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Abstract

In this paper we propose a method of regularizing the backwards

parabolic partial differential equations that arise from using gradient de-

scent to minimize surface energy integrals within a level set framework in

2 and 3 dimensions. The proposed regularization energy is a functional

of the mean curvature of the surface. Our method uses a local level set

technique to evolve the resulting fourth order PDEs in time. Numerical

results are shown, indicating stability and convergence to the asymptotic

Wulff shape.

1 Introduction

In the field of material science one often encounters laws governing the motion
of the growth of crystals in m = 2 or 3 dimensions that take the form of

min
Ω

∮

∂Ω

F (n)dS, (1)

where n is the outward normal of the crystal boundary ∂Ω [16],[8]. If we embed
the boundary ∂Ω = Γ as a level set of a function ϕ (we use the zero level set:
{x|ϕ(x) = 0}), then (1) can be rewritten as [21]

min
Ω

∫

Rm

F

(

∇ϕ

|∇ϕ|

)

δ(ϕ)|∇ϕ|dx, (2)

where δ is a distribution function, and we are assuming ϕ < 0 on the interior
of Ω. Taking the Euler-Lagrange equation of (2) and employing the method of
gradient descent we arrive at PDE of the form

ϕt = |∇ϕ|

[

∇ · DF

(

∇ϕ

|∇ϕ|

)]

, (3)
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where DF is the gradient of F with respect to its m arguments ∇ϕ
|∇ϕ| . It is also

common to examine the problem with an additional fixed volume constraint
∫

Rm

H(−ϕ)dx = V0, (4)

where H is the Heaviside function. With this additional constraint the problem
posed is known a the Wulff problem [8].

Our goal is to evolve the second order time dependent PDE (3) to steady
state, obtaining an equilibrium shape given by {x|ϕ(x) = 0} that is the mini-
mizing Wulff shape. However, for many physically meaningful energies F , (3)
is backward parabolic and thus ill posed. Direct numerical solvers quickly ex-
hibit unstable behavior for these types of problems. A proposed solution has
been to add a regularizing term to the PDE which is derived by minimizing an
additional energy term of the form

Ereg = ε

∫

Rm

g(k)δ(ϕ)|∇ϕ|dx, (5)

where k is the mean curvature of the interface, g ≥ 0, is a convex function
of ϕ, and ε is small [6],[10],[12],[4],[8],[7]. See also [5] for another method of
treating (3) in the nonconvex case. In [9] the authors present a similar energy
to (5) for m = 3 that is a functional of the curvature tensor. This minimization
by gradient descent results in a fourth order time dependent parabolic PDE,
including terms involving the surface Laplacian of curvature, ∆sk.

Adding these terms to a problem involving surface motion generally results
in an equation consisting of first or second order derivatives governing the sur-
face advection along with fourth order derivatives found in the regularization
term. As these problems are nonlinear, an explicit numerical evolution is usu-
ally used. However, because the regularization coefficient ε will be chosen to be
small (O(dx2)), the fourth order restriction on the CFL condition for the regu-
larization PDE that would normally yield a timestep of dt ≤ Cdx4 is reduced
to dt ≤ Cdx2.

There has been work done in the way of numerical solutions of the regular-
ization PDE without the backwards parabolic part, but there are few analytic
results. In [3] the authors demonstrate many of the difficulties involved in mod-
eling surface diffusion with an explicit scheme, the most serious of which is the
time step restriction. Thus the attempts at numerical solutions are generally
aimed at reducing the CFL condition as the fourth order restriction makes it
intractable. In [18] a semi-implicit splitting method was used to make the CFL
condition second order, but at the same time reducing the spatial accuracy to
first order. In [20] the authors used a coupled system of second order PDEs to
smooth normals of a surface, but their method is not a true energy minimization
of (5). See also [11] for a physical simulation, [1] for anisotropic surface diffusion
simulations, and [2] for an overview of the subject.

In this paper we solve (3) by adding a regularization of the form (5), with
g(k) = k2. The backwards parabolic fourth order PDE resulting from gradi-
ent descent is evolved in a local level set setting, using explicit finite difference
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methods developed for Hamilton-Jacobi equations. Given a familiarity with
level set evolutions on uniform grids, the resulting method is straightforward
to implement. The applications of computable “curve lengthening” PDEs ex-
tend beyond crystal growth to image processing and other areas where corner
sharpening is needed.

After explaining the equations we will discuss the numerical implementation
and show computed results. In both 2d and 3d the equilibrium shapes we obtain
approach the analytically predicted Wulff shapes. There have been studies
done showing in 2d that the asymptotic solution to the regularized problem
approaches the Wulff shape as ε → 0 [10],[19], but these analyses have not been
extended to 3d as of yet. As far as we know these are the first 3d examples of
nonconvex Wulff energy evolutions.

2 Two Dimensional Case

In 2 dimensions (1) can take the form of

min
Ω

∮

∂Ω

γ(θ)dS, (6)

where θ is the angle of the normal of the crystal boundary ∂Ω with respect
to some fixed vector [16],[8], e.g. θ(ϕ) ≡ arctan(

ϕy

ϕx
), defined appropriately on

[0, 2π). If we embed the boundary ∂Ω = Γ as a level set of a function ϕ, then
the equation governing the motion of ∂Ω is

ϕt = (γ(θ) + γ′′(θ))k, (7)

where

k = ∇ ·
∇ϕ

|∇ϕ|

which is the curvature of the interface, see [16] for a derivation of the Euler-
Lagrange equation.

The PDE is ill posed when γ(θ) + γ′′(θ) < 0. It is known that [8] one can
convexify γ in a natural way that will make γ(θ) + γ′′(θ) ≥ 0. This is known
as the Frank convexification of the Wulff problem defined by (6). When we add
an additional constraint to (7) such that

area(Ω) = C,

where C is a fixed constant, then the rescaled asymptotic solution of (3) is
believed to be the same as the asymptotic solution of the convexified version of
(3).

For example, if the surface tension is given by

γ(θ) = 1 + | sin(2θ)|,
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we can see that

γ(θ) + γ′′(θ) =

{

1 − 3 sin(2θ), for θ ∈ [0, π/2] ∪ [π, 3π/2]
1 + 3 sin(2θ), for θ ∈ [π/2, π] ∪ [3π/2, 2π],

which changes sign. The Frank convexification is

γ̂(θ) = | cos(θ)| + | sin(θ)|,

so

γ̂(θ) + γ̂′′(θ) =

3
∑

i=0

δ(θ − iπ/2) ≥ 0

where δ(x) is a distribution function.
The asymptotic shape these surface evolutions yield is a square, but if we

were to numerically evolve the PDE given in (7) using γ we would quickly see a
blowup in the solution at all points where γ + γ′′ < 0. Even the evolution using
γ̂ would require some delicacy as the CFL condition would be restricted by the
magnitude of δ k, which could become very large if |θ − iπ/2| ≈ 0 near corners
of Γ.

The regularized energy we minimize is

min
ϕ

∫

R2

[γ(θ(ϕ)) + εk2]δ(ϕ)|∇ϕ|dx (8)

Using gradient descent the resulting evolution PDE is

ϕt = {[γ(θ(ϕ)) + γ′′(θ(ϕ))]k − ε(2∆sk + k3)}|∇ϕ|. (9)

In order to allow all level sets to move we have replaced the δ(ϕ) function in
front of all terms and replaced it with |∇ϕ| which has now become a standard
practice, see e.g. [21]. The definitions for k and ∆sk are as follows

k ≡

[ Ndim
∑

i=1

ϕxixi

( Ndim
∑

j=1

j 6=i

ϕ2
xj

)

−

Ndim
∑

i=1

Ndim
∑

j=1

j 6=i

ϕxixj
ϕxi

ϕxj

]

/|∇ϕ|3, (10)

∆sk ≡ divs(∇sk) = trace(P∇(P∇k))) (11)

=
1

|∇ϕ|2

[ Ndim
∑

i=1

kxixi

( Ndim
∑

j=1

j 6=i

ϕ2
xj

)

−

Ndim
∑

i=1

Ndim
∑

j=1

j 6=i

kxixj
ϕxi

ϕxj

]

−
k

|∇ϕ|

[ Ndim
∑

i=1

kxi
ϕxi

]

,

where P = I − n ⊗ n, n = ∇ϕ/|∇ϕ|, Ndim = 2. The matrix P is a projec-
tion onto the surface with normal n. See [9], [18] for derivations of the above
formulas.
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3 Three Dimensional Case

In 3 dimensions (1) may take the form of

min
Ω

∮

∂Ω

γ(θ, ω)dS, (12)

where θ, ω are a spherical coordinate parameterization of the angles of the nor-
mal of the crystal boundary ∂Ω,

ω = tan−1

(

W3
√

W 2
1 + W 2

2

)

, θ = tan−1

(

W2

W1

)

, (13)

where W = ∇ϕ/|∇ϕ|. If we embed the boundary ∂Ω = Γ as the 0 level set of
a function ϕ, then (12) becomes

min
ϕ

∫

R3

γ(θ, ω)|∇ϕ|δ(ϕ)dx, (14)

using gradient descent on this energy we can derive the equation governing the
motion of ∂Ω as

ϕt = |∇ϕ|∇ ·

{

γ
∇ϕ

|∇ϕ|
(15a)

+γθ|∇ϕ|

[

−ϕy

ϕ2
x + ϕ2

y

,
ϕx

ϕ2
x + ϕ2

y

, 0

]

+γω

[

−ϕxϕz

|∇ϕ|
√

ϕ2
x + ϕ2

y

,
−ϕyϕz

|∇ϕ|
√

ϕ2
x + ϕ2

y

,

√

ϕ2
x + ϕ2

y

|∇ϕ|

]

}

.

Again we note that the δ(ϕ) has been replaced with |∇ϕ|. It can be shown that
if ϕz = 0 and γω = 0 then we recover the 2d PDE (7). So the examples from
section 2 showing ill posedness can also be applied here.

The regularization energy we add is the same as in the 2d case, but in the
3d case k is the total (twice the mean) curvature. In the PDE resulting from
gradient descent on this energy, instead of the −ε(2∆sk+k3)|∇ϕ| term that was
added to the right side of (9) we will evolve (15a), with an extra regularization
term on the right hand side given by

−ε|∇ϕ|(2∆sk + 2k|L|2 − k3), (15b)

where L = ∇sn = JP , with Ji,j = ∂ni/∂xj, P is the projection matrix described
above, and

|L|2 = L · L =

Ndim
∑

i=1

Ndim
∑

j=1

L2
i,j. (16)
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Level set representations of k, ∆sk can be found by taking (10), (11), respec-
tively with Ndim = 3. Note that in 2d we have |L|2 = k2 so that the regular-
ization PDE terms in (15b) are the same as those in (9). See [9], for a further
discussion of this formula.

4 Numerical Methods

The computational domains are discretized using a uniform rectangular grid.
We evolve the PDEs in time using the method of lines. We treat the evolutions
(9), (15) as a Hamilton-Jacobi problems of the form

ϕt + Vn|∇ϕ| = 0.

All of the derivatives within each Vn that are shown in (9), (15b), and using
(10), (11), and (16) are calculated using central finite differencing.

For the Vn terms in (15a) we leave Vn in divergence form. This is done
because for many common energy terms, γ, the second partials with respect to
θ, ω involve delta functions. By leaving the terms in divergence form we allow
the numerical discretization to resolve these singularities rather than attempting
to approximate them explicitly.

To calculate the partial derivatives at a point x0 we use finite differencing
using points offset from x0 by half a grid cell depending on the direction in
which the divergence is being taken. For example in 2d if we are calculating
∇ · ui,j , then when taking the x direction of the divergence we use ∂ui,j/∂x ≈
(ui+1/2,j − ui−1/2,j)/dx, where the partial derivative terms that make up u are
calculated by central finite differencing (again using values offset by half a grid
cell). So continuing with our example, if u ≡ vxvy, then we would use

∂vi+1/2,j

∂x
≈

vi+1,j − vi,j

dx
,

∂vi+1/2,j

∂y
≈

1

4

∑1

k1=0

∑1

k2=0
vi+k1,j+k2 −

∑1

k1=0

∑0

k2=−1
vi+k1,j+k2

dy
,

and there would be similar equations for ∂vi−1/2,j/∂x, ∂vi−1/2,j/∂y. This finite
differencing procedure is done to ensure more compact stencils.

After taking finding Vn, we can use central differencing to calculate |∇ϕ|.
Time advancement is done using second order TVD Runge-Kutta solvers

[13]. The time step restriction we use is dt = 0.1dx4/ε. Because of the backwards
parabolic nature of the PDEs there are no theoretical or experimental estimates
for time step restrictions on these types of problems.

The asymptotic limit of the convexified versions of these equations is for the
interface to shrink to a Wulff shape and then vanish. Although the nonconvex
case has not been studied as thoroughly, in certain examples we use a projected
gradient method [17],[14],[21] to ensure that volume remains fixed in time. This
is done by requiring that

∣

∣

∣

∣

∫

H(−ϕ)dx − V0

∣

∣

∣

∣

< ε (17)
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at any given time step, where H is a Heaviside function. Numerically this is
done by first finding the current volume V =

∫

H(−ϕ)dx using a smoothed
approximation of H . We then attempt to find a constant λ such that

∫

H(−ϕ + λ)dx = V0.

Taking a first order approximation we find that
∫

H(−ϕ + λ)dx ≈

∫

H(−ϕ) − λδ(−ϕ)|∇(−ϕ)|dx = V − λS,

where S is the surface area of the interface. Solving for λ yields λ = V −V0

S . We
then adjust ϕ globally by adding λ to it at every point. Additional repetitions
of this procedure can be done until (17) is satisfied, although in practice one
step is usually enough. See [14] for a similar procedure.

The entire calculation is done within a local level set framework [15], involv-
ing only grid cells within tubes of a specified distance of the interface. This
requires reinitialization of ϕ to a signed distance function when the interface
has moved close to the boundary of the tubes, or |∇ϕ| has moved far from 1.
The reinitialization is done for all grid points in the computational domain.

5 Numerical Experiments

In this section we show numerical results of the problems P2D and P3D evolved
to a steady state solution. In practice we use ε = 0.5dx2 for the regularization
coefficient. If a fixed volume condition is imposed it will be noted in the spe-
cific example. The problems are solved on a uniform grid that discretizes the
space [−1, 1]m in m dimensions. The spatial step size in each direction is 1/25.
Neumann BCs, ∂ϕ/∂n = 0, are used.

First we show an accuracy calculation for a circle moving under backwards
curvature flow i.e. γ = −1 in table 1. The circle is initialized with radius 0.4.
The exact solution at time T is a circle with radius

r(T ) =
√

2T + (0.4)2.

The radius of the computed solution is measured along the x-axis.

T r(T ) exact r(T ) computed error
0 0.4 - -
0.0168 0.44 0.4415 0.0015
0.0352 0.48 0.4827 0.0027
0.0552 0.52 0.5290 0.0090

Table 1: Error for circle moving with backward curvature, γ = −1.

Figure 1 shows multiple time plots of an interface that is initialized as a
square, evolving under backwards curvature flow, i.e. under the surface energy
where γ(θ) = −1.
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Figure 1: Backwards curvature flow, γ(θ) = −1, at t = 0, 0.08, 0.11.
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Figure 2: Evolution with surface energy defined by γ(θ) = 1 + 3|sin(2θ)|, at
t = 0, 0.016, 0.08.

Figure 2 shows an evolution with

γ(θ) = 1 + 3|sin(2θ)|.

The asymptotic Wulff shape is a square. In this example volume preservation
is enforced.

Figure 3 shows an evolution with

γ(θ) = 1 + 3|sin(1.5θ)|.

The asymptotic Wulff shape is a triangle.
In 3 dimensions we show the evolution of an initial sphere under different

surface energies. The surface energy density for figure 4 is

γ(θ, ω) = (1 + 3|sin(1.5(θ − π/4))|)(1 + 3|cos(2ω)|). (18)

The energy density for figure 5 is

γ(θ, ω) = (1 + 3|sin(2θ)|)(1 + 3|sin(2ω)|). (19)

6 Conclusion

In this paper we have implemented PDEs in two and three dimensions that
regularize the backwards parabolic evolutions resulting from using the method

8



−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

Figure 3: Evolution with surface energy defined by γ(θ) = 1 + 3|sin(1.5θ)|, at
t = 0, 0.016, 0.064.

Figure 4: Evolution with surface energy defined using γ(θ, ω) = ((1 +
3|sin(1.5(θ − π/4))|)(1 + 3|cos(2ω)|). At t = 0, 0.016, 0.08.

Figure 5: Evolution with surface energy defined using γ(θ, ω) = (1 +
3|sin(2θ)|)(1 + 3|sin(2ω)|). At t = 0, 0.0168, 0.036.
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of gradient descent to minimize surface energy integrals in a level set framework.
Given a level set function ϕ, the regularization is based on minimizing a surface
energy that is a functional of mean curvature, k.

Results indicate that our solutions are converging to the expected asymptotic
Wulff shapes. For the case of a circle evolving under backwards mean curvature
we have first order convergence to the analytic solution.

There is still work to be done concerning the analysis of the regularized equa-
tion in two and three dimensions. Areas to be studied include the asymptotic
solution properties, the stability and convergence of the time dependent flow,
and analysis of the numerical methods used to evolve the interface.
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