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Abstract

The aim of this paper is to provide quantitative estimates for the
minimizers of non-quadratic regularization problems in terms of the
regularization parameter respectively the noise level. As usual for ill-
posed inverse problems, these estimates can be obtained only under
additional smoothness assumptions on the data, so-called source con-
ditions, which we identify with the existence of Lagrange multipliers
for a limit problem. Under such a source condition, we shall prove a
quantitative estimate for the Bregman distance induced by the regular-
ization functional, which turns out to be the natural distance measure
to use in this case.

We put a special emphasis on the case of total variation regulariza-
tion, which is probably the most important and prominent example in
this class. We discuss the source condition for this case in detail and
verify that it still allows discontinuities in the solution, while imposing
some regularity on its level sets.
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1 Introduction

General variational regularization methods with convex functionals have be-
come of growing importance compared to classical Tikhonov regularization
in the last decade. The most prominent example of total variation regular-
ization (sometimes also called bounded variation regularization), originally
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introduced as a technique for image denoising (cf. [14]) has been used in
several applied inverse problems and analyzed by several authors over the
last decade (cf. [1, 3, 6, 4, 11]). Besides the specific properties of functions
of bounded variation such as the possibility of discontinuities in the solution,
total variation regularization is of particular interest in regularization the-
ory since it motivates the study of regularization methods in a non-reflexive
Banach space.

Total variation regularization, originally introduced as a technique for
image denoising (cf. [14]) has been used in several applied inverse problems
and analyzed by several authors over the last decade (cf. [1, 3, 6, 4, 11]).
Besides the specific properties of functions of bounded variation such as the
possibility of discontinuities in the solution, total variation regularization is
of particular interest in regularization theory since it is the most important
example of regularization in a non-reflexive Banach space.

While the theory of regularization methods, in particular for linear in-
verse problems, seems to be almost complete in Hilbert spaces (cf. [7] for
a detailed exposition), fewer results are available in Banach spaces, in par-
ticular non-reflexive ones. While the fundamental questions, such as the
qualitative stability and convergence analysis can be carried out in a similar
way as long as weak-star convergence (or compactness in some other topol-
ogy) is available (cf. [1]), the derivation of quantitative estimates between
the exact solution of the inverse problem and the reconstruction obtained
by regularization is still open. Typically, under additional smoothness as-
sumptions on the solution, so-called source conditions, one may expect a
quantitative estimate for a distance between the solution of the regularized
problem and the exact solution. These results are well-known for quadratic
regularizers (cf. [7, 8]), but so far hardly any results have been obtained
for non-quadratic regularization (except for the special case of maximum
entropy regularization, where the problem can be transfered to an equiva-
lent one with quadratic minimization, cf. [9]). In this paper we shall derive
such quantitative estimates for a very special difference measure between
the exact and regularized solution, namely the Bregman distance induced
by the regularization functional.

The framework we consider will be the following: let K : U → H be a
continuous linear operator between a Banach space U and a Hilbert spaceH,
which is also continuous in the possibly weaker topology T on U . Moreover,
let J : U → R ∪ {∞} be a convex functional such that

(J1) The functional J is lower semicontinuous in a topology T on U .

(J2) The sub-level sets Mρ := {J ≤ ρ} are compact in the topology T , and
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nonempty for ρ ≥ 0.

We start from the ill-posed operator equation

Ku = f, (1.1)

where f ∈ R(K) ⊂ H represents exact data. Since we are interested in the
ill-posed case where R(K) is not closed, the problem does not necessarily
have a solution if f is replaced by noisy data g ∈ H, even if f and g are
arbitrarily close in H. Therefore, the problem has to be regularized in order
to obtain a stable approximation of the solution. We shall mainly consider a
standard variational regularization strategy using penalization with a convex
functional J , i.e., the regularized problem then consists in minimizing

λ

2
‖Ku− g‖2 + J(u) → min

u∈U
, (1.2)

where λ ∈ R+ is a (large) Lagrange multiplier. In the classical setup of
regularization theory, α = 1

λ is called the regularization parameter (cf. [7]).
A minimizer of (1.2) is called regularized solution below and will be denoted
by uλ. We mention that under the above assumptions one can easily prove
the existence of a regularized solution and the standard convergence results
as λ → 0 along the lines of [1]. Since the proofs are standard and our focus in
this paper is rather to obtain convergence rates (i.e., quantitative estimates
as the λ tends to zero), they shall be omitted here.

The remainder of this paper is organized as follows: In Section 2 we
introduce some fundamental notions needed in the further analysis, in par-
ticular we discuss source conditions and the concept of Bregman distances.
In Section 3 we state the main results, namely quantitative estimates for
the minimizers of (1.2) and two related regularization models. In Section
4 we briefly discuss the application of our results to classical regularization
approaches such as Tikhonov regularization in Hilbert spaces or maximum
entropy regularization, where we obtain well-known convergence rate results
as special cases of our analysis. In Section 5 we return to the motivating
example of total variation regularization, which we apply the results to and
discuss the interesting implications of the source condition for this case.

2 Basic Notions and Conditions

2.1 Source Conditions

In the following we discuss suitable source conditions for regularization with
general convex functional. Before specifying a source condition, we introduce
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the notion of a J minimizing solution:

Definition 1. An element ũ ∈ U is called J minimizing solution of if Kũ =
f and

J(ũ) ≤ J(v) ∀ v ∈ U ,Kv = f.

Note that a J minimizing solution is always equal to a classical solution
if K has no nullspace.

Since the range of K is not closed in general, the J minimizing solution
is not necessarily a saddle-point of the associated Lagrangian

L(u,w) = J(u) + 〈w,Ku− f〉, (2.1)

as it would be in the well-posed case. The existence of a Lagrange multiplier
w̃ ∈ H such that

L(ũ, w) ≤ L(ũ, w̃) ≤ L(u, w̃) ∀ u ∈ U , w ∈ H

is an additional regularity condition on the solution ũ. In the context of
ill-posed problems, this is usually called source condition. Using standard
optimality for convex problems we obtain that the source condition is equiv-
alent to

∃ w̃ ∈ H : K∗w̃ ∈ ∂J(ũ). (2.2)

We mention that in the case of classical Tikhonov regularization, i.e.,
J(u) = ‖u‖2 in a Hilbert space U , the source condition takes the well-known
form (cf. [7])

ũ = K∗w̃.

For Tikhonov regularization, a source condition allows to derive a quantita-
tive estimate between the exact solution ũ and the solution of the regularized
problem (cf. [8]). In the non-quadratic case, in particular for the case of
bounded variation regularization, the derivation of quantitative estimates is
still open. Below we shall derive quantitative estimates for general convex
regularizers for the so-called Bregman distance between the original solution
and the regularized solution.

We finally point out an interesting connection between the elements sat-
isfying a source condition and the class of possible minimizers of the regu-
larized problem (1.2):

Proposition 1. Let λ > 0 be arbitrary, but fixed. Then the set of ũ ∈ U
satisfying the source condition (2.2) and the set of ũ ∈ U being a minimizer
of (1.2) for some g ∈ H are equal.
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Proof. First assume that ũ is a minimizer of (1.2) for some g ∈ H, then the
necessary and sufficient first-order optimality condition implies

λK∗(g −Kũ) ∈ ∂J(ũ).

Hence, ũ satisfies (2.2) with w̃ := λ(g −Kũ).
Vice versa, assume that ũ satisfies (2.2), then it satisfies the first order

optimality condition for (1.2) with g = 1
λ w̃ + Kũ. Hence, it is a minimizer

of (1.2).

2.2 Bregman Distances

We start with a short review of Bregman distances related to a convex
functional J . The main tool, as usual for convex variational problems is the
subgradient ∂J(u) defined by

∂J(u) := { p ∈ U∗ | J(v) ≥ J(u) + 〈p, v − u〉, ∀ v ∈ U }.
First assume that J is Frechet-differentiable, which means that J(u) is

a singleton for each u ∈ U , i.e., ∂J(u) = {∇J(u)}. Then the Bregman
distance DJ : U × U → R+ of two elements u, v ∈ U is defined by

DJ(u, v) = J(u)− J(v)− 〈∇J(v), u− v〉. (2.3)

One obviously obtains DJ(u, u) = 0, and the convexity of implies that DJ

is really a distance, i.e., DJ(u, v) ≥ 0. If in addition J is strictly convex,
then we also have that DJ(u, v) = 0 if and only if u = v.

For functionals like the total variation seminorm, which are not continu-
ously differentiable, one can introduce a generalized Bregman distance based
on the subgradient. In this case, the subgradient is not a singleton, and we
obtain a family of distances via

DJ(u, v) = { J(u)− J(v)− 〈p, u− v〉 | p ∈ ∂J(v) }. (2.4)

In this case, each element d ∈ DJ(u, v) represents a distance between the
elements u and v.

3 Convergence Rates for Convex Regularization
Methods in Banach Spaces

Using the Bregman distance defined in the last section we are now able to
derive the main results of this paper, quantitative estimates between a J
minimizing solution ũ and a solution of the regularized problem. We start
with an estimate in the case of exact data:
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Theorem 1 (Exact Data). Let g = f and let ũ be a J minimizing solution
of (1.1). In addition, assume that the source condition (2.2) is satisfied.
Then, for each minimizer uλ of (1.2), there exists d ∈ DJ(uλ, ũ) such that
estimate

d ≤ ‖w̃‖2
H

2λ
= O (

λ−1
)

(3.1)

holds.

Proof. Let

d = J(uλ)− J(ũ)− 〈K∗w̃, uλ − ũ〉 ∈ DJ(uλ, ũ).

Since uλ is a minimizer of the regularized problem and Kũ = f , we have

λ

2
‖Kuλ − f‖2

H + J(uλ) ≤ J(ũ).

Hence,
λ

2
‖Kuλ − f‖2

H + d + 〈w̃, Kuλ − f〉 ≤ 0,

and by adding ‖w̃‖2H
2λ we obtain

λ

2
‖Kuλ − f +

1
λ

w̃‖2
H + d ≤ ‖w̃‖2

H
2λ

,

which yields (3.1).

Now we turn our attention to the case of noisy data, i.e., we assume that
g 6= f , but that a noise bound of the form

‖f − g‖H ≤ δ (3.2)

is available. Then we can derive the following result:

Theorem 2 (Noisy Data). Let (3.2) hold and let ũ be a J minimizing
solution of (1.1). In addition, assume that the source condition (2.2) is
satisfied. Then, for each minimizer uλ of (1.2), there exists d ∈ DJ(uλ, ũ)
such that estimate

d ≤ ‖w̃‖2
H

2λ
+

λδ2

2
(3.3)

holds. In particular, if λ ∼ δ−1, then

d = O (δ) . (3.4)
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Proof. As in the proof of Theorem 1 we define

d = J(uλ)− J(ũ)− 〈K∗w̃, uλ − ũ〉 ∈ DJ(uλ, ũ).

and obtain using the noise bound (3.2)

λ

2
‖Kuλ − g‖2

H + J(uλ) ≤ λδ2

2
+ J(ũ).

Hence, we can derive the estimate

λ

2
‖Kuλ − g +

1
λ

w̃‖2
H + d ≤ ‖w̃‖2

H
2λ

+
λδ2

2
,

which implies (3.3) and finally (3.4) for the special choice λ ∼ δ−1.

Below, we shall discuss similar quantitative estimates for different regu-
larization models.

3.1 Constrained Model

A related regularization approach to (1.2) in the case of noisy data is the
constrained minimization

J(u) → min
u∈BV (Ω)

subject to ‖Ku− g‖H ≤ δ, (3.5)

One can show that there exists a Lagrange parameter λ ∈ R+ such that the
solution of (3.5) and the solution of (1.2) are the same. If one can show that
λδ ∼ 1, a quantitative estimate can be obtained from Theorem 2. However,
it seems easier to derive the quantitative estimate directly, which we will do
in the following:

Theorem 3. Let (3.2) hold and let ũ be a J minimizing solution of (1.1). In
addition, assume that the source condition (2.2) is satisfied. Then, for each
minimizer uδ of the constrained problem (3.5), there exists d ∈ DJ(uδ, ũ)
such that estimate

d ≤ 2δ ‖w̃‖H. (3.6)

holds.

Proof. Let

d = J(uδ)− J(ũ)− 〈K∗w̃, uδ − ũ〉 ∈ DJ(uδ, ũ).

Since uδ is a minimizer of (3.5) and ũ is an element of the feasible set we
have

d ≤ −〈K∗w̃, uδ − ũ〉 = 〈w̃, g − f + f −Kuδ〉 ≤ ‖w̃‖H(‖Kuδ − g‖H + δ),

which implies (3.6) because of the constraint ‖Kuδ − g‖H ≤ δ.
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3.2 Exact Penalization Model

An alternative approach to regularization, with a particular emphasis on
total variation denoising has been introduced recently in [5]:

λ‖Ku− g‖H + J(u) → min
u∈U

. (3.7)

In the nomenclature of nonlinear programming, this model could be called
exact penalization of the constraint Ku = g. Indeed, the convergence prop-
erties for (3.7) are different than for the models discussed above since in the
case of exact data we obtain the exact solution for finite λ:

Theorem 4 (Exact Data). Let g = f and let ũ be a J minimizing solution
of (1.1). In addition, assume that the source condition (2.2) is satisfied and
that λ > ‖w̃‖H. Then, each minimizer uλ of (3.7) is a J minimizing solution
of Ku = f and

0 ∈ DJ(uλ, ũ).

If in addition J is strictly convex on the nullspace of K, then uλ = ũ.

Proof. Since uλ is a minimizer of (3.7) and g = f we have

J(uλ) ≤ λ‖Kuλ − f‖H + J(uλ) ≤ J(ũ)

and, with d as above,

λ‖Kuλ − f‖H + d ≤ −〈w̃, Kuλ − f〉 ≤ ‖w̃‖H‖Kuλ − f‖H.

For λ > ‖w̃‖H we may conclude Kuλ = f and d = 0. Since J(uλ) ≤ J(ũ) we
further obtain that uλ is a J minimizing solution and therefore J(uλ) = J(ũ).
From the latter we may also conclude that uλ = ũ if J is strictly convex on
the nullspace of K.

The behaviour in the noisy case is similar, one does not need to take λ
depending δ in order to obtain a Bregman distance of order δ:

Theorem 5 (Noisy Data). Let (3.2) hold and let ũ be a J minimizing
solution of (1.1). In addition, assume that the source condition (2.2) is
satisfied and that λ > ‖w̃‖H. Then, for each minimizer uλ of (3.7), there
exists d ∈ DJ(uλ, ũ) such that estimate

d ≤ (λ + ‖w̃‖H)δ = O (δ) (3.8)

holds.
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Proof. With d as above we obtain

λ‖Kuλ − f‖H + d ≤ λδ − 〈w̃,Kuλ − g + g − f〉
≤ λδ + ‖w̃‖H(‖Kuλ − g‖H + δ),

which implies (3.8) if λ > ‖w̃‖H.

3.3 Possible Generalizations

In the following we briefly discuss some obvious generalizations of the above
analysis and state the corresponding results without giving theorems and
proofs explicitely:

• Non-attainable Data: One can easily derive analogous results for
f not being in the closure of the range of K, i.e., Kũ being equal to
the projection of f onto the closure of the range. All estimates of
Theorems 1-5 still hold, but with different constants.

• Additional Constraints: One can easily verify that all assertions
of Theorems 1-5 remain true if we add an additional constraint u ∈ C
for some set C being closed in the topology T , and if ũ ∈ C.

• Nonlinear Problems: The theory can easily be extended to nonlin-
ear problems satisfying a nonlinearity condition of the form

〈K(u)−K(v)−K ′(v)(u− v), w̃〉 − H ≤ η‖K(u)−K(v)‖H‖w̃‖

with the source condition

∃ w̃ ∈ H : K ′(ũ)∗w̃ ∈ ∂J(u).

The proofs of Theorems 1-3 can then be carried out in a similar way,
it turns out that the constants on the right-hand side just become
multiplied by (1+η)2. The assertions of Theorem 4 and 5 hold in this
case if λ > (1 + η)‖w̃‖H.

4 Application to Classical Regularization Models

In the following we concretize the above theory for some classical regular-
ization models, where convergence rates have been obtained by different
techniques in the past.
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4.1 Tikhonov Regularization

For Tikhonov regularization U is a Hilbert space itself, T is the weak topology
on U , and

J(u) =
1
2
‖u‖2

U , ∂J(u) = {u}.
Hence, the source condition has the well-known form ũ = K∗w̃, and the
Bregman distance is given by

DJ(u, v) =
1
2
‖u‖2

U −
1
2
‖v‖2

U − 〈u− v, v〉U =
1
2
‖u− v‖2

U .

Hence, the we obtain the well-known convergence rate (cf. [8])

‖uλ − ũ‖U = O
(√

δ
)

,

for λδ ∼ 1 or for the constrained model.

4.2 Maximum Entropy Regularization

Another important example is maximum entropy regularization, where the
regularization functional is the negative Shannon entropy

J(u) =
∫

Ω
(u lnu− u)dx,

which can be defined on L1
+(Ω) or in a generalized sense on a space of

bounded measures. In both cases we have to add a nonnegativity constraint,
which does not change the results as noted above. For u positive and regular
we have

∂J(u) = {ln v},
and hence, the source condition is of the form ũ = eK∗w̃. The Bregman dis-
tance induced by this functional is the so-called Kullback-Leibler divergence
given by

DJ(u, v) =
∫

Ω
u ln

(u

v

)
dx.

Hence, the above theory implies a quantitative estimate in the Kullback-
Leibler divergence, which is a natural distance measure in information the-
ory.
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5 Application to Total Variation Denoising

Now consider the case of total variation denoising via the ROF-model (cf.
[14]), i.e., we have the space

U = BV (Ω), H = L2(Ω),

for some domain Ω ⊂ Rd, d ≤ 3, and the operator K = I on H. Moreover,
the regularization functional is given by

J(u) = |u|BV = sup
p∈C∞0 (Ω)d,‖p‖∞≤1

∫

Ω
u div p dx.

The above assumptions (A1) and (A2) are then satified if T is the weak-*
topology on BV (Ω).

If u is a smooth function with |∇u| > 0, then the subgradient is a
singleton given by

∂J(u) = {κ(u)}, κ(u) = div
( ∇u

|∇u|
)

.

The element κ(u) has a geometric meaning, it represents the mean curvature
of the level sets of u. Since K∗ is the identity on L2(Ω), the source condition
in this case becomes

κ(u) ∈ L2(Ω),

i.e., it is a rather weak regularity condition on the level sets of u.
Motivated by this observation, we may conjecture that the source con-

dition is also satisfied for discontinuous functions in BV (Ω) as long as their
level sets and their discontinuity set have bounded curvature. An example of
a discontinuous function that satisfies the source condition is the indicator
function of a ball, i.e.,

ũ(x) =
{

1 if |x| < R
0, else.

Meyer [12] showed that in this case ũ is the minimizer of (1.2) for some
appropriate f and due to Proposition 1 we may conclude that ũ satisfies the
source condition (2.2). The analysis in [12] and Proposition 1 also provide
an example of a function, which does not satisfy (2.2), namely the indicator
function of a square, which cannot be a minimizer of (1.2) for any λ > 0 and
g ∈ H. This confirms again that (2.2) in the case of total variation denoising
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is not a condition on the smoothness of ũ (it can be discontinuous), but a
condition on the smoothness of the discontinuity set and the level sets of ũ.

We also mention that along the lines of the proof of Theorem 1 we can
obtain an estimate of the form

m(uλ, u∗) = O(δ),

for the metric

m(u, v) =
∫

Ω
(u− v)2 dx +

∣∣∣∣
∫

Ω
(|∇u| − |∇v|) dx

∣∣∣∣ ,

which has been used e.g. for the numerical analysis of problems involving
total variation (cf. [2]).

The estimates on the Bregman distance can be used to derive further
estimates on the fine structure of minimizers of the regularized problem in
presence of noise. For example, consider again f = ũ to be the indicator
function of the ball BR(0) and let g be noisy data satisfying (3.2). Then,
with (r, θ) denoting polar coordinates, the element

w̃ = −div p̃, p̃ = q(|r −R|)
(

cos θ
sin θ

)

is a element of ∂J(ũ) ∩ L2(Ω) for q given by

q(s) = max{1− s

ε
, 0}.

For this particular element w̃ we obtain, due the local support of w̃, that

d = J(uλ)− J(ũ)− 〈w̃, uλ − ũ〉
= J(uλ)−

∫

Ω
w̃uλ dx

≥ TV (uλ|Ωε),

where the last term denotes the total variation of the function uλ restricted
to the set

Ωε = { x ∈ Ω | d(x, ∂BR(0)) ≥ ε } = (Ω\BR+ε(0)) ∪BR−ε(0).

Since ‖w̃‖ ≤ C√
ε

for some constant C ∈ R+, we obtain by choosing λ = ‖w̃‖
δ

in (3.3) the estimate

TV (uλ|Ωε) ≤ C
δ√
ε
.
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Together with the estimate on m we can also derive an estimate of the form

TV (uλ|Ω\Ωε) ≥ TV (ũ)− C

(
δ +

δ√
ε

)
= 2Rπ − C

(
δ +

δ√
ε

)
.

This shows that most of the variation of uλ is concentrated around the set
of discontinuity of ũ for small noise.

We finally investigate an important case of an additional constraint,
namely

C = { u ∈ BV (Ω) | u(x) ∈ {0, 1} a.e. },
which is of particular importance for the study of binary images. In this
case we can identify each function of C with the Lebesgue-measurable set

Σu = { x ∈ Ω | u(x) = 1 },
which has a Hausdorff-measurable boundary (cf. [13]), since the Hausdorff
measure of ∂Σ (the so-called perimeter) is equal to the total variation semi-
norm of u. If f is also an indicator function, the minimization of (1.2) with
parameter 2λ and of (3.7) with parameter λ are equivalent, they can be
rewritten as the purely geometric variational problem

λLd(Σu∆Σf ) +Hd−1(∂Σu) → min
Σu

,

where Ld denotes the Lebesgue measure, and Hd−1 the d − 1-dimensional
Hausdorff measure. Thus, with the above techniques, we can even obtain
quantitative estimates for geometric variational problems. In particular, due
to the equivalence of (1.2) and (3.7) we obtain the exact solution for exact
data if λ is sufficiently large in both cases. A more detailed study of Bregman
distances on classes of indicator functions is certainly an interesting topic for
future research, it might allow to derive further insight into the convergence
of certain geometric features.
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