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Abstract

The total variation based image denoising model of Rudin, Osher, and Fatemi
has been generalized and modified in many ways in the literature; one of
these modifications is to use the L1 norm as the fidelity term. We study the
interesting consequences of this modification, especially from the point of
view of geometric properties of its solutions. It turns out to have interest-
ing new implications for data driven scale selection and multiscale image
decomposition.
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1 Introduction

Variational models for image reconstruction have had great success. One of the
best known and influential examples is the total variation based model of Rudin,
Osher, and Fatemi (ROF)[17]. This model and its variants have been a very active
research topic. The idea behind the model is to exhibit the reconstructed image as
the minimizer of the following energy:

∫
D
|∇u| + λ

∫
D

(f − u)2 dx (1)

The functional is to be minimized over all u ∈ L2(D). Here D is a domain in RN

with Lipschitz boundary; it represents, for example, the computer screen. In this

1This work was supported in part by NSF contract DMS-9973341, NSF contract ACI-0072112,
ONR contract N00014-03-1-0888, and NIH contract P20 MH65166.
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paper, we will work with D = RN for convenience. The function f(x) represents
the observed and possibly degraded image, and is taken to be in L2(D). The second
integral in the functional is the fidelity term; it encourages the solution u(x) that
is being sought to approximate the observed image f(x). The first integral in the
functional is the regularization term; it is the essential novelty of the ROF model, as
it allows for the reconstruction of images with discontinuities across hypersurfaces.
Nevertheless, it disfavors oscillations and is responsible for the elimination of noise
in applications to noisy images.

The standard ROF model (1) is well known to have certain limitations. One
important issue is the loss of contrast in solutions even for noise free observed
images. For example, Strong and Chan studied in [18] the case when the observed
image f(x) is a disk, and showed that the solution to (1, for any given λ, is of the
form cf(x), where c ∈ [0, 1) is a constant. We never get c = 1, no matter how
large the constant λ is chosen. More generally, given any observed image f(x)
and λ > (2‖f‖∗)−1, it can be shown [10] for the corresponding solution u(x) that
‖f − u‖∗ = 1

2λ . Here, ‖ · ‖∗ denotes the dual norm of total variation. (See [10]
for definition of the dual norm, and proofs of the statements just mentioned). It is
in general desirable for image denoising algorithms to have a large class of “noise
free” images that they leave invariant. For the standard ROF model, as these results
show, that class consists of only the trivial image f(x) := 0.

Recently, work of Y. Meyer inspired research into understanding the role of the
fidelity term better. It highlighted the fact that the choice of a suitable fidelity term
can have far reaching consequences. For example, following up on Meyer’s ideas
Vese and Osher [20], and then Osher, Sole, and Vese [16] came up with variants
of the original model that replace the fidelity term with weaker norms. It is shown
in these works that this modification allows for much better separation of the high
frequency component of images, such as noise and texture, from the piecewise
smooth, or “cartoon”, part.

In this paper, we ask related but rather different questions. We study a version
of the ROF model that uses the L1-norm as a measure of fidelity between the
observed and denoised images. Given an observed image f(x) ∈ L1(RN ), this
model is based on the following variational problem

inf
u(x)∈BV (RN )

∫
RN

|∇u| + λ

∫
RN

|u(x) − f(x)| dx (2)

Our goal in this paper is to explore the consequences of this modest modification
on the standard ROF model. In particular, we shall obtain some results that allow
us to contrast the modified model (2) with the standard one (1). Also, the new
understanding we develop about the nature of the scale space, lack of uniqueness
of solutions, and lack of continuous dependence on data, will suggest applications
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beyond mere removal of noise for the modified model: We will argue that some
of these ordinarily undesirable characteristics can be real assets. Indeed, it turns
out that the L1 fidelity based model has many desirable, and some unexpected,
consequences in applications such as multiscale image decomposition, and data
driven parameter selection.

Some distinctions of the modified model (2) from the standard ROF model (1)
are immediate:

• The way the fidelity and regularization terms scale with respect to each other
in the modified and standard models is different. In particular, unlike the
standard model, the modified model is contrast invariant in the following
sense: If u(x) is a solution of the modified model for the observed image
f(x), then cu(x) is a solution of the modified model for the observed image
cf(x).

• The original model is strictly convex, and therefore its solution (the mini-
mizer of the functional) is unique. The modified model is not strictly con-
vex, leading to non-uniqueness of minimizers. This makes the scale space
generated by the modified model qualitatively very different – and, as ex-
plained in Sections 6 and 7, for certain purposes more suitable – than that of
the standard ROF model.

We concentrate especially on the scale space and geometric features of the
decomposition technique derived from this model. The analytical and numerical
results presented in this paper suggest the following major advantages of the L1

fidelity based model over the standard one:

• The regularization imposed on solutions by the L1 model is more geomet-
ric. This means that the regularization process has less dependence on the
contrast of image features than on their geometry. Indeed, as some of our
analytical results show, the L1 model almost decouples the level sets of the
given image from each other and treats them independently of their associ-
ated level (grayscale value).

• As distinct from the standard model, small features in the image maintain
their contrast even as the fidelity parameter λ is lowered, maintaining good
contrast until they suddenly disappear.

• An unexpected consequence of the modification is that it suggests a data
driven scale selection technique: it seems possible to identify certain critical
values of the parameter λ at which features at the corresponding scale go
through a discontinuous change.
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The ROF model with L1 fidelity was introduced and studied in the context of im-
age denoising and deblurring by many previous authors, for example by Alliney
and Nikolova in [1, 2, 3, 11, 12, 13]. Alliney’s previous work involves the varia-
tional model (2) in only one space dimension; moreover his results are restricted
to the discrete versions of the energy. Nevertheless, many of his observations are
directly relevant to our results (see, for instance, Proposition 1 that we quote from
his work), and some of our results (for instance part of Theorem 1) can be thought
of as continuum analogues of his results in arbitrary dimensions. In [11] Nikolova
shows that for certain types of noise the total variation regularization with L1 fi-
delity outperforms the standard model. And [12] contains many impressive nu-
merical results that clearly demonstrate the advantages of using the L1 norm for
fidelity term in some applications. In fact, the analysis presented in [11] applies
more generally to fidelity terms that are, like the L1 fidelity term and unlike the
L2 fidelity term, non-differentiable at the origin. The techniques of Nikolova also
allow her to study certain typical properties of minimizers to the ROF model and
its variants with different types of fidelity terms. For example, among the results
is a characterization of the staircasing effect. Moreover, she calls attention to the
fact that with L1 type fidelity terms, the solution reconstructs the given image ex-
actly at some pixels; this relates to the contrast preserving property we touched on
above. However, unlike the focus of this paper, results in [11, 12] mostly concern
discrete versions of the denoising energies and depend on the discretization size;
continuum analogues are not treated. Our focus in this paper is squarely on the
continuum energies so that we can study geometric properties of their minimizers
independently of the discretization.

We conclude the introduction with an outline of the remaining sections. Sec-
tion 2 introduces the notation that is used throughout the paper. Section 3 works
out the solution to minimization problems (1) and (2) in the simple case when the
observed image f(x) is the characteristic function of a disk in two dimensions.
This illustrates some of the results obtained in subsequent sections for more gen-
eral types of images. Section 4 consists of a collection of simple but useful facts
that follow immediately from the definitions of Section 2; these get used in the
following sections of the paper. Section 5 deals with properties of minimizers of
energy (2). In particular, it considers the case where the observed image is the
characteristic function of a bounded set. It recalls the known results for standard
ROF model in this case, and uses them for comparison. Section 6 elaborates on the
differences between the scale spaces generated by the two models given by (1) and
(2); it shows that the model based on L1 fidelity makes it possible to determine spe-
cial values of the parameter λ completely from the given observed image. Finally,
Section 7 presents numerical experiments and gives some implementation details.
The numerical results corroborate the overall picture suggested by the analytical
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results of the previous sections.

2 Notation

In this section we introduce notation that will be used throughout the paper to
compare the original ROF model 1 with the modified one 2 that uses L1-fidelity
term. First, we recall the standard definitions of total variation of a function and
the perimeter of a set [8, 9]. The total variation of a function u(x) ∈ L1

loc(R
N ) is

defined to be∫
RN

|∇u(x)| := sup
φ∈C1

c (RN ;RN )
|φ(x)|≤1∀x∈RN

−
∫
RN

u(x) div φ(x) dx.

The perimeter of a set Σ ⊂ RN is defined in terms of the above definition to be

Per(Σ) :=
∫
RN

|∇1Σ(x)|.

For a given possibly noisy image f(x) ∈ L1(RN ), we will denote the energy of
the total variation model with L1 fidelity E1(u, λ):

E1(u, λ) :=
∫
RN

|∇u| + λ

∫
RN

|f − u| dx

It will be compared, for f ∈ L1(RN ) ∩ L2(RN ), with the energy of the standard
ROF model, which we denote E2(u, λ):

E2(u, λ) :=
∫
RN

|∇u| + λ

∫
RN

(f − u)2 dx

Of particular interest are the minimum values of these energies as a function of the
parameter λ:

E1(λ) := min
u∈L1(RN )

E1(u, λ),

E2(λ) := min
u∈L2(RN )

E2(u, λ).

Minimizers of the standard ROF energy E2(·, λ) for a fixed λ are unique; this is
a consequence of its strict convexity. Minimizers of the modified energy E1(·, λ)
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need not be unique in general. We therefore introduce the following notation to
denote the set of minimizers of E1(·, λ) at a given λ ≥ 0:

M(λ) :=
{
u ∈ L1(RN ) : E1(u, λ) = E1(λ)

}
.

For any given f(x) ∈ L1(RN ) and λ ≥ 0, the set M(λ) is non-empty: a standard
argument shows the existence of minimizers. Because of non-uniqueness, M(λ)
can have several elements. Different elements of M(λ) can stand at different dis-
tances to the observed image f(x). This motivates the following notation:

µ+(λ) := sup
{
‖f − u‖L1(RN ) : u ∈ M(λ)

}
,

µ−(λ) := inf
{
‖f − u‖L1(RN ) : u ∈ M(λ)

}
.

The values of the parameter λ at which M(λ) contains elements whose distances
to the given image f(x) are different turn out to be special. We therefore adopt the
following notation to denote this set of special λ values:

S(f) :=
{
λ ∈ R+ : µ−(λ) �= µ+(λ)

}
.

To emphasize the dependence of Ei(·, λ), Ei(λ),M(λ), and µ±(λ) on the observed
image f(x) in addition to λ, we will write Ei(·, λ, f), Ei(λ, f), M(λ, f), and
µ±(λ, f) whenever necessary.

3 An example

In this section we consider a very simple but illustrative example. Namely, we
work out explicitly the solution to the problem of minimizing the two dimensional
version of E1(·, λ) in case when the observed image f(x) is given by the charac-
teristic function 1Br(0)(x) of a disk Br(0) that is centered at the origin and with
radius r. It is important to compare the result with the one for the standard ROF
model, which – as we noted in the introduction – was calculated in [18].

We start by recalling the calculation of [18]. For λ ≥ 0 and the observed image
given by f(x) = 1Br(0)(x), the unique minimizer uλ(x) of E2(·, λ) is given by:

uλ(x) ≡




0 if 0 ≤ λ ≤ 1
r

,(
1 − 1

λr

)
1Br(0)(x) if λ >

1
r

.

Turning now to the case of E1(·, λ), one can reason (for example with the help of
some of the results presented in Sections 5 and 6 of this paper) that for each λ ≥ 0,

6



2rπ

1−r

12
)0(   vs.)()( 2

−− λλ LB xxu
r

1 1  vs.)( −+ λλµ
2rπ

2/r

Figure 1: Left: Plot of ‖uλ(x) − f(x)‖2
L2 vs λ−1 for the example of Section 3, where uλ(x)

denotes the unique minimizer of E2(·, λ). Right: Plot of µ+(λ) vs. λ−1 for the ROF model with
L1 fidelity, using the example of Section 3.

every minimizer has to be of the form c1Br(0)(x) for some constant c ∈ [0, 1]. We
therefore need to minimize the function

E1(c1Br(0)(x), λ) = 2πrc + λπr2|1 − c|

over c ∈ [0, 1]. We get

M(λ) =




{0} if 0 ≤ λ <
2
r

,{
c1Br(0)(x) : c ∈ [0, 1]

}
if λ =

2
r

,{
1Br(0)(x)

}
if λ ≥ 2

r
.

Thus, we see that the solution is unique for all except one special value of the
parameter λ. The special value is related to radius of the disk; for more general
images we would expect such special values of the parameter λ to be related to the
geometric scale of distinct objects contained in the scene.

The difference between scale spaces generated by the standard and modified
ROF models is made abundantly clear by this simple example. When L1 fidelity is
used, unlike in the standard ROF model, the scale space is mostly constant; it only
makes a sudden transition at a special value of the scale parameter. This difference
can also be manifested by plotting the “fidelity of minimizer” as a function of the
parameter λ for each model and comparing the qualitative properties. Figure 1
shows the plots obtained based on the minimizers calculated above.

This example brings out another elementary aspect of using an L1 fidelity term
with total variation regularization. Fix a λ > 0. Then, the unique minimizer of
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E1(·, λ) with the observed image f(x) = 1Br(0)(x) is identically 0 if r < 2
λ , but

1Br(0)(x) if r > 2
λ . Thus the dependence of the solution to the L1 model on the

observed image is not continuous with respect to, say, the L1 norm. This is clearly
related to the lack of uniqueness in solutions to the model, and is a price to pay
for having solutions in which features of interest maintain good contrast until they
are completely eliminated. However, Sections 6 and 7 explain some applications
for which such a discontinuity can be actually desirable, and Proposition 5 shows
that certain important features of the scale space are continuous as a function of
observed signal.

4 Basic facts

In this section, we collect a number of elementary facts that follow immediately
from the definitions introduced in the previous section. These results will be useful
in the subsequent sections.

The following claim shows that the minimum energies Ei(λ) are well-behaved
functions of the parameter λ:

Claim 1 For any given observed image f(x) ∈ L1(RN ) the function E1(λ), and
for any given observed image f(x) ∈ L2(RN ) the function E2(λ) satisfy the fol-
lowing properties:

1. Ei(λ) for i = 1, 2 are increasing and concave.

2. Ei(0) = 0 for i = 1, 2.

3. 0 ≤ E1(λ) ≤ ‖f‖L1λ and 0 ≤ E2(λ) ≤ ‖f‖2
L2λ for all λ ∈ [0,∞).

4. Ei(λ) are Lipschitz continuous for i = 1, 2.

Proof: Ei(λ) are defined as pointwise infema of a collection of linear functions
that are increasing in λ; this makes them increasing and concave. Statements 2 and
3 follow from the trivial fact that Ei(λ) ≤ Ei(0, λ) for i = 1, 2. Statement 4 now
follows from the first three. �

Claim 2 The set M(λ) is closed and convex.

Proof: This follows from convexity of the energy E1. �

The following claim shows that the fidelity of the minimizer to the original
ROF model varies continuously as a function of λ. This should be contrasted with
the results for the L1 model that are obtained in the subsequent sections.
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Claim 3 Given f(x) ∈ L2(RN ), for each λ ≥ 0 let uλ(x) denote the unique
minimizer of E2(·, λ). Then the function λ → ‖f − uλ‖L2 is continuous.

Proof: Fix λ∗ ≥ 0 and let uλ∗(x) be the unique minimizer of E2(·, λ∗). Let
{λj}∞j ⊂ R+ converge to λ∗. Consider the sequence of corresponding minimizers
{uλj

}. The obvious relation E2(uλj
, λj) ≤ E2(0, λj) = λj‖f‖2

L2 implies that the
sequence has uniformly bounded total variation and L2-norm. It also implies that
‖uλ − f‖L2 ≤ ‖f‖L2 for every λ ≥ 0. We may therefore pass to a subsequence,
also denoted {uλj

}, and find a v ∈ L2(RN ) such that uλj
(x) → v(x) pointwise

a.e. Note that by Fatou ‖v − f‖L2 ≤ lim infj→∞ ‖uλj
− f‖L2 . Furthermore, by

the standard lower semi-continuity result we have
∫ |∇v| ≤ lim infj→∞

∫ |∇uλj
|.

Hence we get that E2(v, λ∗) ≤ lim infj→∞ E2(uλj
, λj).

On the other hand, E2(uλ∗ , λ∗) ≥ lim supj→∞ E2(uλj
, λj). To see this, sup-

pose not. Then there is ε > 0 and arbitrarily large j such that E2(uλ∗ , λ∗) ≤
E2(uλj

, λj) − ε. But also, limj→∞ E2(uλ∗ , λj) = E2(uλ∗ , λ∗). These two state-
ments mean E2(uλ∗ , λj) < E2(uλj

, λj) for some large j, which is a contradiction
since uλj

are supposed to be minimizers of E2(·, λj). This, along with the remarks
of the previous paragraph, adds up to the following conclusion:

lim sup
j→∞

E2(uλj
, λj) ≤ E2(uλ∗ , λ∗) ≤ E2(v, λ∗) ≤ lim inf

j→∞
E2(uλj

, λj).

We thus see that v is a minimizer of E2(·, λ∗); by uniqueness of minimizers of
E2(·, λ∗), we get that v = uλ∗ .

If λ∗ = 0, then uλ∗ = 0 and so ‖uλ∗ − f‖L2 = ‖f‖L2 . Recalling from above
that ‖uλ − f‖L2 ≤ ‖f‖L2 for all λ, we see that in this case

lim sup
j→∞

‖uλj
− f‖L2 ≤ ‖uλ∗ − f‖L2 ≤ lim inf

j→∞
‖uλj

− f‖L2

which establishes continuity of the map in question at λ = 0.
If λ∗ > 0, we reason as follows: We must once again have lim supj→∞ ‖uλj

−
f‖L2 ≤ ‖uλ∗ − f‖L2 , which immediately leads to the conclusion of the claim. To
see this, we suppose it’s false and proceed as we did in the previous paragraphs.
There is then arbitrarily large j and an ε > 0 such that ‖uλ∗ − f‖L2 ≤ ‖uλj

−
f‖L2 − ε. But then

E2(uλ∗ , λ∗) ≤ lim inf
j→∞

E2(uλj
, λj) − ελj .

Also, E2(uλ∗ , λj) → E2(uλ∗ , λ∗) as j → ∞. These last two statements lead as
before to the contradictory statement that E2(uλ∗ , λj) < E2(uλj

, λj). �
We will see whether the analogue of Claim 3 holds for E1. In that regard, we

first make the following basic observation:
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Claim 4 Let λ2 > λ1 ≥ 0, and assume that uλ1 and uλ2 are any two minimizers
of E1(·, λ1) and E1(·, λ2) respectively. Then:

‖uλ1 − f‖L1(RN ) ≥ ‖uλ2 − f‖L1(RN ).

Proof: Suppose ‖uλ2 − f‖L1 > ‖uλ1 − f‖L1 . Then, since uλ1 ∈ M(λ1), we have
E1(uλ1 , λ1) ≤ E1(uλ2 , λ1). We then have

E1(uλ1 , λ2) = E1(uλ1 , λ1) + (λ2 − λ1)‖uλ1 − f‖L1

≤ E1(uλ2 , λ1) + (λ2 − λ1)‖uλ1 − f‖L1

< E1(uλ2 , λ1) + (λ2 − λ1)‖uλ2 − f‖L1

= E1(uλ2 , λ2).

which is a contradiction, since uλ2 ∈ M(λ2) by hypothesis. �

Corollary 1 The functions µ±(λ) are decreasing. In fact,

µ−(λ1) ≤ µ+(λ1) ≤ µ−(λ2) ≤ µ+(λ2)

whenever λ1 > λ2 ≥ 0.

The functions µ±(λ) are the analogue for E1 of ‖uλ − f‖L2 in Claim 3. These
functions in general can be discontinuous; in fact their set of discontinuity is pre-
cisely S(f) according to our notation. The Corollary above allows us to make the
following simple statement about the discontinuities of these functions:

Claim 5 For any given f ∈ L1(RN ), the set S(f) is at most countable.

Proof: If λ ∈ S(f), then µ−(λ) < µ+(λ). By the corollary above, at such a λ
both µ− and µ+ have a jump discontinuity. The set of discontinuities of a monotone
function are at most countable. �

Finally, for completeness let us state the following rather obvious fact about
the asymptotic value of the functions µ±(λ) as λ → ∞:

Claim 6 Given f(x) ∈ L1(RN ), we have limλ→∞ µ±(λ) = 0.

Proof: Given ε > 0 we can find fε(x) ∈ BV (RN ) such that ‖fε − f‖L1 ≤ ε
2 . If

uλ(x) ∈ M(λ) with µ+(λ) = ‖uλ − f‖L1 , then

µ−(λ) ≤ µ+(λ) ≤ 1
λ

E1(uλ, λ) ≤ 1
λ

E1(fε, λ) ≤ 1
λ

∫
|∇fε| + ε

2
.

10



Hence, for all large enough λ we have µ±(λ) ≤ ε. �

The following fact is taken directly from [2]. It says that any image u∗(x)
which arises as the solution to model (2) for some observed image f(x) is in fact
also the solution to model (2) with observed image f(x) taken to be u∗(x) itself
provided that the parameter λ is taken large enough. We include it as a good way
to emphasize the difference of model (2) from (1) in regard to the loss of contrast
in solutions.

Proposition 1 Let λ∗ ≥ 0, f(x) ∈ L1(RN ), and u∗(x) ∈ M(λ∗, f). Then for
every λ ≥ λ∗ we have u∗(x) ∈ M(λ, u∗).

Proof: See [2].

5 Minimizers of E1

In this section, we study the behavior of the ROF model with L1 fidelity on simple
images. Our motivation is twofold. First, studying the behavior of image denoising
models on simple images is a first step towards understanding the type of images
they can successfully process. Second, this type of question allows us to compare
different models. And in fact, we will stress the difference of these results from
the analogous ones obtained for the standard ROF model by previous authors. In
particular, our results will bolster the intuitive observation that the L1 fidelity term
leads to more geometric regularizations.

The following proposition constitutes our starting point. It shows that the ROF
model with L1 fidelity term almost decouples the level sets of the given image from
each other; it almost becomes a geometry problem for each level set, independent
of the level.

Proposition 2 The energy E1(u, λ) can be rewritten as follows:

E1(u, λ) =
∫ ∞

−∞
Per

({x : u(x) > µ})

+
∣∣∣{x : u(x) > µ} � {x : f(x) > µ}

∣∣∣ dµ (3)

Proof: Recall the coarea formula for functions of bounded variation (see [9] or
[8]): ∫

RN

|∇u| =
∫ ∞

−∞
Per

({x : u(x) > µ}) dµ (4)
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Also, there is the following “layer cake” formula:∫
RN

|u − f | dx =
∫
{u>f}

|u − f | dx +
∫
{f>u}

|u − f | dx

=
∫
{u>f}

∫ u(x)

f(x)
dµ dx +

∫
{f>u}

∫ f(x)

u(x)
dµ dx

=
∫
RN

∫
R

1{u>f}(x)1[f(x),u(x))(µ) + 1{f>u}(x)1[u(x),f(x))(µ) dµ dx

=
∫
R

∫
RN

1{u>f}(x)1[f(x),u(x))(µ) + 1{f>u}(x)1[u(x),f(x))(µ) dx dµ

where we simply changed the order of integration in the last step. But now we
have:

1{u>f}(x)1[f(x),u(x))(µ) = 1 iff x ∈ {u > f} ∩ {u > µ} ∩ {f > µ}c

and 0 otherwise, and

1{f>u}(x)1[u(x),f(x))(µ) = 1 iff x ∈ {f > u} ∩ {u > µ}c ∩ {f > µ}
and 0 otherwise. That means

1{u>f}(x)1[f(x),u(x))(µ) + 1{f>u}(x)1[u(x),f(x))(µ) = 1{u>µ}�{f>µ}(x)

Therefore∫
RN

|u − f | dx =
∫ ∞

−∞
|{x : u(x) > µ} � {x : f(x) > µ}| dµ

Putting these formulae together gives the one in the statement of the claim. �

We now explore some consequences of Proposition 2. First, we consider what
happens when the observed image is binary. In other words, we assume that f(x)
is the characteristic function of a domain. We assume that the domain is bounded,
but for now make no assumptions about the boundary of the domain.

Theorem 1 If the observed image f(x) is the characteristic function of a bounded
domain Ω ⊂ RN , then for any λ ≥ 0 there is a minimizer of E1(·, λ) that is also the
characteristic function of a (possibly different) domain. In other words, when the
observed image is binary, then for each λ ≥ 0 there is at least one u(x) ∈ M(λ)
which is also binary.

In fact, if uλ(x) ∈ M(λ) is any minimizer of E1(·, λ), then for almost every
µ ∈ [0, 1] we have that the binary function

1{x:uλ>µ}(x)

is also a minimizer of E1(·, λ).
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Proof: Let f(x) := 1Ω(x), where Ω is a bounded domain in RN . It can be easily
seen that any minimizer u(x) of E1 satisfies u(x) ∈ [0, 1] for a.e. x ∈ RN .
Formula (3) of Proposition 2 above becomes in this case:

E1(u, λ) =
∫ 1

0
Per

({x : u(x) > µ}) + λ
∣∣ {x : u(x) > µ} � Ω

∣∣ dµ

This suggests we consider for each level set of u(x) the following geometry prob-
lem:

min
Σ⊂RN

(
Per(Σ) + λ

∣∣Σ � Ω
∣∣). (5)

Standard compactness and lower semi-continuity facts show the existence of mini-
mizers; let Σ∗ ⊂ RN be one of them. Let uλ(x) be any minimizer of E1(·, λ), i.e.
uλ(x) ∈ M(λ). Set

Σ(µ) :=
{
x : u(x) > µ

}
.

Then,
Per

(
Σ(µ)

)
+ λ

∣∣Σ(µ) � Ω
∣∣ ≥ Per(Σ∗) + λ

∣∣Σ∗ � Ω
∣∣ (6)

for a.e. µ ∈ [0,∞). This now immediately implies that

E1(uλ(x), λ) ≥ E1(1Σ∗(x), λ)

which means that 1Σ∗(x) is also a minimizer of E(·, λ).
Furthermore, since uλ(x) is a minimizer, the inequality of (6) is in fact an

equality for a.e. µ ∈ [0, 1]. Thus, Σ(µ) is a minimizer of the geometry problem (5)
and 1Σ(µ)(x) is a minimizer of E1(·, λ) for a.e. µ. �

Remark: A version of the first statement of Theorem 1 was obtained for the dis-
crete analogue of model (2) in one space dimension by Alliney in [3]. �
Remark: The claim leaves open the possibility that for a given λ ≥ 0 there might
be u ∈ M(λ) that takes more than two values. �

Remark: The conclusion of Theorem 1 is interesting because it establishes the
equivalence of a non-convex problem (the geometry problem of minimizing over
only binary images, which is encountered in many applications such as improv-
ing the appearance of fax documents) to a convex problem (minimizing over all
images). Indeed, it follows form the corollary that to obtain a solution to (5), one
can first minimize E1(·, λ) taking f(x) = 1Ω(x) as the observed image, and then
look at a level set of the solution obtained. Whether this observation can be turned
into a useful computational tool needs to be explored, but this question will not be
pursued any further here. �

The previous two claims highlight an important qualitative difference of the L1

model from the standard ROF model. In contrast to the content of these claims, it is
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easy to show that for certain types of binary images (even with smooth edge sets)
the minimizer of the standard ROF model takes more than two values for every
large enough choice of the parameter λ.

We do not know if the following comparison principle holds for the geometry
problem (5): If Ω1 ⊂ Ω2 and Σ1,Σ2 are minimizers of (5) with Ω = Ω1 and
Ω = Ω2 respectively, then do we necessarily have Σ1 ⊂ Σ2? If true, this would
imply, in particular, uniqueness for solutions of (5). In any case, we can make the
following statement:

Corollary 2 If the observed image f(x) is the characteristic function of a bounded,
convex domain Ω ⊂ RN , then for almost every λ ≥ 0 the minimizer of E1(·, λ) is
unique and is the characteristic function of a set contained in Ω.

Proof: Let λ ∈ [0,∞) \ S(f). And let uλ(x) ∈ M(λ). We recall from the
remark that follows Theorem 1 that, using the same notation as in that remark, the
set Σ(γ) minimizes the geometry problem (5) for almost every γ ∈ [0, 1]. Let
1 ≥ γ1 > γ2 ≥ 0, and assume that Σ(γ1) �= Σ(γ2) both minimize the geometry
problem. By definition, we have Σ(γ1) ⊂ Σ(γ2). Furthermore, convexity of Ω
implies that

Per(Σ(γi) ∩ Ω) ≤ Per(Σ(γi)) for i = 1, 2.

Since 1Σ(γ1)(x) and 1Σ(γ2)(x) are minimizers, it follows that Σ(γ1) ⊂ Σ(γ2) ⊆ Ω.
Hence, |Σ(γ1) � Ω| �= |Σ(γ2) � Ω|. But then λ ∈ S(f), which is a contradiction.
We thus reached the conclusion that if λ ∈ [0,∞) \ S(f), then any minimizer
of E1(·, λ) is necessarily binary (i.e. the characteristic function of a set). Now
suppose that u1(x) and u2(x) are two binary minimizers of E1(·, λ). By convexity
of E1(·, λ), we then have that 1

2(u1(x) + u2(x)) is also a minimizer, and thus
binary. But the average of two binary functions is binary only if the two functions
are identical.

Thus, whenever λ ∈ [0,∞) \ S(f), the minimizer of E1(·, λ) is unique, and
is binary: it is of the form 1Σ(x) for some set Σ. The argument above shows that
Σ ⊆ Ω. And Claim 5 says that S(f) is at most countable, and thus negligible. That
proves the claim. �

As an aside, we note the following result about problem (5) that follows im-
mediately from the previous corollary (perhaps it can be obtained also in a less
roundabout way):

Corollary 3 Let Ω be a bounded, convex domain in RN . Then, for almost every
λ ≥ 0 the solution of problem (5) is unique.
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Proof: If Σ1 and Σ2 are solutions to (5), then 1Σ1(x) and 1Σ2(x) are minimizers
of E1(·, λ) with the observed image given by f(x) = 1Ω(x). Conditions on Ω
imply that Corollary 2 applies so that Σ1 = Σ2. That proves the claim. �

We will next consider some simple images f(x) for which the minimizer of
E1(·, λ) turns out to be precisely the image f(x) itself for every large enough λ.
In Section 1, we recalled a result from Meyer’s lecture notes [10] which says that
for the standard ROF model given by E2(·, λ) the only such image is f(x) := 0.
For E1, however, there are many such images, as shown by Proposition 1 that
we quoted in Section 2 from [3]. The following Lemma will be instrumental in
establishing whether certain simple observed images f(x) have this property.

Lemma 1 Given an observed image f(x) ∈ BV (RN ), assume that there is a
vector field φ(x) with the following properties:

1. φ(x) ∈ C1
c (RN ;RN ),

2. |φ(x)| ≤ 1 for all x ∈ RN ,

3.
∫
RN

f(x) div φ(x) dx =
∫
RN

|∇f |.

Then there exists a threshold λ∗ ≥ 0 such that M(λ) = {f(x)} for all λ > λ∗. In
other words, the unique minimizer of E1(·, λ) is given by the observed image f(x).

Proof: Set λ∗ := maxx∈RN |div φ(x)|. Take any λ > λ∗. Then, given any
u(x) ∈ BV (RN ) we have:

E1(u, λ) =
∫

|∇u| + λ

∫
|u − f | dx

≥
∫

udiv φdx + λ

∫
|u − f | dx

=
∫

f div φdx + λ

∫
|u − f | dx +

∫
(u − f) div φdx

≥ E1(f, λ) +
(
λ − max

x∈RN
|div φ(x)|

) ∫
|u − f | dx.

Since λ > λ∗ := max |div φ(x)|, the last inequality shows that E1(u, λ) >
E1(f, λ) unless u ≡ f . Since u is a minimizer, it must in fact be the case that
u ≡ f . �

Lemma 1 can now be applied, for example, to binary images to obtain an im-
portant class of exact solutions. This requires making some smoothness assump-
tion about the interface between then two values of the binary function:
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Theorem 2 Let Ω ⊂ RN be a bounded domain with C2 boundary. Let the ob-
served image f(x) be given by f(x) = 1Ω(x). Then there exists a threshold λ∗ ≥ 0
such that whenever λ > λ∗ the unique minimizer of E1(·, λ) is the observed image
f(x) = 1Ω(x) itself.

Proof: Since the boundary ∂Ω of the bounded domain Ω is assumed to be C2, the
outward unit normal vector field n(x) : ∂Ω → SN−1 of ∂Ω can be extended in a
C1 manner to a tubular neighborhood of ∂Ω, so that one gets a vector field φ(x) ∈
C1

c (RN ;RN ) such that φ(x)
∣∣
x∈∂Ω

= n(x), and |φ(x)| ≤ 1 for all x ∈ RN . But
then ∫

RN

f div φdx =
∫

Ω
div φ(x) dx =

∫
∂Ω

φ(x) · n(x) dσ

= Per(∂Ω) =
∫
RN

|∇f | dx.

Hence, the vector field φ(x) satisfies all the requirements of Lemma 1, from which
the conclusion of the present claim follows. �

At this point it is worth recalling the behavior of the standard ROF model on
binary images of the form f(x) = 1Ω(x). As we noted above, simple considera-
tions show that the minimizer of the standard ROF model almost never turns out
to be u(x) = f(x) = 1Ω(x). A related question is whether the solution u(x) has
at least the correct “set of edges”. In case Ω is a ball, one can calculate the mini-

mizer explicitly [18]; it turns out to be u(x) = c1Ω(x), where c = 1 − Per(Ω)
2λ|Ω| . In

particular, u(x) has the same set of edges as f(x). The results of [4] generalize the
results of [18], but also show that the class of binary images that have this weaker
property (i.e. images for which the solution to the standard ROF model turns out
to be a constant multiple of the observed image) is still rather limited; for example,
there are smooth but non-convex shapes that lack this property.

Remark: Theorem 2 can be easily extended to images of a more general form.
Indeed, if the level sets {x : f(x) = γ} of the given image f(x) are smooth and
vary smoothly with respect to γ, the same conclusion holds. We also see, among
other things, that such an image f(x) cannot have strict local extrema, for at a
strict local extrema the level sets shrink to a point. Moreover, there are also binary
images that lack this property (i.e. which are not exactly recovered for any λ ≥ 0,
no matter how large). In fact, a repetition of some of the arguments of Meyer given
in his lecture notes [10] on the standard ROF model show that the characteristic
function of, say, a square cannot arise as the solution to the ROF model with L1

fidelity, either, no matter what the observed image f(x) ∈ L1 is, and no matter
how large the parameter λ is chosen. �
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The last few claims dealt with the behavior of the L1 fidelity based model for
large values of the parameter λ. Next, we consider what happens when λ ≥ 0 is
small enough. The following claim is a very simple application of the isoperimetric
inequality:

Proposition 3 Let R > 0. Then, there exists a threshold λ∗ = λ∗(R,N) such that
if f ∈ L1(RN ) with supp(f) ⊂ BR(0), then M(λ) = {0} for any λ < λ∗. In
other words, the unique minimizer of E1(·, λ) is given by u(x) ≡ 0.

Proof: Let C = C(N) be the isoperimetric constant:
∫
RN

|∇u| ≥ C(N)‖u‖
L

N
N−1 (RN )

for all u ∈ BV (RN ).

Then we set

λ∗(R,N) :=
C(N)

Rω
1
N
N

where ωN is the volume of the unit ball in RN . Take a λ > λ∗ and let u(x) ∈
M(λ). Then E1(u, λ) ≤ E1(0, λ). By the isoperimetric inequality, that means

C(N)‖u‖
L

N
N−1 (RN )

+ λ‖u − f‖L1(RN ) ≤ λ‖f‖L1(RN ) = λ‖f‖L1(BR(0)).

We apply Holder’s inequality to the first term on the left hand side after splitting it
into integrations over BR(0) and Bc

R(0). That gives

C(N)

Rω
1
N
N

‖u‖L1(BR(0))+λ‖u−f‖L1(BR(0))+C(N)‖u‖
L

N
N−1 (Bc

R(0))
≤ λ‖f‖L1(BR(0))

which shows that if λ < C(N)

Rω
1
N
N

= λ∗, then

‖u‖L1(BR(0)) = ‖u‖
L

N
N−1 (Bc

R(0))
= 0.

In other words, u ≡ 0. �

Remark: This behavior of the L1 model is to be expected, based on its contrast in-
variance, as we have already noted in the introduction. It differs from the behavior
at small λ values of the standard ROF model which, according to [10], entails not
just the support of a given compactly supported image f(x) but its ‖ · ‖∗-norm. �
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6 Scale space and the set S(f)

The set S(f) of discontinuities of the functions µ± play a distinguished role in the
scale space generated by varying the parameter λ in the L1 model. As the value of
λ is gradually decreased, minimizers of the image models become coarser as small
scale objects in the image merge to form larger scale structures. Intuitively, for the
L1 model we can expect the values of λ ∈ S(f) to correspond to scales of distinct
objects that make up the image. These are the values of λ at which the scale space
makes a rapid and drastic transition.

We would first like to prove that the set S(f) is non-empty for the kind of
images we have been considering in the previous sections, namely images of the
form f(x) = 1Ω(x) where Ω is a bounded domain. Our arguments are based on
verifying this claim for the special case where the given image is the characteristic
function of a ball, and then generalizing the result to f(x) = 1Ω(x) by comparing
Ω with a ball that is contained in Ω.

Lemma 2 Let Ω be a bounded domain in R2, and assume that BR(p) ⊂ Ω. Con-
sider the observed image given by f(x) = 1Ω(x). Then for any λ ≥ 0 and
r ∈ (0, R) we have

E1(1Br(p)(x), λ) > min
{

E1(0, λ), E1(1BR(p)(x), λ)
}

.

Proof: Since Br(p) ⊂ BR(p) ⊂ Ω for each r ∈ (0, R), we have

‖1Ω(x) − 1Br(p)(x)‖L1(R2) = |Ω| − πr2.

That means
E1(1Br(p)(x), λ) = λ

(
|Ω| − πr2

)
+ 2πr.

Considering E1(1Br(p)(x), λ) as a function of r, we see that it achieves its mini-
mum on [0, R] strictly at the end points of the interval. �

In order to show that µ±(λ) is a discontinuous function, we will show that its
range omits a full interval of values, but does include certain values on either side
of that interval. The next claim exhibits such an omitted interval:

Proposition 4 Let Ω be a bounded domain in R2, and let BR(0) ⊂ Ω. Consider
the observed image given by f(x) = 1Ω(x). There is no λ ∈ R+ such that

|Ω| − πR2 < µ+(λ) < |Ω|.

Proof: Suppose there is a λ ≥ 0 such that |Ω| − πR2 < µ+(λ) < |Ω|. There
exists u(x) such that u(x) ∈ M(λ) and ‖u − f‖L1(RN ) = µ+(λ). As before, let
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Σ(γ) := {x : u(x) > γ}. By Proposition 2, we have 1Σ(γ)(x) ∈ M(λ) for a.e.
γ ∈ (0, 1). Therefore, for a.e. γ we have

‖1Σ(γ)(x) − f‖L1(R2) < |Ω|

(otherwise µ+(λ) ≥ |Ω|). It also cannot be the case that |Σ(γ) � Ω| ≤ |Ω| − πR2

for a.e. γ ∈ (0, 1) since we know that

∫ 1

0
|Σ(γ) � Ω| dγ = ‖u − f‖L1(R2) = µ+(λ) > |Ω| − πR2.

Thus, there exists γ∗ ∈ (0, 1) such that

1Σ(γ∗)(x) ∈ M(λ) and |Ω| − πR2 < ‖1Σ(γ∗)(x) − f(x)‖L1(R2) < |Ω|.

Case 1: |Σ(γ∗)| ≥ πR2. But then Per(BR(0)) ≤ Per(Σ(γ∗)), and

|Ω � BR(0)| = |Ω| − πR2 < ‖1Σ(γ∗)(x) − f(x)‖L1 .

Hence, E1(1BR(0)(x), λ) < E1(1Σ(γ∗)(x), λ). This is a contradiction, since 1Σ(γ)(x)
was supposed to be a minimizer.

Case 2: |Σ(γ∗)| < πR2. In this case, take r = 1√
π
|Σ(γ∗)| 12 . Since r ∈ (0, R), we

have that Br(0) ⊂ Ω. This implies

‖1Br(0)(x) − f(x)‖L1(R2) ≤ ‖1Σ(γ∗)(x) − f(x)‖L1(R2).

Moreover, as before, Per(BR(0)) ≤ Per(Σ(γ∗)). Therefore,

E1(1Br(0)(x), λ) ≤ E1(1Σ(γ∗)(x), λ) = E1(u(x), λ).

On the other hand, by Lemma 2 we have

E1(1Br(0)(x), λ) > min
{

E1(0, λ), E1(1BR(0)(x), λ)
}

.

This is a contradiction, since u(x) ∈ M(λ). �

Theorem 3 Let Ω be a non-empty, bounded domain in R2. Consider the observed
image given by f(x) = 1Ω(x). Then the functions µ±(λ) are discontinuous.

Proof: By Proposition 3, we have that µ+(λ) = ‖f‖L1 = |Ω| for all small enough
λ. On the other hand, by Claim 6 we have that µ±(λ) → 0 as λ → ∞. Yet by
Proposition 4, there is a range of values near |Ω| that the function µ+ cannot take.
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It therefore has to be discontinuous. Discontinuity of µ− follows form that of µ+

via Claim 4. �

Remark: This should be contrasted with the situation for the standard total varia-
tion model (with L2 fidelity), which is explained in Claim 3. �

We thus see that the scale spaces generated by the two models, the standard
ROF model and the one with L1 fidelity, are very different. With the standard
ROF model, pronounced objects of distinct scale with sharp edges in the image
gradually lose their contrast and merge with their neighbors as the parameter λ is
lowered. With the L1 model, such objects maintain their contrast with respect to
their neighbors – however their boundaries might be gradually smoothed out. This
goes on until a critical value of λ is reached – one that belongs to the set S(f), at
which point the object suddenly merges with a neighboring one.

At this point, it is also worth comparing the scale space generated by the L1

model with that generated by anisotropic diffusion via motion by mean curvature of
level sets. The two are drastically different. This can be seen most easily in the case
when f(x) is the characteristic function of a disk. The scale space generated by
motion by curvature consists of a family of concentric disks shrinking gradually to
a point. Hence the same feature, i.e. the original disk, appears at many intermediate
scales, albeit in different sizes. On the other hand, the scale space generated by the
total variation model with L1 fidelity term consists of either the original disk or the
constant background at any given scale.

Finally, we return to the topic of continuous dependence on the observed signal
for the L1 model. Despite our remarks in Section 3, we show in the next claim that
the fidelity of minimizer versus λ graph depends on the observed image continu-
ously.

Proposition 5 Let {fj(x)}∞j=1 be a sequence in L1(RN ) that converges to f(x)
in L1. Then, for all λ ∈ [0,∞) \ S(λ, f), the sequence µ±(λ, fj) converges to
µ±(λ, f) as j → ∞.

Proof: Fix λ ∈ [0,∞) \ S(f). For each j, we can find a uj ∈ M(λ, fj) such
that µ+(λ, fj) = ‖uj − fj‖L1 . This sequence is bounded in total variation and L1;
we may therefore pass to a subsequence, also denoted uj , and find a u ∈ L1(RN )
such that uj → u pointwise a.e. Proceeding exactly as in the proof of Claim 3, we
can now show, based on lower semi-continuity property, that u ∈ M(λ, f) and

µ±(λ, f) = ‖u − f‖L1 ≤ lim inf
j→∞

‖uj − fj‖L1 = lim inf
j→∞

µ+(λ, fj).

Exactly as in that proof, we can also show, based on the fact that E1(·, λ, fj) are a
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continuous perturbation in L1 from E1(·, λ, f), that actually

µ±(λ, f) = ‖u − f‖L1 ≥ lim sup
j→∞

‖uj − fj‖L1 = lim sup
j→∞

µ+(λ, fj)

That proves the claim. �

7 Computation

In this section, we show numerical examples that bring out unique features of the
total variation based denoising model with L1 fidelity term. We also give some
details on the numerical schemes used to obtain these results.

Our computations are based on gradient descent schemes for decreasing the
energies involved. The non-differentiability of the terms involved in the energies
call for some sort of regularization. The regularized versions of energies E1(·, λ)
and E2(·, λ) used in our numerical experiments are the following:

Eε,δ
1 (u, λ) :=

∫
RN

√
|∇u|2 + ε + λ

∫
RN

√
(f − u)2 + δ dx,

Eε
2(u, λ) :=

∫
RN

√
|∇u|2 + ε + λ

∫
RN

(f − u)2 dx.

This type of approximation to total variation based models is very standard. The
discrete versions of these energies lead to the following equally standard explicit
gradient descent schemes in two space dimensions:

un+1
i,j − un

i,j

δt
= D−

x


 D+

x un
i,j√

(D+
x un

i,j)2 + (D+
y un

i,j)2 + ε




+ D−
y


 D+

y un
i,j√

(D+
x un

i,j)2 + (D+
y un

i,j)2 + ε


 + λ

(f − un
i,j)(

(f − un
i,j)2 + δ

)α .

where α = 1
2 for Eε,δ

1 and α = 0 for Eε
2 . Here, D+ and D− denote forward and

backward difference quotients, respectively, in the direction of their subscript. We
note that efficient numerical minimization of energies considered in this work is a
topic onto itself; no doubt there are better ways to do it then the gradient descent
approach taken and the specific choice of scheme made above.

An important point we need to clarify is the following. Although as we already
noted several times the energy E1(·, λ) is not strictly convex and its minimizers in
general lack uniqueness, for any given δ > 0 the approximate energy Eε,δ

1 (·, λ) is
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strictly convex so that its minimizers enjoy uniqueness. It is these minimizers that
we have computed. Moreover, it is a very routine matter to verify that a sequence
of minimizers of Eε,δ

1 (·, λ) converges to the set of minimizers M(λ) of E1(·, λ)
as ε, δ → 0+. The analogous convergence statement is of course true also for a
sequence of minimizers of Eε

2(·, λ).
Figures 2 and 3 compare the scale spaces generated by the standard total vari-

ation model and the one with L1 fidelity on a synthetic image. This experiment
makes the more geometric nature of the L1 model abundantly clear. The observed
image consists of squares of various sizes and gray levels. In the scale space gener-
ated by the standard total variation model, the squares gradually lose their contrast
(while at the same time their geometries get regularized) and gradually disappear.
Moreover, some large squares with low contrast against the background – namely
the square near the upper left corner – disappear before some smaller squares that
have higher contrast against the background – namely the two intermediate sized
squares along the diagonal. On the other hand, in the scale space generated by the
model with L1 fidelity, the squares get processed only in terms of their geometry:
they preserve their contrast until all of a sudden they disappear. The contrast of
the squares plays no role in determining the order in which they are removed; that
order is determined completely in terms of the geometry of the features.

Figure 4 shows the graph of the fidelity of the minimizer vs. λ for the standard
total variation model, and the model with L1 fidelity. An important ambiguity we
need to resolve is how nonuniqueness of minimizers of E1(·, λ) affects the fidelity
vs. λ plot for E1(·, λ). To answer this question, recall that the fidelity of various
minimizers of E1(·, λ) differ from each other only at countably many values of λ.
In particular, all ways of obtaining the second graph in Figure 3 yield plots that
are identical up to a set of measure 0. Hence, there is no ambiguity in the results
shown.

Discontinuities in the minimizer’s fidelity versus λ graph for the L1 model cor-
respond to distinguished values of the parameter λ. As can be seen from the results,
these are the values of λ at which a drastic change in the scale space takes place.
Namely, at such values of λ one of the “features” (squares in this example) gets
eliminated. There is no such distinguished value of λ in the plot for the standard
ROF model at which the graph becomes discontinuous (as shown both by our the-
oretical results and by the numerical example shown). However, the graph in that
case might have kinks, which are of course harder to detect than discontinuities.
Thus, unlike the standard total variation model, the model with L1 fidelity thus
suggests a method for data driven parameter selection.

The special values of parameter λ obtained from the fidelity of minimizer graph
via L1 model can be used in many ways. For example, denoising models are some-
times used for generating multi-scale decomposition of images, for example as in
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[19]. In such applications, it is necessary to select a schedule for the parameter λ a
priori. In [19], this schedule is chosen in the form λ = 2jλ0 with j = 1, 2, 3, . . .,
and the initial value λ0 is arbitrarily chosen by the user. The L1 scale space sug-
gests a more natural, data driven way to select these parameters using the disconti-
nuities in the fidelity of minimizers graph. Moreover, even if one opts to use a λ-
schedule of the form used in [19], the theoretical results and preliminary numerical
examples of this paper suggest that one might obtain a much cleaner decomposi-
tion using the ROF model with L1-fidelity in place of the standard ROF model. All
these ideas pertaining to multiscale decomposition of images using the L1 fidelity
based model will be explored elsewhere.

Finally, Figures 5 and 6 illustrate the differences between the standard ROF
model and the one with L1 fidelity on a real medical image. In this example also,
one can see that the small scale features in the observed image, such as the ones
indicated by the arrow on the lower left hand side image of Figure 6, maintain their
contrast much better in the L1 fidelity model than in the standard ROF model, even
as the parameter λ is gradually decreased to very low values.

8 Conclusion

We considered the total variation based image denoising model of Rudin, Osher,
and Fatemi with the L1 norm as the fidelity term. Our results highlight that this
modification leads to many interesting qualitative differences in the behavior of the
modified model from the standard one. These differences have important conse-
quences for image denoising. They also suggest interesting new research directions
into applications to data driven parameter selection, and multiscale image decom-
position.
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Figure 2: Example of scale space generated by the standard total variation model. Compare with
the same example for the model with L1 fidelity, shown in Figure 3.
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Figure 3: Example of scale space generated by the total variation model with L1 fidelity. Compare
with Figure 2.
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Figure 4: Plot of fidelity of minimizer (i.e. ‖uλ(x) − f(x)‖2
L2 ) vs. λ−1 for the standard ROF

model (top graph) and the plot of fidelity of minimizer (i.e. ‖uλ(x)−f(x)‖L1 ) vs. λ−1 for the ROF
model with L1 fidelity (bottom graph).
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Figure 5: Scale space generated by the standard ROF model.
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Figure 6: Scale space generated by the ROF model with L1 fidelity term.
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