two-dimensional spectral decomposition of the Jacobians and we address the
two-dimensional supersonic granular gas flow hitting a wedge under the gravity
field. In Section 5 we draw our conclusions.

2 Euler equations for compressible granular flows

For the sake of understanding we restrict our discussion in this Section to one
spatial dimension. The one-dimensional Euler equations for inelastic granular
flow can be written as:

ρt + (ρu)x = 0

(ρu)t +
(
P +

(ρu)2

ρ

)
x

= ρg

Et + (u(E + P ) )x = −Θ + ρgu

where ρ is the granular gas density, u is the velocity, P is the pressure , Θ is the
energy loss term and E is the total granular energy,

E =
1
2
ρu2 + ρε
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being ε the specific internal energy per unit of volume. We shall use a granular
equation of state (EOS) introduced by Goldshtein and Shapiro [7] to compute
the pressure, that reads as follows: let σ be the diameter of particles of fixed
mass and let e be their restitution coefficient (0 ≤ e ≤ 1). Let ν = π

6 ρσ3 be the
volume fraction being νmax = 0.65 the maximum posible solids volume per unit
volume of gas. Then, we have the following expression for the granular EOS:

P = (γ − 1)ρA(ρ)ε (1)

where γ is the ratio of specific heats for the ideal gas case, (in this paper we use
γ = 5/3), and

A(ρ) = 1 + 2(1 + e)G(ν)

where,

G(ν) = ν

[
1−

( ν

νmax

) 4
3
νmax

]−1

We define the granular temperature as T = (γ − 1)ε. Then, we can re-write
the granular EOS (1) as

P = TρA(ρ)

On the other hand, the energy loss term acounts for the inelastic collisions,
that corresponds to an extension of the so-called Haff’s cooling law, [11], and it
is of the form:

Θ =
12√
π

(1− e2)
ρT

3
2

σ
G(ν) (2)

Thus, for the elastic limit e = 1 this term has no effect.

We can associate to the granular EOS (1) a well-defined thermodynamic
speed of sound, cs, from the expression:

c2
s = (γ − 1)ε

(
A(ρ) + ρA′(ρ) + (γ − 1)A2(ρ)

)
(3)

where

A′(ρ) =
π

6
σ3(1 + e)

(
1 +

(4
3
νmax − 1

)( ν

νmax

) 4
3
νmax

)[
1−

( ν

νmax

) 4
3
νmax

]−2
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For 0 ≤ ν < νmax it is easy to see that c2
s > 0 and it is a non negative strictly in-

creasing function of ν, such that limν→νmax cs = +∞, for constant T . This shows
that for volume fractions near νmax the granular gas becomes less compressible.

Thus, we can write the eigenvalues and a complete set of eigenvectors of the
Jacobian matrix in terms of thermodynamic quantities

λ1 = u− cs

λ2 = u

λ3 = u + cs

[
r1 r2 r3

]
=

 1 1 1
u− cs u u + cs

H − ucs H − 1
b1 H + ucs


 l1

l2
l3

 =


b2
2 + 1

2
u
cs

− b1
2 u− 1

2cs
b1
2

1− b2 ub1 −b1
b2
2 − 1

2
u
cs

− b1
2 u + 1

2cs
b1
2



where

H = ε
(
1 + (γ − 1)A(ρ)

)
+

1
2
u2

(4)

is the total enthalpy per unit volume and b1 and b2 are defined as:

b1 = (γ − 1)
A(ρ)
c2
s

b2 = 1 + b1(u2 −H)

When heat conduction is neglected, as in our case, the properties of the
shock waves and rarefaction waves are determined by the adiabatic exponent,
the Grüneisen coefficient and the fundamental derivative, [19, 27] that we will
define below.

The adiabatic exponent, γA, of the granular EOS (1) is defined as

γA := −V

P

∂P

∂V

∣∣∣∣∣
S

(5)
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where V = 1
ρ . From the expression

∂P

∂V

∣∣∣∣∣
S

= −ρ2 ∂P

∂ρ

∣∣∣∣∣
S

and the identity ∂P
∂ρ |S = c2

s, we have

γA =
ρ

P
c2
s

=
ρ

P
T

(
A(ρ) + ρA′(ρ) + (γ − 1)A2(ρ)

)

= 1 + A(ρ)(γ − 1) + ρ
A′(ρ)
A(ρ)

Since A(ρ) = 1 + 2(1 + e)G(ν) we have ρA′(ρ) = 2(1 + e)νG′(ν) and, therefore

γA = γ + 2(1 + e)

[
G(ν)(γ − 1) +

νG′(ν)
1 + 2(1 + e)G(ν)

]
(6)

On the other hand, since

G(ν) =
ν

1−
(

ν
νmax

) 4
3
νmax

then,

G′(ν) =
1 +

(
4
3νmax − 1

)(
ν

νmax

) 4
3
νmax

(
1−

(
ν

νmax

) 4
3
νmax

)2
(7)

therefore,

νG′(ν) = G(ν)

[
1 +

4
3νmax

(
ν

νmax

) 4
3
νmax

1−
(

ν
νmax

) 4
3
νmax

]
(8)
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Thus, we obtain the following expression of the adiabatic exponent in terms of
the volume fraction:

γA = γ
(
1 + 2(1 + e)G(ν)

)
+

2(1 + e)G(ν)
1 + 2(1 + e)G(ν)

[ 4
3νmax

(
ν

νmax

) 4
3
νmax

1−
(

ν
νmax

) 4
3
νmax

]
(9)

We can easily get an expression of the Grüneisen coefficient also in terms of
the volume fraction:

Γ = V
∂P

∂ε

∣∣∣∣∣
V

= (γ − 1)(1 + 2(1 + e)G(ν)) (10)

Finally, we are going to get an explicit expression of the fundamental deriva-
tive:

G =
1
2

V 2

γAP

∂2P

∂V 2

∣∣∣∣∣
S

=
1
2

[
1 + γA − V

γA

∂γA

∂V

∣∣∣
S

]

=
1
2

[
1 + γA +

ρ

γA

∂γA

∂ρ

∣∣∣
S

]
(11)

Since ν = π
6 ρσ3, we can write G as

G =
1
2

[
1 + γA +

ν

γA

∂γA

∂ν

∣∣∣
S

]
(12)

The following derivative is a straitforward calculation

∂γA

∂ν
= 2(1 + e)G′(ν)γ +
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+
2(1 + e)

(
4
3

)2
(νmax)3

[(
ν

νmax

) 4
3
νmax

+ ν
νmax

]
[1 + 2(1 + e)G(ν)]

(
1−

(
ν

νmax

) 4
3
νmax

)3
+

+

[ 4
3νmax

(
ν

νmax

) 4
3
νmax

1−
(

ν
νmax

) 4
3
νmax

]
2(1 + e)G′(ν)

[1 + 2(1 + e)G(ν)]2
(13)

and using (9) we have an explicit expression of the fundamental derivative in
terms of the volume fraction.

In Fig. 1 we display the plots of the adiabatic exponent, the Grüneisen
coefficient and the fundamental derivative as functions of the volume fraction
in the interval [0, 0.55[, for two different values of the restitution coefficient e =
0.9, 0.2, using 100 points. The profiles of these three thermodynamic quantities
are non negative strictly increasing functions of the volume fraction, tending to
infinity when ν tends to νmax and their minimum values are the corresponding
ones for the ideal gas case.

We can recover the ideal gas EOS by putting σ = 0, and, therefore, these
three quantities are constant with respect to the density ρ and their values are
γA = γ, Γ = γ − 1 and G = 1

2(1 + γ).

For a granular EOS, σ > 0, we have the following inequalities:

γA > γ, (14)

Γ > γ − 1, (15)

G >
1
2
(1 + γ), (16)

for any ν > 0. Thus, the fundamental derivative is always larger than 1, implying
that the isentropes in the P−ρ plane are convex, and, since Γ > 0 the isentropes
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Figure 1: Top left: Volume fraction vs. Adiabatic exponent; top right: Volume
fraction vs. Gruneisen coefficient; bottom: Volume fraction vs. Fundamental
derivative, e=0.9: ’o’; e=0.2: ’+’

do not cross each other in the P − V plane. Thus, the Riemann problem has
a unique standard solution, [19]. Indeed, the granular EOS always satisfies the
Menikoff-Plohr ”strong condition”, ([19], p. 95), since

Γ = PV/ε.

When the volume fraction is very small the granular gas ressembles an ideal gas,
since γA, Γ and G, are close to γ, γ − 1 and 1

2(1 + γ), respectively.

We can conclude from the above expressions that the system is strictly hy-
perbolic and the characteristics fields are either genuinely nonlinear or linear
degenerate. The main difference between this model for inelastic granular gas
and the Euler equations for ideal gas is in the energy loss term appearing in
the energy equation. We will describe the two-dimensional model equations in
section 4.
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3 An approximate Riemann solver suitable for gran-
ular gases

We consider the one-dimensional hyperbolic system of conservation laws

ut + (f(u))x = 0, (17)

together with the initial data

u(x, 0) := u0(x), (18)

such that the Jacobian matrix ∂f
∂t has real eigenvalues λp(u) = 1, ...,m and

a complete system of eigenvectors rp(u), lp(u), p = 1, ...,m such that

ri(u) · lj(u) = δij

and the characteristic fields are either genuinely nonlinear or linear degenerate.

We consider the following computational grid: xj = jh, (h is the spa-
tial step), tn = n∆t, is the time discretization, (∆t is the time step), Ij =
[xj− 1

2
, xj+ 1

2
] is the spatial cell, where xj+ 1

2
= xj + h

2 is the cell interface and
Cn

j = [xj− 1
2
, xj+ 1

2
]× [tn, tn+1] is the computational cell. Let un

j be an aproxima-

tion of the mean value in Ij , 1
h

∫ x
j+1

2
x

j− 1
2

u(x, tn)dx, of the exact solution u(x, tn) of

the initial value problem (17) and (18), obtained from a finite volume scheme
in conservation form:

un+1
j = un

j −
∆t

h
(f̃j+ 1

2
− f̃j− 1

2
), (19)

where the numerical flux, f̃ , is a function of k + l variables

f̃j+ 1
2

= f̃(un
j−k+1, · · ·un

j+l), (20)

which is consistent with the flux of the equation (17),

f̃(u, · · · ,u) = f(u) (21)

From the classic theorem of Lax and Wendroff we know that the limit solu-
tion of a consistent scheme in conservation form is a weak solution of the hy-
perbolic PDE system and their discontinuities propagate at the correct speeds.
Thus, a consistent scheme in conservation form is the main ingredient to design
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shock capturing schemes. In order to construct an explicit scheme in conser-
vation form we need a flux formula that approximates the numerical flux f̃ at
every cell interface.

Marquina’s Flux Formula, (MFF) [4], computes a consistent numerical flux
depending on two neighboring values, ul and ur by means of the following
procedure:

Given the left and right states, ul and ur we compute the ”sided” local
characteristic variables

wp
l = lp(ul) · ul

wp
r = lp(ur) · ur

and the corresponding characteristic fluxes:

φp
l = lp(ul) · f(ul)

φp
r = lp(ur) · f(ur)

for p = 1, 2, ....,m. Let λ1(ul), ...., λm(ul), and λ1(ur), ...., λm(ur) be their
corresponding eigenvalues. We proceed as follows:

If λk(u) does not change sign in [ul,ur] then,

if λk(ul) > 0 then

φk
+ = φk

l

φk
− = 0

else

φk
+ = 0

φk
− = φk

r

end

else

αk = max{|λk(ul), |λk(ur)|}

φk
+ = 0.5(φk

l + αkw
k
l )

φk
− = 0.5(φk

r − αkw
k
l )

end
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We use the above value of αk since for our case (granular gas), the lo-
cal characteristic fields are either linear degenerate or genuinely nonlinear, and
this value is a correct prescription of the local viscosity to get an approximate
entropy-satisfying solution. Then MFF reads as follows

FM (ul,ur) =
m∑

p=1

{φk
+rp(ul) + φk

−rp(ur)} (22)

where rp(ul) and rp(ur) are the right (normalized) eigenvectors of the Jaco-
bian matrices ∂f(u)

∂u |u=ul
and ∂f(u)

∂u |u=ur , respectively.

Thus, the first order scheme based on MFF is

un+1
j = un

j −
∆t

h

(
FM (un

j ,un
j+1)− FM (un

j−1,u
n
j )

)
(23)

The main advantages of MFF are the following:

• It can be applied to nonhomogeneous fluxes, including real gases satisfying
thermodynamic consistency, [6], [26].

• The overheating phenomenon observed near the piston wall in shock re-
flection experiments is greately reduced as well as post-shock oscillations,
[4], [5].

• MFF scheme behaves robust for low densities, [4].

All the above features are important and desirable to resolve successfully the
computations of strong shocks in granular flow, in particular problems concern-
ing blast waves or vibrating pistons.

Higher order of accuracy is obtained by applying a reconstruction procedure
on local variables or local fluxes to extrapolate them to the left and right states
of the cell interface. In this paper, we have used either the PHM method ([16])
or the fifth-order accurate Weighted PowerENO5 ([24]) and we integrate in
time using the third-order accurate Shu-Osher TVD Runge-Kutta time-stepping
procedure ([25]).

The calculations were done by using the above mentioned spatial recon-
struction procedures applied to each characteristic flux obtained from physical
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fluxes by local linearizations computed at the interfaces following the so-called
Shu-Osher ”flux formulation”, [25]. Indeed, if q is the charateristic flux we
reconstruct q̃ in cell [xj− 1

2
, xj+ 1

2
] such that

q(u(xj)) =
1
h

∫ x
j+1

2

x
j− 1

2

q̃(ξ)dξ,

via primitive function.

For multidimensions, MFF is implemented in a dimension by dimension
fashion, where numerical fluxes are computed from physical fluxes in each spatial
direction, [4].

4 Numerical Experiments

Our goal is to show numerical evidence that the computational method, de-
scribed in Section 3, for solving the hydrodynamic model based on the Euler
equations for inelastic granular gases, is robust and it allows to examine specific
properties of shocks and rarefaction waves related to the energy dissipation term
and to explain some experimentally observed processes.

We focus on the following numerical experiments:

• 4.1 Gravity acceleration of granular gases hitting a solid wall until close-
packed limit.

• 4.2 Blast waves in granular gases.

• 4.3 One-dimensional vertically vibrated granular layer under gravity ac-
celeration.

• 4.4 Two-dimensional granular gas hitting a wedge under the acceleration
of gravity.

In all our calculations we fix the value of the diameter of the particles to be
σ = 0.1. The role of σ in the continuous model is just a scale factor that relates
the volume fraction and the density appearing in the Euler equations. All the
initial data in our numerical experiments are chosen in a way that allows us to
examine the behavior of compression and expansion waves in order to check if
the resulting physics is consistent.
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4.1 Gravity acceleration of granular gas hitting a solid wall until
close-packed limit

We consider a one-dimensional domain of length 10 cm., [0, 10], filled with a
granular gas at rest with a constant volume fraction and a constant pressure
distribution with a solid wall at the right end, ( i.e., reflective boundary con-
ditions are applied), under the action of the gravity field oriented from left to
right. When evolving in time, the granular gas is accelerated by the gravity
and it falls towards the right end. As soon as the velocity reaches a supersonic
value, a shock wave is formed at the solid wall and propagates to the left. The
granular gas starts to cluster near the wall until reaches the close-packed limit.

We start with the following initial data:

(ρ, v, P ) = (34.3774677, 18, 1589.2685472), g = 980 cm/s2 and restitution
coefficient e = 0.97.

Figure 2: e=0.97, MFF-PHM scheme, top left: volume fraction; top right: gran-
ular temperature; bottom left: pressure, bottom right: Mach number
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We have performed our computation using 1000 grid points, until time 0.23
with a Courant-Friedrichs-Lewy, (CFL), factor of 0.5 using our MFF scheme
with the third-order accurate PHM reconstruction. In Fig. 2 we display the
volume fraction, the granular temperature, the pressure and the Mach number at
time 0.23. We observe the rarefaction wave generated by the energy dissipation
term where granular temperature becomes close to zero near the wall. We reach
at the wall the volume fraction 0.649472, near to the close-packed limit 0.65.
The reflected shock wave becomes slowly moving with respect of the Courant
time used in the computation, thus, it generates post-shock oscillations, as it
can be observed in the pressure profile.

4.2 Blast waves in granular gases

We consider one-dimensional blast waves generated when evolving in time a
Riemann problem where the left state is a supersonic granular gas and the
right state is a granular gas at rest, in the absence of gravity. We computed
several initial data generating a shock-contact-shock structure. First, we have
performed four numerical experiments with restitution coefficients e = 1, e =
0.9, e = 0.7 and e = 0.2, using the following initial data, consisting of two
constant states, left and right, in the computational domain [0, 10]:

(ρL, vL, PL) = (44.5, 0.698, 3.528)

(ρR, vR, PR) = (50, 0, 0.571)

where the jump is located at x = 5. We have used in our computation 1000
grid points. We evolve until time 5.48 with a CFL factor of 0.1 and the fifth-
order accurate Weighted Power ENO5 method, in order to get better resolution
of the contact wave, except for the elastic case, (e = 1), where we have used
the PHM reconstruction to reduce the post-shock oscillations generated behind
the shock wave at the left of the contact. When evolving in time we observe
the clustering of granular gas around the contact for the inelastic cases. In
fact, near the contact wave the gas becomes less compressible and the granular
temperature which is high at the shock waves decreases close to zero near the
contact when the clustering approaches to the close-packed limit, as predicted
by the physics of the inelastic granular gas. We observed that the smaller the
restitution is, the faster the clustering (near the contact) approaches to the
close-packed limit. We display in Figs. 3 and 4, zoomed regions of the volume
fraction and granular temperature obtained at time 5.48, from top to bottom
corresponding to restitution coefficients e = 1, e = 0.9, e = 0.7 and e = 0.2,
where we see no clustering for the elastic case and we can observe an increasing
degree of clustering near the contact wave for the successive decreasing values
of the restitution coefficient. The close-packed limit is always reached in finite
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time when the restitution coefficient e < 1, in spite the initial data consists of
low volume fraction values.

Figure 3: Top: e=1, MFF-PHM scheme, top left: zoomed region of volume
fraction, top right: zoomed region of granular temperature. Bottom: e=0.9,
MFF-Weighted Power ENO5 scheme, bottom left: zoomed region of volume
fraction, bottom right: zoomed region of granular temperature

The above remarks are still valid for a blast wave experiment evolving
through a dense granular gas. We consider the following initial data with e = 0.9
and 2000 grid points:

(ρL, vL, PL) = (178, 0.698, 3.528)

(ρR, vR, PR) = (200, 0, 0.571)

where the jump is located at x = 2.

We have computed, using MFF with our fifth-order accurate Weighted Power
ENO5 scheme, until time 12 with a CFL factor of 0.1, where the clustering
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Figure 4: Top: e=0.7, MFF-Weighted Power ENO5 scheme, top left: zoomed
region of volume fraction, top right: zoomed region of granular temperature;
Bottom: e=0.2, MFF-Weighted Power ENO5 scheme, bottom left: zoomed
region ofvolume fraction, bottom right: zoomed region of granular temperature

near the contact is very close to the close-packed limit. We display in Fig.
5 zoomed regions of the volume fraction, granular temperature and acoustic
impedance, ρ cs, where we can still see the contact wave and we can observe
that the clustering is stronger at the right side of the contact since the gas is
more compressed.

We point out that numerical viscosity associated to the chosen grid, the
order of accuracy and the numerical scheme determine the time when close-
packed limit is reached along the evolution.

We also remark from the above numerical experiments that blast waves in
inelastic granular gases with zero gravity produce clustering around the contact
wave, approaching to the close-packed limit in finite time. The above clustering
is dynamic in the sense that the high density region near the contact wave moves
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with the flow velocity. Roughly speaking it can be said that when a region of
particles is compressed by an acoustic wave, the density and the number of
collisions increase, and, therefore, the particles lose energy and are unable to
quit this dense region.

Figure 5: Dense granular gas: e=0.9, MFF-Weighted Power ENO5 scheme, top
left: zoomed region of volume fraction, top right: zoomed region of granular
temperature, botton: zoomed region of acoustic impedance

4.3 One-dimensional vertically vibrated granular layer under
gravity acceleration

We consider the one dimensional domain [0, 0.15]. The right end (bottom plate)
is a solid wall, (i.e. reflective boundary conditions are applied) and the left
end (top) is open (i.e. we use inflow/outflow boundary conditions). We assume
the action of the acceleration of gravity, g = 980 cm/s2, from the top to the
bottom plate. We consider the domain filled with a granular gas with restitution
coefficient e = 0.9, constant granular temperature T0 = 1 and a volume fraction
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distribution profile representing a very low density along the whole domain
except at a layer of approximately 0.005 of thickness, defined from the function

η(x) = exp(−3000 ∗ x2),

using the formula

ν(x) = ε + ν0 · η(0.145− x),

for x ≤ 0.145 and

ν(x) = ε + ν0,

for x > 0.145 where ε = h, being h the spatial stepsize.

The volume fraction of the layer in the initial profile is chosen to be ν0 =
0.2 · νmax, i.e. 20% of the close-packed limit. We compute the initial density,
pressure and energy from the above volume fraction profile and constant granular
temperature, T0 = 1.

We assume the system is vibrating sinusoidally (in the direction of gravity)
with amplitude A > 0 and frequency f , by using the term g(1 + A cos(2πft))
instead of g in the model. Thus, we start our time evolution when the maximum
acceleration of the perturbation of the gravity field occurs. In order to reproduce
the compression-expansion wave pattern of a vertically vibrated layer of inelastic
granular gas along the evolution in time, we have chosen the values: A = 3 and
f = 200.

We have used a uniform grid of 1500 grid points, a CFL factor of 0.5 and
MFF-Weighted Power ENO5 scheme. We evolve in time completing five cycles.
In Fig. 6 we display the zoomed profiles of the volume fraction (left) and granular
temperature (right) for the following successive times, from top to bottom, f ·t =
0.35, f · t = 1.35, f · t = 2.35, f · t = 3.35, f · t = 4.35, where we can see
the shock waves and expansion waves propagating along the layer, reproducing
the physical mechanism of transformation of the vibrated kinetic energy into
granular temperature. We also observe the convergence to a periodic pattern
at the fourth and fifth cycle, as we can see in Fig. 7 where we also display the
zoomed region of the velocity profile for these two cycles. We have computed
the total volume fraction at every time step and we have obtained the following
values corresponding to the above successive times 28.23, 28.31, 28.28, 28.32 and
28.27, respectively. Since we used inflow/outflow boundary conditions applied
at this end, we can conclude that there is no significant mass gain/loss through
the left end (top) of our domain along the time evolution.
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Figure 6: e=0.9, MFF-Weighted Power ENO5 scheme, left: zoomed region of
volume fraction; right: zoomed region of granular temperature for five cycles at
times t where f · t = 0.35, 1.35, 2.35, 3.35, 4.35, from top to bottom; abcisas in
the pictures are re-scaled using a factor of 10.
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Figure 7: e=0.9, MFF-Weighted Power ENO5 scheme, velocity profiles at f · t =
3.15, 4.15; abcisas in the pictures are re-scaled using a factor of 10.

4.4 Two-dimensional granular gas hitting a wedge under the
acceleration of gravity

In two spatial dimensions, the Euler equations for granular gases with energy
loss term and gravity acceleration in the direction of the unit vector (cos θ, sin θ),
cos2 θ + sin2 θ = 1, read as follows:

ρt + (ρu)x + (ρv)y = 0 (24)

(ρu)t +
(
P +

(ρu)2

ρ

)
x

+ (ρuv)y = ρ g cos θ (25)

(ρv)t + (ρuv)x +
(
P +

(ρv)2

ρ

)
y

= ρ g sin θ (26)

Et + (u(E + P ) )x + (v(E + P ) )y = −Θ + ρ g (u cos θ + v sin θ) (27)

where (u, v) is the velocity field, E = 1
2ρ(u2 + v2) + ρε is the total energy, P

is the pressure computed using the granular EOS (1), and the energy loss term
Θ given by (2).

The system ((24)-(27)) is hyperbolic using the well-defined speed of sound
(3), where the eigenvalues of the Jacobian of the flux f in the x-direction, ∂f(u)

∂u ,
are λ1 = u − cs, λ2 = u, λ3 = u, λ4 = u + cs, and the eigenvalues of the
Jacobian of the flux g in the y-direction, ∂g(u)

∂u , are µ1 = v− cs, µ2 = v, µ3 = v,
µ4 = v + cs. The Jacobians also have a complete set of eigenvectors,
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Rf =
[

r1 r2 r3 r4

]
=


1 1 0 1

u− cs u 0 u + cs

v v 1 v
H − ucs H − 1

b1
v H + ucs



Lf =


l1
l2
l3
l4

 =


b2
2 + u

2cs
− b1u

2 − 1
2cs

− b1v
2

b1
2

1− b2 ub1 vb1 −b1

−v 0 1 0
b2
2 − u

2cs
− b1u

2 + 1
2cs

− b1v
2

b1
2



where

H = ε
(
1 + (γ − 1)A(ρ)

)
+

1
2
(u2 + v2)

(28)

is the total enthalpy per unit volume and b1 and b2 are defined as:

b1 = (γ − 1)
A(ρ)
c2
s

b2 = 1 + b1(u2 + v2 −H)

The eigenvectors of the Jacobian in the y-direction, ∂g(u)
∂u , are obtained by

changing the roles of u and v and the second and third components of each left
and right eigenvector.

Our computational domain is a square of side 10 cm. This domain contains
a step which is a square of side 5 cm. located at the bottom right of the
domain. Reflective boundary conditions are applied along the inner sides of
the step. Inflow boundary conditions are applied at the left-hand end and the
upper end of the domain and outflow boundary conditions are applied at the
upper right end and the bottom left end of the domain. We fill the domain with
a granular gas with an initial speed of sound of 9 cm/s. We have performed
two numerical experiments, using two possible volume fractions, ν1i = 0.018 (low
dense granular gas) and ν2i = 0.18 (dense granular gas). In both cases, the initial

22



Figure 8: e=0.97, MFF-PHM scheme, top left: volume fraction contour lines of
the low dense granular gas experiment; top right: volume fraction contour lines
of the dense granular gas experiment; bottom: corresponding zoomed regions
near the corner

velocity field (ui, vi) is established in the direction θ = −45o with an initial Mach
number of 7, and the acceleration of gravity g = 980 cm/s2 is applied following
the same direction and orientation. We have used the restitution coefficient e =
0.97. We point out that the initial data corresponding to the first experiment,
(low dense granular gas), were taken from [23]. We have computed density,
moment and total energy from the above initial conditions, using the expression
of the speed of sound (3). Indeed, our initial data for both experiments are

(ρ1i, u1i, v1i, P1i) = (34.3774677, 44.547727,−44.547727, 1589.2685472),

and

(ρ2i, u2i, v2i, P2i) = (343.7746770, 44.547727,−44.547727, 10174.873548),

respectively.
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We evolve in time both initial data, using our MFF-PHM scheme, for a
uniform grid of 400x400 grid points until the flow reaches a Mach number of
12 and 15.5, respectively. The granular gas hits the wedge and a reflective
shock wave is generated. After the shock the flow has a higher volume fraction
and higher granular temperature and the maximum volume fraction reached
are νm

1 = 0.1033 at time 0.0425 for the low dense granular gas experiment,
and νm

2 = 0.5177 at time 0.0412 for the second one. In Fig. 8 we display the
volume fraction contour lines corresponding to both experiments at the times
indicated above, (top left and right, respectively) and the corresponding zoomed
regions near the corner, (bottom left and right, respectively). We did not found
significant differences by using our fifth-order accurate scheme instead of PHM,
since only shock waves are involved in these experiments.

5 Conclusions

In this paper we have implemented a robust approximate Riemann solver to
approximate the evolution of shock waves in inelastic granular gases, modeled by
means of the Euler equations together with an equation of state that represents
the fluidized granular gas until the close-packed limit, and an energy dissipation
term accounting for the energy loss by inelastic collisions of particles. We have
observed through our numerical experiments that blast waves propagating in
inelastic granular gases cluster at the contact wave until close-packed limit in
finite time. We also observed that our algorithm is able to transform the kinetic
energy applied on a vibrated granular layer into granular temperature under
the gravity field. We also computed a two dimensional supersonic granular flow
hitting a wedge under the action of gravity field. In spite we are not intending
to reproduce observed experimental data in this paper, we have shown that our
numerical method together with the model used behave in agreement with the
physics of the fluidized inelastic granular gas. Additional numerical experiments
in two dimensional inelastic granular gases are the object of future work.
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