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Contents:

The aim of this lecture is to give an overview on modern numerical methods for the
computation of incompressible flows. We start with a short introduction to fluid
mechanics, including the derivation and discussion of the most important models and
equations. The numerical methods discussed in the subsequent part are ordered due to
the model they solve, i.e., we start with the stationary Stokes problem, a linear saddle-
point problem, then proceed to stationary Navier-Stokes, which adds the complication
of a nonlinear equation, and finally discuss the instationary Navier-Stokes equations,
which adds time discretizations. In all cases, we shall discuss modern discretization
strategies, their major properties, and the solution of the discretized equations.

Major Goals:

• Basic knowledge of fluid mechanics and associated mathematical models

• Discretization of mixed problems and their iterative solution

• Modern discretization and iteration methods for the incompressible Navier–
Stokes equations

• Time integration of instationary Navier–Stokes equations

• Introduction to turbulence models
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1 Introduction

The simulation of complex, dynamic processes that appear in nature or in industrial
applications poses a lot of challenging mathematical problems, opening a long road
from the basic problem, to the mathematical modelling, the numerical simulation, and
finally to the interpretation of results. In order to achieve this goals, interdisciplinarity
between applied mathematicians and experts in other fields becomes of increasing
importance, since mathematical knowledge alone does not suffice in order to obtain a
solution, but understanding the physics of the process is required as well.

This class is dealing with one specific and very important class of such processes,
namely Computational Fluid Dynamics (usually abbreviated CFD), with a par-
ticular focus on incompressible flows.

1.1 Mathematical Modelling

In general, the cycle of (mathematical) modelling consists of the following steps:

Problem 

Description Formulation

Mathematical

Discretization

Numerical

SolutionInterpretation

Visualization

We will detail these steps corresponding to the design of a gas turbine combustion
chamber in the following.
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1.2 The Gas Turbine Combustion Chamber

If one wants to compute the flow in a gas turbine combustion chamber , one has
to decide on a specific aspect one is interested in first, since the general requirements
vary too much. In this case, experiments are very expensive, and due to high pressures
( p > 35 bar) and high temperatures ( T > 1700 K) it is questionable whether results
of model experiments can be applied in practical situations. On the other hand, the
time span needed for product development is strongly decreasing, and hence, CFD is
of increasing importance for the design with respect to aerodynamic and combustion
aspects.

Obviously, the starting point of the modelling cycle is the most difficult one for a math-
ematician, and input by experts in other disciplines is of high importance. However,
some questions arise immediately, in particular the following fundamental one:

Which physical and chemical effects are relevant in the process ?

Here are some possible answers:

• Flow of air and the burning material

• Combustion of the burning material

• Radiation of the flame
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• Creation of soot and pollutants .

These subprocesses are not independent in general, but exhibit a strong nonlinear in-
teraction. E.g., combustion has an influence on the flow via the change of temperature
and the creation of soot changes the transmission of energy by radiation.

These phenomena are only those on a coarse scale and need some refinement if one
wants to achieve more accurate results. Since air and burning material are mixed in
the gas turbine combustion chamber , the flow will be turbulent, i.e., effects of friction
must be taken into account. The combustion combines various different molecules
and chemical reactions. In such a process, one typically arrives at more than 1000
equations just to describe the reaction kinetics. If fluid burning material is used, one
eventually has to simulate a reactive two-phase flow.

If all these aspects are translated into mathematical relations, one arrives at a system of
partial differential equations (and usually algebraic equations for the reaction kinetics)
for various field quantities, which have to be solved in a suitable domain (e.g. the
whole volume of the gas turbine combustion chamber ). Moreover, suitable boundary
conditions are needed, taking into account physical conditions (isolation, radiation,
. . . ).

After translating a problem into the language of mathematics, one has to transfer it
into a computable form. This is usually done by generating a grid on the domain of
computation (or in some associated frequency domain), on which one discretizes the
equations using finite difference, finite element, or finite volume methods. The grid
generation poses a challenging problem for complex 3D geometries arising in practical
applications. The choice of the discretization method is a matter of taste in many
cases, but it should correspond to the used grid.

After discretization, one ends up with a system of nonlinear algebraic equations (of a
special structure) and has to choose appropriate solvers. The nonlinearity is usually
treated by iterative methods based on succesive linearization. This leads to subprob-
lems consisting of large systems of linear equations. Due to their size and special
structure (sparsity, . . . ) these linear systems are again solved using iterative methods,
since direct solvers are too expensive.

After obtaining a first solution, one needs further postprocessing. A first technique
of importance is error control, which allows adaptive grid refinement and an improve-
ment of accuracy. Another important part is the visualization of the resulting data,
which enables their further interpretation. The interpretation of results is of crucial
importance not only for the practitioner, but also for the mathematician, since it
helps to find errors in the computations and to decide about the quality of the model.
Moreover, one can compare models of different complexity and scale, whose choice is
usually determined by the available computational capacity and disk memory.
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If the results differ significantly from real situations, the model and/ or the numer-
ical methods have to be refined and the cycle of mathematical modelling has to be
restarted.

Finally, we mention an aspect that will not be treated in this course, namely software
engineering, which deals with the details of implementation, like the parallelization
of algorithms, the distribution of computational load to different processors, and the
management of disk space. These aspects are usually determined by the specific com-
puter architecture.

2 Derivation of models

In this chapter, we shall sketch the derivation of fundamental models of fluid dynamics.
In general, we shall model a flow as a physical continuum of masses, i.e., objects in
euclidean space represented by the set of their point masses. The derivation of the
equations is based on some fundamental principles:

Assumptions:

➢ For all times t > 0 , there exists a well-defined mass density %(x, t) , such that
the total mass m(Ω, t) in the domain Ω at time t is given by

m(Ω, t) =

∫

Ω

%(x, t) dV

➢ Mass is neither produced nor disappears.

➢ The change of the momentum of a fluid region is equal to the applied forces
(Newton’s second law).

➢ Energy is neither produced nor disappears.

Remark 2.1. In the language of physics, our assumptions are the hypothesis of con-
tinumm, conservation of mass, conservation of momentum, and conservation of en-
ergy.

Let Ω ⊂ Rd, d = 2, 3 the region occupied by the fluid, and let x ∈ Ω . We now
consider a fluid particle X , moving through x at time t . Usually, x are called
Eulerian coordinates for the description of the continuum of masses, and X are called
Lagrangian or material coordinates.

Now let W0 ⊂ Ω be a subset at the initial time t = 0 . The function φ : W×R+ → R3

describes the change of the particle position

Wt
def
= {φ(X, t) : X ∈ W0} = φ(W0, t).



2 Derivation of models 10

X

x

Phi(X,t)

Omega0

Omegat

For the description of the flow, the following two notions are usefull:

Definition 2.2.

➢ The trace is the set of points x(X0, t) , that the particle X0 covers at different
times t .

➢ The stream line is the curve, whose tangent points in the direction of the actual
velocity vector.

Remark 2.3. trace and stream line are equal for stationary flows.

We shall denote the velocity of a particle by u(x, t) . For fixed time t , u(x, t) is a
vector field on Ω . Then,

x : R+ → R3

t → φ(X, t)

is the trajectory of the particle, and the velocity is given by

u(x, t) =
∂φ

∂t
(X, t), with x = φ(X, t).

������

x
u
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The acceleration a of the particle can be computed using the chain rule:

a(x, t) =
d

dt
u(x, t) =

d

dt
u(φ(X, t), t)

=
∂

∂t
u(φ(X, t), t) +

3∑
i=1

∂u

∂xi

(φ(X, t), t)
∂φi

∂t
(X, t)

︸ ︷︷ ︸
=ui(x,t)

=
∂

∂t
u(x, t) +

3∑
i=1

ui(x, t)
∂u

∂xi

(x, t)

=
∂u

∂t
+ (u · ∇)u.

Definition 2.4. The symbol
D

Dt
def
=

∂

∂t
+ u · ∇

is called material derivative.

2.1 Conservation of Mass

In the following part, we shall derive conclusions from the hypothesis of continuum
and conservation of mass.

For this sake, we fix a subdomain W ⊂ Ω . The change of mass in W is given by

d

dt
m(W, t) =

d

dt

∫

W

%(x, t) dV

=

∫

W

∂

∂t
%(x, t) dV

In the following, ∂W denotes the boundary of W and n is the unit outer normal,
dA is the area element on ∂Ω .

W

n

u
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The flow of volume through ∂W per unit area is given by u ·n and the corresponding
flow of mass by %u · n . Hence, the total flow of mass through ∂W is

∫

∂W

% u · n dA

The principle of mass conservation implies:

The change of mass in W equals the flow of mass over the boundary ∂W
into W ,

respectively in mathematical terms:

d

dt

∫

W

% dV = −
∫

∂W

% u · n dA

Using Gauss’ Theorem we can rewrite this identity as

∫

W

(
∂%

∂t
+ div(%u)

)
dV = 0

and since this identity holds for any subdomain W , we may conclude the differential
version of the continuity relation

∂%

∂t
+ div(%u) = 0

2.1.1 The Transport Theorem

Starting with the function φ one can rephrase the conservation of mass as follows:
∫

Wt

%(x, t) dV =

∫

W0

%(X, 0) dV

Since the right-hand side is independent of the time t , this yields

d

dt

∫

Wt

%(x, t) dV = 0

Since the domain of integration depends on time now, we cannot simply exchange
differentiation and integration. In order to compute the derivative of an integral with
a time-dependent domain we need the following result:
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Theorem 2.5. Let F be sufficiently smooth. Then,

d

dt

∫

Wt

F (x, t) dV =

∫

Wt

DF

Dt
+ F div u dV

=

∫

Wt

∂F

∂t
+ div(F · u) dV

Remark 2.6. The above result is the generalization to higher dimensions of the for-
mula for the derivative of a one-dimensional integral with parameter-dependent inte-
grand and interval of integration.

The proof will be carried out in the exercises, using the following lemma:

Lemma 2.7. Let J(X, t) := det
(

∂φ
∂X

(X, t)
)
. Then,

∂

∂t
J(X, t) = divx u(x, t) · J(X, t)

with x = φ(X, t) .

Using Theorem 2.5 we obtain

0 =
d

dt

∫

Wt

%(x, t) dV

=

∫

Wt

∂%

∂t
+ div(%u) dV

and since this relation holds for arbitrary W0 ⊂ Ω , we obtain the differential version
of the continuity equation.

Remark 2.8. In general, it depends on the regularity of solutions, whether one uses
the differential or integral version of the conservation of mass. We shall assume in the
following that the solutions are sufficiently smooth, such that all manipulations above
are justified.

A consequence of the conservation of mass is the following theorem, sometimes called
Reynold’s transport theorem:

Theorem 2.9. Let F = F (x, t) be a regular function. Then,

d

dt

∫

Wt

%F dV =

∫

Wt

%
DF

Dt
dV

Fluids that leave the volume of moving subdomains constant in time, are of particular
importance:
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Definition 2.10. A fluid (or its flow) is called incompressible, if

d

dt

∫

Wt

dV = 0

There are several equivalent definitions of incompressibility:

Lemma 2.11. A fluid is incompressible if and only if one of the following conditions
(and therefore all of them) holds:

• div u = 0 ,

• J = 1

• D%
Dt

= 0 .

2.2 Conservation of Momentum

In the following we shall employ the conservation of momentum to derive a second
equation. For the momentum of a fluid we use Newton’s second law:

Change of momentum = Sum of all active forces

In general, we distinguish:

Volume forces: ∫

Wt

%(x, t) f(x, t) dV,

for a force density f = (f1, f2, f3) ∈ R3 , e.g. gravitational forces,

and

Surface forces: ∫

∂Wt

n · τ(x, t)︸ ︷︷ ︸
=

∑3
j=1 ujτij

dA,

where τ ∈ R3×3 is the corresponding stress tensor describing the internal friction and
the pressure Moreover, n · τ denotes the stress vector at a surface elements.

Using Newton’s second law and Gauß’ theorem, we deduce

d

dt

∫

Wt

%u dV =

∫

Wt

%f dV +

∫

∂Wt

n · τ dA

=

∫

Wt

%f dV +

∫

Wt

div τ dV
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with the (line) divergence (div τ)i
def
=

3∑
j=1

∂τji

∂xj

.

The transport theorem implies

∫

Wt

(
%
Du

Dt
− %f − div τ

)
dV = 0

respectively in differential form

%
Du

Dt
= %f + div τ,

i.e.,
D

Dt
(%u) + %u div u = %f + div τ.

This relation can also be rewritten in conservation form as

∂

∂t
(%ui) + div(%uiu) = %fi + (div τ)i , i = 1, 2, 3

2.2.1 The Stress Tensor

In this section we shall further specify the stress tensor. For this sake we need the
following

Assumptions:

➢ τ = −pI + σ, p ∈ R, I ∈ R3×3, σ ∈ R3×3

➢ σ depends linearly on ∇u .

➢ σ is invariant with respect to translation and rotation

➢ σ ist symmetric

Remark 2.12. The first two assumptions imply spherical symmetry of the stress ten-
sor for resting fluids. As a consequence, the pressure p always acts in direction of
the unit normal. The last assumption is a conclusion of the conservation of rotational
momentum, which we have not considered so far.
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From these assumptions one can conclude that σ is of the form

σ = λ(div u)I + 2µD

where λ (volume viscosity) und µ (shear viscosity) are the viscosity coefficients (or
Lamé coefficients), and D = (Dij) ∈ R3×3 denotes the deformation tensor

Dij = 1
2

(
∂ui

∂xj

+
∂uj

∂xi

)
,

which can be rewritten as
D = 1

2
(∇v + (∇v)T )

Remark 2.13. µd = λ + 2
3
µ is called pressure viscosity.

Finally, this gives the conservation of momentum as

%
Du

Dt
= %f −∇p + (λ + µ)∇(div u) + µ∆u

2.3 Energy Balance

Up to now we have derived 4 equations (one for mass balance and one for conservation
of momentum) for 5 unknowns %, u , and p . In order to obtain a closed system, we
need a further equation, which will be a consequence of the conservation of energy.

Let E denote the total energy, composed of kinetic and internal energy, i.e.,

E =

∫

Wt

%
|u|2
2

dV

︸ ︷︷ ︸
kinetic energy

+

∫

Wt

%e dV

︸ ︷︷ ︸
internal energy

where e denotes the internal energy per unit of mass. The fundamental principle
governing the energy balance is

”Change of energy” = ”work performed by exterior forces + heat supply”

In an analogous way to the conservation of momentum

d

dt

∫

Wt

%
( |u|2

2
+ e

)
dV =

∫

Wt

%f · u dV

︸ ︷︷ ︸
work performed by vol-

ume forces

−
∫

∂Wt

h dA

︸ ︷︷ ︸
heat supply over the

boundary

+

∫

∂Wt

n · τ · u dA

︸ ︷︷ ︸
work performed by sur-

face forces
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Using Gauß’ theorem we deduce

∫

∂Wt

n · τ · u dA =

∫

∂Wt

3∑
j=1

3∑
i=1

ni · τj · uj dA

=

∫

Wt

3∑
i=1

∂

∂xi

( 3∑
j=1

τj · uj

)
dV

=

∫

Wt

div(τu)

One can show that
h = n · q,

where q denotes the vector of heat flux density (or just heat flux).

As a consequence of the transport theorem, we have

∫

Wt

(
%

D

Dt

( |u|2
2

+ e
))

dV =

∫

Wt

(%fu− div(q − τu)) dV

or in a differential version

%
D

Dt

( |u|2
2

+ e
)

= %fu− div(q − τu)

2.4 Closure Relations

Until now we have obtained 5 scalar equations for the unknowns %, p, e, q =




q1

q2

q3




and u =




u1

u2

u3


 . Since we have 9 unknowns, we need further conditions to close

the system. The remaining equations are material relations, in typical cases algebraic
equations relating density, pressure, temperature, and internal energy.

A first relation of this kind is Fourier’s law stating that the heat flux is proportional
to the temperature gradient, i.e.,

q = −κ∇T,

where T is the scalar temperature and κ the so-called heat conductivity (a material
dependent constant or function of temperature). In this way, we can eliminate the
variables q1 , q2 , and q3 .
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Further conditions are obtained from equilibrium thermodynamics, if we assume that
we deal with an ideal gas and :

➢ An ideal gas satisfies p = R%T , where R is the gas constant

➢ The assumption that the specific heat should be constant if the volume is con-
stant leads to cv = de

dT
, and thus,

e = cvT + const.

The above relations suffice to obtain a closed system. Depending on the specific
application, different closure relations can appear, e.g. constant density or negligeable
friction. Such constitutive relations have been obtained in different ways, some of
them from simple axioms as above, others by fitting material laws to experimental
results. In only few cases, the constitutive relations can be obtained rigorously from
microscopic properties.

2.5 Summary of Equations

In the following, we sum up the equations derived in the previous sections:

➢ Conservation of mass:
D%

Dt
+ % div u = 0

➢ Conservation of momentum: %
Du

Dt
= %f −∇p + (λ + µ)∇(div u) + µ∆u

➢ Conservation of energy: %
D

Dt

( |u|2
2

+ e

)
= %fu− div(q − τu)

supplied by the constitutive relations

➢ Fourier’s law: q = −κ∇T

➢ Ideal gas law: p = R%T

➢ ”Change of internal energy proportional to heat supply”: e = cV T

➢ Incompressible media:
D%

Dt
= 0

➢ Fluids without friction: σ ≡ 0 bzw. λ = µ = 0
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2.6 Exercises

Exercise 2.1. Let u be a vector field and f a scalar function. Proof the following
formulae of nabla calculus:

• div(f u) = u · ∇f + f div u ,

• div(rot u) = 0 ,

• rot (∇f) = 0 ,

• rot (rot u) = ∇(div u)−∆u .

Exercise 2.2. Show using Gauss’ Theorem

• the first Green’s formula
∫

Ω

u ∆v dx = −
∫

Ω

∇u · ∇v dx +

∫

∂Ω

u(∇v · n) ds,

• the second Green’s formula
∫

Ω

u ∆v dx =

∫

Ω

∆u v dx +

∫

∂Ω

u(∇v · n)− v(∇u · n) ds

Exercise 2.3. Let a fluid cover a domain D ⊂ R3 , let Φ(x, t) ∈ R3 the trajectory
of a fluid particle x at time t = 0 , and let u(x, t) ∈ R3 be the velocity of the fluid.
Then,

∂tΦ(x, t) = u(Φ(x, t), t).

Let W0 be a subdomain of D and let Wt, t ≥ 0 be the domain

Wt = {Φ(x, t) ∈ R3|x ∈ W0}

Show that:

• With J(x, t) = |det∇Φ(x, t)| , the relation

Jt(x, t) = (div u(Φ(x, t), t)) · J(x, t)

holds.

• If div u = 0 it follows that

d

dt

∫

Wt

f(x, t)dx =

∫

Wt

[∂tf + u · ∇xf ](x, t)dx
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• The volume of Wt is constant in time.

Exercise 2.4. We use the notations of the previous exercise, and denote by ρ(x, t)
the density of the fluid. Then,

d

dt

∫

Wt

ρ f dx =

∫

Wt

ρ
Df

Dt
dx.

Exercise 2.5. Show the following formula concerning the convective part of the ma-
terial derivative

(u · ∇)u =
1

2
∇(|u|2)− u× rot u.

Exercise 2.6. Derive the conservation form of the equation of momentum conserva-
tion from its differential version.

Exercise 2.7. Show that the deformation tensor D given by

Dij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

satisfies the relation
div(2D) = ∇(div u) + ∆u.

Exercise 2.8. Show the equivalence of the following statements:

• The flow is incompressible.

• The functional determinant J of Φ satisfies J(x, t) ≡ 1 .

• The velocity satisfies div u = 0 .

• The density satisfies Dρ
Dt

= 0 .

Exercise 2.9.

• Show that the performed work
∫

Ω
ρ u · f dx of the volume forces can be rewritten

as

− d

dt

∫

Ω

ρ φ dx,

if the force density f has a stationary potential φ ( ∂φ
∂t

= 0 ).

• Unter above assumptions, the energy balance can be rewritten as

d

dt

∫

Ω

ρ

(
|u|2
2

+ e + φ

)
dx = −

∫

Ω

div(q − τ · u) dx.
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Exercise 2.10. Write the energy balance for an incompressible fluid in divergence
form.

Exercise 2.11. Show for an incompressible flow that

• in 2d : rot ((u · ∇)u) = (u · ∇)rot u

• in 3d : rot ((u · ∇)u) = (u · ∇)rot u− ((rot u) · ∇)u
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3 Interpretation

In the following we want to give some interpretations of the equations derived above
and apply them to interesting specific flow situations. We will discuss equations for
compressible and incompressible flow and state the appropriate boundary conditions.
Finally, we discuss the proper scaling and two special situations, which allow to derive
closed-form solutions.

3.1 Compressible Flows

If one considers flows, where the change of density is not negligeable, one has to use
the full system of compressible equations. We have seen in the previous chapter that
additional relations are needed to obtain a closed system of equations. E.g., we have

p = R % T,

e = cV T + const

for an ideal gas, respectively

µd = 0 bzw. λ = −2

3
µ

for a diluted gas.

Moreover, the heat flux is determined by Fourier’s law

q = −κ∇T.

3.1.1 Compressible Navier-Stokes Equations

If the effects of frictions are not negligeable, one obtains the following system of partial
differential equations

D%

Dt
+ % div u = 0

%
Du

Dt
= %f −R∇(%T ) +

µ

3
∇(div u) + µ∆u

%
D

Dt

( |u|2
2

+ cvT

)
= %fu + div(κ∇T ) + µ div((∇u + (∇u)T )u)

−2
3
µ div(u div u)
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3.1.2 Boundary Conditions

In order to obtain a well-posed problem, we need additional conditions on the boundary
of the computational domain. Assuming that the fluid is inside a domain Ω ⊂ R3 ,
describing e.g. a container, an appropriate assumption is that there is no flow through
the container wall, i.e.,

u · n = 0 on ∂Ω,

where n denotes the unit outer normal.

The continuity equation for the density % can be considered as a linear partial differ-
ential equation of first order. The method of characteristics shows that no boundary
condition for the density on ∂Ω is necessary due to u · n = 0 .

A closer look at the equation of momentum conservation shows that the condition on
u does not suffice. Supposing that we had even an incompressible flow ( div u = 0 ).
Then,

%
Du

Dt
= %f −∇p + µ∆u

is a parabolic equation for u , but u ·n = 0 on ∂Ω defines only one component of the
velocity vector.

The question concerning the boundary condition for the velocity of a fluid being in
contact with a rigid wall is a quite delicate one. A simple and widely used condition
is adhesion condition: u = 0 on ∂Ω , i.e., there is no relative motion between
the fluid and the wall.

Finally, we can interpret the energy balance as an equation for the temperature T ,
and we can use all possible boundary conditions for the heat equation, e.g.,

→ fixed boundary temperature: T = Tb on ∂Ω

→ isolated boundary: ∇T · n = 0 on ∂Ω

The system is completed by specifying additional initial conditions for the density,
velocity, and temperature

%(0) = %0, u(0) = u0, T (0) = T0 in Ω.

3.1.3 Compressible Euler Equations

If viscous effects due to internal friction are negligeable, the stress tensor reduces to
τ = −p I . For such flows, compression can be so strong that discontinuities appear,
so-called shocks or compression waves, e.g., for jets travelling above speed of sound.
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In this case it is advantageous to consider the conservative form of the equations,
which yields

∂tρ + div(ρ u) = 0

∂t(ρ u) + div(ρu⊗ u) +∇p = ρ f.

Assuming an ideal gas, we obtain

p = (γ − 1)(ρ e− 1

2
ρ |u|2),

where γ
def
= cp/cV . The energy balance becomes

∂t(ρ e) + div(ρeU + pu) = ρ f · u + ρ h.

In absence of volume and heat forces, these equations can be rewritten as a hyperbolic
system of conservation laws. Defining the vector z = (ρ, ρu, ρe)T we have

∂tz + div F (z) = 0,

with the flux function

F (z) =




ρu
ρu⊗ u + pI
ρeu + pu


 .

Changes in density and pressure can propagate only with finite speed in a compressible
fluid. We define the speed of sound as

c(p)
def
=

√
d p

d ρ

and and the local Mach number

M
def
=

|u|
c(p)

.

For this kind of equations on needs special numerical methods, being subject of a com-
panion course on conservation laws. In particular, the choice of boundary conditions
is difficult due to crossing characteristics.

3.2 Incompressible Flows

Contrary to gases, fluids can be compressed only using very high forces. Therefore, a
fluid behaves almost like an incompressible material, i.e., div u = 0 , and the continuity
equation becomes a transport equation for the density, i.e.,

∂tρ + u · ∇ρ = 0.
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3.2.1 Incompressible Navier-Stokes Equations

Now we state the equations whose numerical solution will be treated in detail in the
following chapters. In addition to incompressibility, we assume a constant density
( % = %0 ≡ 1 ), which is a typical assumption for several fluids such as water or oil.
Then we obtain the incompressible Navier–Stokes Equations

ut + (u · ∇)u︸ ︷︷ ︸
Convection

= f − 1

%0

∇p + ν∆u︸︷︷︸
Diffusion

div u = 0





in Ω

u = 0 on ∂Ω
u(0) = u0 in Ω

with ν = µ/ρ0 . Since density is constant, we do not need further relations to determine
the state variables.

Since we have normalized density, the kinetic energy of the fluid is given by

Ekin(t) :=
1

2

∫

Ω

|u|2 dx.

In the absence of volume forces, its time derivative is given by

d

dt
Ekin(t) =

∫

Ω

uut dx

=

∫

Ω

u(−(u · ∇)u−∇p + ν∆u) dx

= −
∫

Ω

u(u · ∇)u dx−
∫

Ω

u∇p dx + ν

∫

Ω

u∆u dx

Using Gauss’ Theorem we obtain

∫

Ω

u∇p dx = −
∫

Ω

div u︸︷︷ ︸
=0

p dx +

∫

∂Ω

p · u · n︸︷︷︸
=0

ds = 0

and
∫

Ω

u(u · ∇u)u dx =
1

2

∫

Ω

u∇(|u|2) dx−
∫

Ω

u · (u× rot u)︸ ︷︷ ︸
=0

dx

= −1

2

∫

Ω

div u︸︷︷ ︸
=0

|u|2 dx +
1

2

∫

Ω

|u|2 u · n︸︷︷︸
=0

ds

= 0
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Hence,
d

dt
Ekin(t) = ν

∫

Ω

u∆u dx

respectively

d

dt
Ekin(t) = ν

∫

Ω

u1∆u1 dx + ν

∫

Ω

u2∆u2 dx + ν

∫

Ω

u3∆u3 dx

= ν

3∑
i=1


−

∫

Ω

|∇ui|2 dx +

∫

∂Ω

ui(∇ui · n) ds

︸ ︷︷ ︸
=0




= −ν

3∑
i=1

∫

Ω

|∇ui|2 dx

≤ 0

Consequently, the kinetic energy is decreasing in time, which reflects the losses due to
friction in a viscous flow.

3.2.2 Incompressible Euler Equations

If viscosity can be neglectet (µ = 0) , we obtain the incompressible Euler equations

Du

Dt
= f −∇p

div u = 0

Since the Euler equations are of first order, we cannot use the adhesion condition for
u on ∂Ω , in this case it suffices to use

u · n = 0 on ∂Ω.

The incompressible Euler equations are again of hyperbolic type and therefore enforce
special methods similar to those for conservation laws, which we shall not discuss in
this class.

3.2.3 Stokes Equations

If f does not depend on time, then the solution of the incompressible Navier-Stokes
equations will tend to its stationary limit, given by the equation

(u · ∇)u = f − 1

%0

∇p + ν∆u

div u = 0



 in Ω

u = 0 on ∂Ω



3.3 Model Hierarchy 27

This system is usually called stationary Navier Stokes equations.

A case of particular importance, where the convergence towards the stationary situa-
tion is fast, is the one of a low Reynolds number , i.e., viscosity being large compared
to the product of the typical speed and typical length (see the section on scaling below
for details). In this case, the term on the right-hand side will dominate in the Navier-
Stokes equations and we can use an appropriate rescaling of the pressure variable and
the volume force to obtain the so-called Stokes problem

−∆u +∇p = f (3.1)

div u = 0 (3.2)

in Ω .

3.3 Model Hierarchy

Altogether, we obtain the following model hierarchy:

CFD

Non viscous Viscous

Incompressible Compressible CompressibleIncompressible

Another standard distinction is between

laminar ↔ turbulent
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Laminar flows (e.g. a slow flow out of a water tap or a flow along a channel) can be
described by the Navier-Stokes equations, while new model equations are needed for
turbulent flows (e.g. a fast flow out of a water tap).

Finally, there is another way of categorizing flows, namely with respect to their speed
into:

subsonic flows ↔ transsonic flows

3.4 Scaling

In the following we shall derive a dimensionless form of the incompressible Navier
Stokes equations using appropriate scaling.

We start from

ut + (u · ∇)u = − 1

%0

∇p + ν∆u

div u = 0

(3.3)

and choose characteristic length scale L and a characteristic speed U of the flow.
This choice also determines a corresponding time scale of the flow, given by τ = L

U
.

Now we introduce new dimensionless variables

x̃ =
x

L
, t̃ =

t

τ
, ũ =

u

U

into (3.3), and conclude from the chain rule

U

τ
ũt +

U2

L
(ũ · ∇̃)ũ = − 1

%0

1

L
∇̃p +

νU

L2
∆̃ũ,

U

L
d̃ivũ = 0

If we further rescale pressure to p̃ = 1
%0U2 p , then multiplication by L

U2 yields

ut + (u · ∇)u = −∇p +
ν

LU
∆u

div u = 0,

where we have dropped the tilde-notation.

The parameter

Re =
LU

ν

is called Reynolds number and provides a measure for the viscosity of the flow.
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One observes that ν being small does not imply that viscous effects can be neglected,
since L and / or U may be small, too. Viscous effects can be neglected only, if 1

Re

is small, respectively Re large.

Furhermore, two flows can have the same Reynolds number, they are called similar
in this case. This relation allows the well-known tests in a wind tunnel.

Example 3.1. (Flow around a sphere)

Flow 1: with radius r = 10m , speed U∞ = 100km
h

and viscosity ν

Flow 2: with radius r = 1m , speed U∞ = 1000km
h

and the same vis-
cosity.

Then,

Re1 =
1(km2

h
)

ν
= Re2

Example 3.2. (Flow of air around a car)

U = 10m
s
, L = 1m, νLuft = 10−5 m2

s

In this case we have
Re = 106

Hence, one can neglect viscous effects (as long as one is not interested in the drag
coefficient of the car).

Example 3.3. (Microorganisms in water)

U = 1mm
s

, L = 1mm, νwater = 10−3 m2

s

Then,
Re = 10−3

so that viscous effects dominate.

3.5 Vortex Transport Equation

Another important parameter of a flow is the

Vorticity: ω
def
= rot u
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The interpretation of vorticity is not always straight forward: e.g., the flow around a
sphere

u(x, y) =




−y√
x2+y2

x√
x2+y2




is vortex free, while vorticity does not vanish for the channel flow

u(y)

y

x

Using the identity

u · ∇u =
1

2
∇ |u|2 − u× rotu

we may conclude from the incompressible Euler equations for irrotational flows at
vanishing force density that

∇
(

1

2
∇|u|2 +

p

ρ0

)
≡ 0,

i.e., in the whole domain of the flow

1

2
∇|u|2 +

p

ρ0

≡ const.

Hence, a local increase of speed implies a decrease of pressure.

Starting from the incompressible Navier-Stokes equations we shall now derive an equa-
tion for the vorticity ω . For this sake we apply the rot operator to

ut + (u · ∇)u = −∇p +
1

Re
∆u
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and obtain

ωt + rot ((u · ∇)u) =
1

Re
∆(rot u)

Remark 3.4.

(1) In 2d:
rot ((u · ∇)u) = (u · ∇)ω (ω is a scalar!)

(3) In 3d:
rot ((u · ∇)u) = (u · ∇)ω − (ω · ∇)u

I.e., we obtain different equations depending on the space dimension.

In 2d the vortex transport equation is given by

ωt + (u · ∇ω) =
1

Re
∆ω

⇔ Dω

Dt
=

1

Re
∆ω

Hence, vorticity is transported through convection and diffuses. One observes that
there is no diffusion of vorticity in the Euler equations (Re →∞) , i.e., it is a conserved
quantity

In 3d the vortex transport equation is given by

Dω

Dt
= (ω · ∇)u +

1

Re
∆ω

Here, there apppears transport, stretch, and diffusion of vorticity. Note that even
ω(t = 0) = 0 does not imply ω ≡ 0 , since vorticity can be created by boundary
conditions. The vortex transport equation has the advantage that pressure has been
eliminated.

However, there is still a remaining question how to reconstruct velocity from vorticity.
This is a non-trivial and lengthy problem, for which we refer to [CM84].

3.6 Closed Form Solutions

Now we shall investigate two particular situations, where the Navier-Stokes equations
allow a closed form solution.
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3.6.1 Viscous Channel Flow

Consider the following viscous incompressible flow between two stationary plates:

y

x

y = 1

y = 0

x = 0 
p = p1

x = L
p = p2

Flow direction

We are looking for a stationary solution of the incompressible Navier-Stokes equations
of the form

u(x, y) =

(
U(x, y)

0

)
, p = p(x) with p(0) = p1, p(1) = p2.

The continuity equation div u = 0 implies

Ux = 0 ⇒ U = U(y)

and conservation of momentum yields

0 = −UUx − px +
1

Re
(Uxx + Uyy)

with boundary values U(x, 0) = U(x, 1) = 0 .

Thus,

px =
1

Re
Uyy.
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and since both sides of the equations depend on different variables, we may conclude
that

px = const.,
1

Re
Uyy = const.

and consequently

p(x) = p1 − p1 − p2

L
x,

u(y) = y(1− y) Re
p1 − p2

2L
.

I.e., the velocity profile is a parabola.

u(y)

y

x

3.6.2 Moving Plate

Assume that the half space y > 0 is filled with a fluid that is not moving for t ≤ 0 .
Moreover, the plate at the fluid boundary starts to move at time t = 0 with constant
velocity U in the y -direction. One may assume that the fluid starts to flow due to
friction.

In this case we look for a solution of the incompressiblen Navier Stokes equations of
the form

u = u(y, t), v = w = 0.

Clearly, div u = 0 is satisfied. Conservation of momentum reduces to

%ut = −px + µuyy, py = pz = 0.

Now px must be constant, because u depends on y and t only. It seems reasonable
to choose px = 0 . It remains to solve the diffusion equation

ut = νuyy

with the kinematic viscosity ν = µ/% . The initial condition is given by u(y, 0) = 0
and adhesion at the wall yields u(0, t) = U .
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The dimensionless velocity ũ = u/U solves the initial-boundary value problem

ũt = νũyy,

ũ(y, 0) = 0, ũ(0, t) = 1.

Since ũ is dimensionless, it can only be a function of a dimensionless combination of
ν , y , and t . The unit of kinematic viscosity is given by [ν] = cm2s−1 . Therefore we
write ũ as a function of

η =
y

2
√

νt
, (dimensionless!),

i.e., ũ = F (η) .

From the diffusion equation we obtain the boundary value problem

Fηη + 2η F (η) = 0,

F (0) = 1, F (∞) = 0,

whose solution is determined via the the complimentary error function

F (η) = erfc(η)
def
=

2√
π

∫ ∞

η

e−s2

ds.

Hence, the velocity of the fluid is given by

u(y, t) = U erfc

(
y

2
√

νt

)
.

This means, that in a fixed distance to the plate the velocity of the fluid will converge
to the velocity of the plate for t →∞ .

t

u

U

For fixed time t > 0 we have
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U x

y

3.7 Exercises

Exercise 3.1. Starting from the incompressible Euler equations (conservation of mass
and momentum, λ, µ = 0 ) compute the planar flow in a channel (i.e., between to
plates) of length L , when there is a pressure difference.

Exercise 3.2. A very large plate is moving with a cosine law in its own plane. Above
the plate there is a Newtonian fluid. Which flow appears in the fluid ?

Exercise 3.3. Compute the velocity and pressure profile of a stationary flow, which
appears in a fluid film along a plane with slope angle α due to gravity. The height of
the film orthogonal to the plane is h .

Exercise 3.4. A flow appearing due to viscosity between to coaxial cylinders moving
with arbitrary angular velocities is called Couette flow

• Determine the general form of the azimuthal velocity of a stationary flow in
absence of volume force (i.e., derive a formula in dependence of the radii of the
cylinders and their angular velocities).

Hint:
duφ

dr
+

uφ

r
=

1

r

d

dr
(r uφ),

duφ

dr
− uφ

r
= r

d

dr

(uφ

r

)

• Determine the special solution for uφ und p if there is no inner cylinder (radius
zero) and the outer cylinder has radius R and angular velocity ω .

Exercise 3.5. Show that the incompressible Navier–Stokes equations in cylindrical
coordinates are given as:

∂ur

∂r
+

ur

r
+

1

r

∂uφ

∂φ
+

∂uz

∂z
= 0,
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∂ur

∂t
+ ur

∂ur

∂r
+

uφ

r

∂ur

∂φ
+ uz

∂ur

∂z
− u2

φ

r
= fr − 1

ρ

∂p

∂r

+ ν

(
∂2ur

r2
+

1

r

∂ur

∂r
− ur

r2
+

1

r2

∂2ur

φ2
+

∂2ur

z2
− 2

r2

∂uφ

∂φ

)
,

∂uφ

∂t
+ ur

∂uφ

∂r
+

uφ

r

∂uφ

∂φ
+ uz ppuφz − ur uφ

r
= fφ − 1

ρ

1

r

∂p

∂ phi

+ ν

(
∂2uφ

r2
+

1

r

∂uφ

∂r
− uφ

r2
+

1

r2

∂2uφ

φ2
+

∂2uφ

z2
− 2

r2

∂ur

∂φ

)
,

∂uz

∂t
+ ur

∂uz

∂r
+

uφ

r

∂uz

∂φ
+ uz

∂uz

∂z
= fz − 1

ρ

∂p

∂z

+ ν

(
∂2uz

r2
+

1

r

∂uz

∂r
+

1

r2

∂2uz

φ2
+

∂2uz

z2

)
.

Exercise 3.6. In order to measure viscosity, the so-called Couette–viscosimeter is
used: The fluid is located between to coaxial cylinders. The outer one (radius R2 )
is rotating with constant angular velocity ω and the inner one (radius R1 ) does not
move. Now the angular moment M is measured at the inner cylinder, which allows
to determine the viscosity. Compute this angular moment and solve the equation for
the viscosity.

Hint: The angular moment satisfies M = 2 π R2
1 Lτrφ(R1) .
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4 Stokes Problem

In this chapter we shall discuss numerical methods for the solution of the linear Stokes
problem. We shall provide some analysis in the framework of saddle-point problems,
and discuss their discretization by mixed finite element methods. Moreover, we shall
discuss the solution of the discretized problem.

By scaling the incompressible Navier-Stokes equations as before, and using the pressure
p = %νU

L
p̃ , we obtain

Re (u · ∇)u = −∇p + ∆u + f

div u = 0.

Assuming that the the flow is rather slow ( Re ¿ 1 ), one can neglect the nonlinear
term and obtain the linear Stokes Problem

−∆u +∇p = f (4.1a)

div u = 0 (4.1b)

As discussed above, we use the boundary condition

u = 0 auf ∂Ω,

which is reasonable in particular for slow flows. A pair of functions (u, p) ∈ (C2(Ω) ∩
C0(Ω̄))×(C1(Ω)) is called a classical solution of the Stokes Problem, if it satisfies (4.1).
Note that pressure is determined only up to an additive constant, so that usually the
normalizing condition ∫

Ω

p dx = 0

is added to the system.

We shall now derive a variational formulation of (4.1). Let Ω ⊂ Rn , n ≤ 3 be a
bounded domain. We define the spaces

V
def
= [H1

0 (Ω)]n

W
def
= L2

0(Ω)
def
=

{
q ∈ L2(Ω) :

∫

Ω

q dx = 0

}
.

By multiplying the first equation with v ∈ V and the second with q ∈ W , subsequent
integration over Ω , and an application of Gauss’ theorem, we obtain

∫

Ω

∇u · ∇v dx−
∫

Ω

div v p dx =

∫

Ω

f v dx
∫

Ω

div u q dx = 0.
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We consequently define bilinear forms a : V × V → R and b : V ×W → R via

a(u, v)
def
=

∫

Ω

∇u · ∇v dx

b(v, w)
def
= −

∫

Ω

div v w dx.

This yields the weak formulation of (4.1):

Find (u, p) ∈ V ×W satisfying

a(u, v) + b(v, p) = (f, v) (4.2a)

b(u, q) = 0 (4.2b)

for all (v, q) ∈ V ×W . By (·, ·) we denote the scalar product in L2(Ω) .

4.1 Saddle-Point Problems

Systems of the form (4.2) are called saddle-point problems, since the solution (u, p) of
(4.2) is also the minimizer of:

J(u) =
1

2
a(u, u)− (f, u) → min

subject to the constraint
b(u, q) = 0 ∀q ∈ W.

As usual for optimization problems with constraints, we can introduce an associated
Lagrangian

L(u, q) = J(u) + b(u, q).

For each solution (u, p) of (4.2), we have

L(u, q) ≤ L(u, p) ≤ L(v, p) ∀(v, q) ∈ V ×W.

That is, (u, p) is a saddle-point of the Lagrangian.

In this sense one may interpret the pressure p ∈ W as a Lagrange multiplier associated
to the constraint of incompressibility div u = 0 .

We shall now discuss the solution of (4.2) in a general framework. Let V, W be Hilbert
spaces and a : V ×V → R , b : V ×W → R be continuous bilinear forms. We define
the space

Z = {v ∈ V : b(v, w) = 0 ∀w ∈ W},
which is a closed subspace of V due to the continuity of b .

Moreover we introduce the maps A : V → V ∗ and B : V → W ∗

〈Au, v〉 = a(u, v), 〈Bu, µ〉 = b(u, µ)

as well as the dual operator B∗ : W → V ∗
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Example 4.1. Let b(v, w) = − ∫
Ω

div v ·w dx . Then B = − div and B∗ = ∇ , since

〈Bu,w〉 = −
∫

Ω

div v · w dx =

∫

Ω

v · ∇w dx = 〈v, B∗w〉

Hence, (4.2) is given in operator notation as

Au + B∗p = f (4.3a)

Bu = 0 (4.3b)

Well-posedness of this problem depends on the closedness of the image of B . For a
further investigation one can use the Closed Range Theorem or the following result:

Lemma 4.2. The following assertions are equivalent

1. There exists a β > 0 such that

inf
w∈W

sup
v∈V

b(v, w)

‖v‖‖w‖ ≥ β (4.4)

2. The operator B : Z⊥ → W ∗ is an isomorphism, and

‖Bv‖ ≥ c‖v‖ ∀v ∈ Z⊥

Remark 4.3. The condition (4.4) is usually called Ladyshenskaya-Babuska-Brezzi
(LBB) condition or inf-sup condition.

Theorem 4.4. The saddle-point problem (4.3) has a unique solution (u, p) ∈ V ×W ,
if

1. The bilinear form a is V -coercive, i.e., there exists α > 0 such that

a(u, u) ≥ α‖u‖2
V ∀u ∈ Z

2. The bilinear form b satisfies the inf-sup condition

inf
w∈W

sup
v∈V

b(v, w)

‖v‖‖w‖ ≥ β

Note that V -coercivity means that the objective functional is strictly convex on the
feasible set, which is clear in the case of the Stokes problem. In order to show the
well-posedness of the Stokes problem it remains to verify the inf-sup condition (4.4),
which turns out to be a non-trivial problem.

Theorem 4.5. Let w ∈ L2
0(Ω) . Then there exists ṽ ∈ V with − div ṽ = w and a

constant c > 0 such that ‖ṽ‖V ≤ c‖w‖L2 .
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As a consequence of the above theorem we have

sup
v∈V

b(v, w)

‖v‖ ≥ b(ṽ, w)

‖ṽ‖ ≥ ‖w‖2

‖ṽ‖ ≥ 1

c
‖w‖,

which implies the inf-sup condition.

Theorem 4.6. The Stokes problem has a unique solution (u, p) ∈ V ×W .

Proof: The coercivity of the bilinear form a ensures the uniqueness of a minimizer
of

I(v) =
1

2
a(v, v)− f(v) → min! , v ∈ Z = {v ∈ V : b(v, w) = 0 ∀w ∈ W}

The functional I is unbounded in radial direction, i.e., (I(v) → +∞ for ‖v‖ → ∞) ,
and V is closed and convex, consequently it is weakly closed. For a minimizing sequenc
(vn) ⊂ Z we have ‖vn‖V ≤ M and hence, vn → u ∈ Z (due to uniqueness of the
limit, the whole sequence converges, not only a subsequence).

Because of u ∈ Z , (u, p) ∈ V ×W solves the saddle-point problem if and only if

b(v, p) = f(v)− a(u, v) ∀v ∈ Z⊥

respectively
〈Bv, p〉 = f(v)− a(u, v) ∀v ∈ Z⊥

or
〈v, B∗p〉 = f(v)− a(u, v) ∀v ∈ Z⊥

which means
B∗p = f − Au in Z⊥

Since B∗ : W → Z⊥ is an isomorphism, this equation has a unique solution p ∈ W .

The proof shows that the main difficulty is to determine the pressure. The inf-sup
condition somehow guarantees that the pressure is controlled by the data.

4.2 Mixed Finite Elements

In the following we shall discuss a finite element discretization of the weak formulation
of the saddle-point problem (4.2). For this sake we choose the finite element spaces
Vh ⊂ V and Wh ⊂ W . Then, the discrete variational equation is given by

Find (uh, ph) ∈ Vh ×Wh with

a(uh, vh) + b(vh, ph) = (f, vh)

b(uh, wh) = 0
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for all (vh, wh) ∈ Vh ×Wh .

This approach is called mixed finite element method.

As in the continuous case, we set

Zh = {vh ∈ Vh : b(vh, wh) = 0 ∀wh ∈ Wh}.
Due to Vh ⊂ V one has to expect Zh 6⊂ Z . Hence, the bilinear form a is not auto-
matically Zh -coercive. Nonetheless, such an approach is called conforming because of
Vh ⊂ V . We also have to transfer the stability analysis using (4.4) to the discretized
case.

Theorem 4.7. Assume that:

1. The bilinear form a is Zh -coercive, i.e., there exists αh > 0 such that

a(uh, uh) ≥ αh‖uh‖2, ∀uh ∈ Zh.

2. There exists a constant βh > 0 such that

sup
vh∈Vh

b(vh, wh)

‖vh‖ ≥ βh‖wh‖ ∀wh ∈ Z⊥
h

Then the solution of (4.5) and (4.2) satisfies

‖u− uh‖+ ‖p− ph‖ ≤ c ·
(

inf
vh∈Vh

‖u− vh‖+ inf
wh∈Wh

‖p− wh‖
)

Remark 4.8. The finite element spaces Vh and Wh should not be chosen indepen-
dently. In particular, Vh must contain enough freedom such that there are not too
many restrictions on Wh .

Example 4.9. We discuss an example of a stable discretization of the Stokes problem.
Let Ω be decomposed into a rectangular grid Th of fineness h > 0 . We choose

Vh =

{
vh ∈ [C0(Ω̄)]2 : vh

∣∣∣
Ωi

∈ [Q2(Ω̄i)]
2, Ωi ∈ Th

}
(bi-quadratic)

Wh =

{
wh ∈ W : wh

∣∣∣
Ωi

∈ P0(Ω̄i), Ωi ∈ Th

}
(constant)

Since Wh ⊂ W , there exists ṽ ∈ V such that

div ṽ = wh and ‖ṽ‖ ≤ c‖wh‖
Moreover, there is a unique ṽh ∈ Vh with

a(ṽh, vh) = a(ṽ, vh) ∀vh ∈ Vh.
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Using Céa’s lemma we conclude

‖ṽh‖ ≤ c‖ṽ‖ ⇒ ‖ṽh‖ ≤ c‖wh‖
We define an interpolating element v̂h ∈ Vh via

v̂h(pi) = ṽh(pi)∫

Ωj

v̂h dx =

∫

Ωj

ṽ dx

∫

Tjk

v̂h ds =

∫

Tjk

ṽ ds

Then we have

‖wh‖2 =

∫

Ω

wh div ṽ dx =
N∑

j=1

∫

Ωj

wh div ṽ dx

Since wh is constant on Ωj , we may deduce with Gauß’ theorem that
∫

Ωj

wh div ṽ dx =

∫

Γj

whṽ · nj ds

From the interpolation condition we have∫

Γj

whṽ · nj ds =

∫

Γj

whv̂h · nj ds

⇒
∫

Ωj

wh div ṽ dx =

∫

Ωj

wh div v̂h dx

⇒ ‖wh‖2 =

∫

Ω

wh div v̂h dx

Altogether, one obtains

sup
vh∈Vh

b(vh, wh)

‖vh‖ ≥ b(v̂h, wh)

‖v̂h‖ ≥ ‖wh‖2

‖v̂h‖ ≥ c‖wh‖ ∀wh ∈ Wh

because ‖v̂h‖ ≤ c‖wh‖ . Hence, this discretization satisfies the inf-sup condition.

Remark 4.10. For triangularization one often uses Taylor-Hood-elements, which are
based on additional nodes for the pressure in the triangle mid points. I.e., let Sh be
the triangularization obtained by adding the midpoints of the triangles in T to the
grid. Then, the pair

Vh =
{

vh ∈ [C0(Ω̄)]2 ∩ [H1
0 (Ω)]2 : vh

∣∣∣
T
∈ P2 ∀T ∈ Sh

}

Wh =
{

wh ∈ C0(Ω) ∩ L2
0(Ω) : wh

∣∣∣
T
∈ P1 ∀T ∈ Th

}

yields a stable discretization of the Stokes problem.
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Pressure p

Velocity u

Another possibility of discretization is to incorporate the condition div u = 0 into
the finite element subspace, which yields non-conforming divergence-free P1 -elements
and does not need to take pressure into account. Instead one could just minimize∫ |∇u|2 dx on this subspace. The construction of such elements however is tedious,
and the associated variational equation is not easy to solve.

4.3 Schur-Complement

In the following we shall discuss an algorithm, which allows to solve the discretized
saddle-point problem. Starting from

Au + B∗p = f

Bu = 0

we obtain a system of the form
(

A BT

B 0

)(
u
p

)
=

(
f
0

)

where A is a regular matrix (corresponding to the discretization of the Laplace oper-
ator with Dirichlet boundary condition).

The linear system in this form is indefinite, i.e., it has positive as well as negative
eigenvalues. Since A−1 exists, one can eliminate the velocity variable u and obtains
the smaller linear system

BA−1BT p = BA−1f (4.6)



4.3 Schur-Complement 44

for the pressure p . Once the pressure is solved from this system we can compute the
velocity vector as

u = A−1(f −BT p).

The matrix of the reduced system (4.6) is positive definite!

The only disadvantage is that BA−1BT is given only in implicit form, since A−1 is a
dense matrix in general, and the compuational effort for computing the inverse is too
high for reasonable discretizations. Therefore, apppropriate iterative solution methods
for (4.6) have to be constructed.

The basic form of the iteration for the pressure-Schur-complement equation is given
by

1. Given pk−1

2. Set pk = pk−1 − C−1(BA−1BT pk−1 −BA−1f)

where C−1 is an appropriate preconditioner for S = BA−1BT . A simple variant of
this iteration is the Uzawa-algorithm, where C−1 is a scaled version of the identity
matrix:

1. Let p0 be given.

2. For k = 1, 2, . . .

(a) Solve Auk = f −BT pk−1

(b) Set pk = pk−1 + αBuk

If we investigate the defect
rk = −Buk

and if (u, p) is solution of the saddle-point problem, then

rk = −BA−1(f −BT pk−1)

= BA−1BT (pk−1 − p)

and hence,
pk − pk−1 = −α rk = α BA−1BT (p− pk−1).

That is, the Uzawa-algorithm is equivalent to a gradient method with fixed time step
α for the reduced problem for the pressure. In particular, the iteration converges if

α <
2

‖BA−1BT‖ .

The Uzawa-algorithm is still computationally expensive, since each iteration a system
with matrix A has to be solved. The number of total iterations can be reduced if the
conjugate-gradient method is used instead of the gradient method. Another possibility
is to choose the step size α adaptively
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Remark 4.11. Since the matrix of the saddle-point problem has condition number
O(h−4) appropriate preconditioning is important in order to ensure fast convergence
of the cg-method

4.4 Preconditioning

For large-scale problems, in particular in 3 d, the above strategies are very expensive,
since they still enforce the exact solution of the Laplace equation. In order to reduce
the computational effort one can use preconditioning.

A first possibility is the inexact Uzawa iteration, where one chooses a preconditioner
Â for A and a preconditioner Ĉ for the Schur complement C = BA−1BT and then
performs the following procedure:

1. Let p0 be given.

2. For k = 1, 2, . . .

(a) Solve Âuk = f −BT pk−1 − (A− Â)uk−1

(b) Solve Ĉpk = Ĉpk−1 + αBuk .

As a Schur-complement preconditioner one often uses a multiple of the identity, as in
the original version of the Uzawa algorithm. For preconditioning A one has several
possibilities as for usual elliptic problems, one can use (block-)Jacobi, (block-)Gauss-
Seidel, or multigrid methods.

A faster method is to use Krylov subspace methods for indefinite problems such as
generalized minimal residual (GMRES) or quasi-minimal residual (QMR). For such
an approach it is important to use an appropriate preconditioner for the saddle-point
problem, for which one iteration of an inexact Uzawa method could serve.

4.5 A direct Stokes-Solver

Finally, we discuss a direct Stokes-solver, using a non-conforming approach. For this
sake one needs a finite element basis in the subspace

Xh =
{

vh ∈ Ṽh × Ṽh : div vh = 0
}

where

Ṽh =
{

vh ∈ L2(Ω) : vh

∣∣∣
T

linear ∀T ∈ Th, vh continuous in Q ∈ Sh

}
.
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Here, Sh
def
= {Q1, . . . , Qm} is the set of edge centers of the triangle T ∈ Th . This

approach is a non-conforming finite element method, because

Ṽh 6⊂ H1(Ω),

due to vh /∈ C0(Ω̄) . For functions vh ∈ Ṽh we can enforce div uh in each triangle
T ∈ Th . We efine

(div vh)
∣∣∣
T

= div(vh

∣∣∣
T
) ∀vh ∈ Ṽh, T ∈ S̄h.

Then, there is one degree of freedom left for the pressure in T ∈ Th :

ph ∈ Qh =
{

qh ∈ L2(Ω) : qh

∣∣∣
T
≡ const. ∀T ∈ Th

}
.

Now let w̃k ∈ Ṽh be the basis function associated with Qk .

P
Qk

P’

We set

~wk(x)
def
=

P − P ′

|P − P ′|w̃k(x)

Then ~wk is constant along P − P ′ and therefore divh ~wk = 0 . The basis function is
accordingly associated to each triangle edge (one speaks of ”edge element” or ”edge-
based” discretizations, opposed to standard ”nodal elements”). Moreover, we associate
a basis function ~wp associated to the node P via

~wp(x) = +
n′

|P − P ′|wk′(x) +
n′′

|P − P ′′|wk′′(x), x ∈ T
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P

P’ P’’

Qk’ Q
k’’

n’

n’’

Then the tangential component is vanishing for each edge, and

~wp · n′ = 1

|P − P ′| , ~wp · n′′ = 1

|P − P ′′| .

One can show that these functions are divergence free and via a dimensional argument
it is easy to see that ~wk and ~wp form a basis of Xh . Now let Xh = span {~wi} . Then
the discretized solution of the Stokes problem can be written as

uh =
∑

i

ui ~wi.

Using this form in the saddle-point problem, one obtains the linear system

Au = f̂

with Aij = (a(~wi, ~wj))ij, f̂i = (f, ~w)i

The matrix A is symmetric positive definite, so that standard methods like cg can be
used for its solution, as well as usual preconditioners.

Remark 4.12. This approach has some advantages, in particular the solution is al-
ways divergence free, even if one uses iterative solvers. However, it also suffers from
some disadvantages:

1. One arrives at few unknowns, but stiffness matrices with less zero entries.

2. The matrix A is ill-conditioned for fine discretizations, i.e. cond(A) = O(h−4) .

3. The extension to 3d is complicated, but possible. However, the algorithm becomes
very slow for large problems.
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4.6 Exercises

Exercise 4.1. Let FF T = BBT be a Cholesky decomposition of BBT . Using F
compute a triangular decomposition of

(
A BT

B 0

)

• if A = I ,

• if A = LT L .

Exercise 4.2. Let A be a symmetric positive definite matrix and B be a matrix of
maximal rank. Show that

cond(BA−1BT ) ≤ cond(A−1) cond(BBT ).

Exercise 4.3. Show that
(

A BT

B 0

)
=

(
A 0
B I

)(
A−1 0

0 −BA−1BT

)(
A BT

0 I

)
.

What is the connection between this factorization and the reduced equation ?

Exercise 4.4. Discretize the 1 d Stokes problem using piecewise linear finite elements
for the velocity u and piecewise linear elements for the pressure p . Does this dis-
cretization yield a stable system matrix ?

Exercise 4.5. Discretize the 1 d Stokes problem using piecewise linear finite elements
for the velocity u and piecewise constant elements for the pressure p . Does this
discretization satisfy the LBB-condition ? Use the boundary conditions u(0) = 1 ,
u(0) = 0 , and the right-hand side f = sin(2 ∗ pi ∗ x) .

Exercise 4.6. Use the exact and inexact Uzawa iteration to solve the 1 d Stokes prob-
lem. For the inexact Uzawa iteration, use a Jacobi and a Gauss-Seidel preconditioner
for the Laplace operator. Compare the results.

Exercise 4.7. Use the cg iteration for the Schur complement to solve the 1 d Stokes
problem with the above discretization.

Exercise 4.8. Rewrite the 2 d Stokes problem in polar coordinates.

Exercise 4.9. Consider a 2 d flow between two rotating spheres with rotational sym-
metry. Implement a finite element discretization of this problem. Use R1 = 0.3 and
R2 = 1 , the boundary condition u(R1) = −0.5 , u(R2) = 1 , and the right-hand side
f = 0 . (Hint: Use the previous exercise and the rotational symmetry, which yields
a one-dimensional problem in terms of the radius. The boundary conditions at the
radius of the inner and outer sphere are given by the angular velocity of the spheres.
Use the same discretization strategy as for 1 d Stokes).
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5 Stationary Navier-Stokes Equations

In the following let Ω ⊂ Rn, n ≤ 3 be a bounded domain. We are looking for a
solution of the stationary incompressible Navier-Stokes equations

div u = 0 in Ω
−ν∆u + (u · ∇)u +∇p = f in Ω

u = 0 on Γ



 (NSG)

where Γ = ∂Ω denotes the boundary of the domain.

Definition 5.1. A pair (u, p) is called classical solution of the Navier-Stokes problem,
if u ∈ C2(Ω) ∩ C0(Ω̄) and p ∈ C1(Ω) ∩ C0(Ω̄) satisfy (NSG) in Ω .

5.1 Existence and Uniqueness

Since classical solutions of the Navier-Stokes equations can be obtained under very
restrictive assumptions only, we shall now derive a weak formulation.

For this sake we introduce the function spaces

V
def
= {u ∈ [H1

0 (Ω)]n : div u = 0}
and

W = L2
0(Ω).

We define the bilinear form a : V × V → R ,

a(u, v)
def
= ν

∫

Ω

∇u∇v dx = ν

∫

Ω

3∑
i=1

∇ui∇vi dx

and the trilinear form b : H1(Ω)×H1(Ω)×H1(Ω) → R ,

b(u, v, w)
def
=

n∑
i,j=1

∫

Ω

uj
∂vi

∂xj

wi dx =

∫

Ω

[(u · ∇)v] · w dx

By multiplying the second equation in (NSG) with v ∈ V and an application of Gauss’
theorem, we obtain

ν

∫

Ω

∇u∇v dx−
∫

∂Ω

(∇u · u)v ds

︸ ︷︷ ︸
=0

+

∫

Ω

(u · ∇)u · v dx

−
∫

Ω

p div v dx

︸ ︷︷ ︸
=0

+

∫

∂Ω

pv ds

︸ ︷︷ ︸
=0

=

∫

Ω

fv dx

⇔ a(u, v) + b(u, u, v) = (f, v)
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Lemma 5.2. The trilinear form b is continuous.

Proof: We have ui, vi, wi ∈ H1(Ω) and H1(Ω) ↪→ L4(Ω) , hence ui, vi, wi ∈ L4(Ω) .

Thus, ujwi∂jvi ∈ L1(Ω) . Consequently b is well-defined.

Moreover, we have
∣∣∣∣
∫

Ω

uj∂jviwi dx

∣∣∣∣ ≤
∫

Ω

|uj∂jviwi| dx

≤
(∫

Ω

(ujwi)
2 dx

)1/2(∫

Ω

∣∣∣ ∂vi

∂xj

∣∣∣
2

dx
)1/2

≤
(∫

Ω

u4
j dx

)1/4(∫

Ω

w4
i dx

)1/4(∫

Ω

∣∣∣ ∂vi

∂xj

∣∣∣
2

dx
)1/2

≤ ‖uj‖L4‖wi‖L4‖vi‖H1

≤ c‖uj‖H1‖wi‖H1‖vi‖H1 ,

due to the Cauchy-Schwarz inequality and continuous embedding. Summation over
i, j yields continuity.

Lemma 5.3. The trilinear form b has the following properties:

1. b(u, v, v) = 0 ∀u ∈ V, ∀v ∈ H1(Ω)

2. b(u, v, w) = −b(u,w, v) ∀u ∈ V, ∀v, w ∈ H1(Ω)

Proof:

1.

b(u, v, v) =
u∑

i,j=1

∫

Ω

uj
∂vi

∂xj

vi dx =
n∑

i,j=1

∫

Ω

uj
1

2

∂

∂xj

(v2
i ) dx

= −
∑
i,j

1

2

∫

Ω

∂uj

∂xj

v2
i dx

= −
∑

i

1

2

∫

Ω

v2
i div u dx

= 0

2. follows from 1., since

0 = b(u, v + w, v + w) = b(u, v, v)︸ ︷︷ ︸
=0

+b(u, v, w) + b(u,w, v) + b(u,w, w)︸ ︷︷ ︸
=0

= b(u, v, w) + b(u,w, v)
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Definition 5.4. Let ν > 0 and f ∈ L2(Ω) . A function u is called weak solution of
the Navier-Stokes problem (NSG), if u ∈ V and

a(u, v) + b(u, u, v) = (f, v) ∀v ∈ V

Theorem 5.5. There exists a weak solution u of the Navier-Stokes problem and a
constant c > 0 such that

‖u‖H1 ≤ c

ν
‖f‖L2 .

Proof: The proof is carried out using the Galerkin method: choose a sequence
of subspaces Vk ⊂ V with dim Vk = k , such that

⋃∞
k=1 Vk is dense in V . Let

Vk = span (w1, . . . , wk) . Consider the Galerkin equations

k ∈ N : a(uk, wi) + b(uk, uk, wi) = (f, wi) ∀i = 1, . . . , k

Then the solution of this nonlinear algebraic system can be written as

uk =
k∑

j=1

ξk
j wj, ξk

j ∈ R

Hence, one has to solve a nonlinear system for the unknowns ξk
1 , . . . , ξk

k . One can
show that this system has a solution. Moreover, the sequence (uk) is bounded in V ,
since

a(uk, v) + b(uk, uk, v) = (f, v) ∀v ∈ Vk

and in particular, for v = uk ,

ν‖∇uk‖2
L2 + b(uk, uk, uk)︸ ︷︷ ︸

=0

= (f, uk) ≤ ‖f‖L2‖uk‖L2

⇒ ‖∇uk‖L2 ≤ c

ν
‖f‖L2

which implies together with the Poincaré inequality

‖uk‖H1 ≤ c

ν
‖f‖L2

Hence, there exists a weakly convergent subsequence (uk) such that

uk ⇀ u in V (k →∞)

and due to the compactness of the embedding H1(Ω) ↪→ L2(Ω) , we may conclude

uk → u in L2(Ω) (k →∞)

This implies further
a(uk, wi) → a(u,wi)
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and
b(uk, uk, wi) → b(u, u, wi)

Thus, one may pass to the limit in the equation and obtains

a(u, wi) + b(u, u, wi) = (f, wi) ∀i ∈ N
and due to the density of the subspace

a(u, v) + b(u, u, v) = (f, v) ∀v ∈ V,

i.e., u ∈ V is a weak solution.

After ensuring uniqueness of a weak solution, the next obvious question is uniqueness,
which is not easy and not completely investigated until now. There are several exam-
ples of nonuniqueness, if the data are large. For small data (relative to the viscosity
⇒ small Reynolds number, small forces) uniqueness can be shown:

Theorem 5.6. There exists a constant c = c(Ω) > 0 , such that the solution of the
Navier-Stokes equation is unique, if

ν2 ≥ c‖f‖L2 . (5.1)

Proof: Let u1, u2 be two solutions, then

a(ui, v) + b(ui, ui, v) = (f, v) ∀v ∈ V, i = 1, 2.

With v = ui , we obtain

‖∇ui‖L2 ≤ c1

ν
‖f‖L2

Using w = u1 − u2 and subtracting the above equations yields

0 = a(u1, v) + b(u1, u1, v)− a(u2, v)− b(u2, u2, v)

= a(w, v) + b(u1, w, v) + b(w, u2, v) ∀v ∈ V

In particular, we obtain for v = w

a(w,w) = −b(w, u2, w)

and hence,

ν‖∇w‖2
L2 = a(w, w) ≤ c2‖w‖2

H1‖u2‖H1

≤ c1c2

ν
‖f‖L2‖∇w‖2

L2

⇒ ‖∇w‖2
L2(ν − c

ν
‖f‖L2) ≤ 0.

Therefore, (5.1) implies
‖w‖H1 = 0 ⇔ u1 = u2.

Remark 5.7. The following type of regularity can be obtained for weak solutions:

∂Ω ∈ Ck+2, f ∈ W k,r(Ω), k ≥ −1, r > 1, ⇒ u ∈ W k+2,r(Ω).
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5.2 Nonlinear Iterative Methods

Since the incompressible Navier-Stokes equations are a nonlinear system of equations,
one needs iterative methods for the solution in general. The literature on incompress-
ible flows contains a variety of different methods, which are all based on a (different)
linearization of the equations. We shall present and discuss some of the most frequently
used methods in the following.

5.2.1 Oseen–Iteration

The Oseen–Iteration is a secant modulus method, where the equations are linearized
by freezing the nonlinearity.

Algorithm 5.8 (Oseen–Iteration).

For k = 0, 1, 2, . . .

Given uk ∈ V , solve

uk+1 ∈ V : a(uk+1, v) + b(uk, uk+1, v) = (f, v) ∀v ∈ V.

Hence, the first term in the nonlinear part is evaluated at the last iterate. Conse-
quently, one has to solve a linear equation in each step of the iteration, the so-called
Oseen equation, which corresponds to the linear system

div u = 0 in Ω (5.2a)

−ν∆u + (w · ∇)u +∇p = f in Ω (5.2b)

u = 0 on ∂Ω (5.2c)

given w , or, in weak form

u ∈ V : a(u, v) + b(w, u, v) = (f, v) ∀v ∈ V.

Using the Lax–Milgram lemma one can show existence and uniqueness of a weak
solution:

Theorem 5.9. Let f ∈ L2(Ω) and w ∈ V . Then, (5.2) has a unique weak solution
u ∈ V .

Note that the above result does not depend on the size of the data. However, if the
data are larger the numerical solution of the Oseen equation is difficult (similar to
the Navier–Stokes equations with large Reynolds number) and it is not guaranteed
that the nonlinear iteration converges. The convergence of the Oseen–Iteration can be
shown for small data using the Banach fixed point theorem:

Theorem 5.10. If ν2 ≥ c ‖f‖L2 , the iterates uk obtained from the Oseen method
converge to the unique solution u ∈ V of the Navier–Stokes problem.

Remark 5.11. In general, one can only expect a linear rate of convergence of the
Oseen iteration.
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5.2.2 Newton–Method

In order to obtain quadratic convergence, one can use the classical Newton method.
For this sake one can discretize the system first and then apply a Newton iteration
at the finite-dimensional level, or alternatively, one can formulate a Newton iteration
for the system of partial differential equations and discretize subsequently. Since it is
easier to compute derivatives at the functional level, we shall follow the latter approach.
For this sake we write the Navier-Stokes problem in operator form as

u ∈ V : Au + B(u)− F = 0

with

〈Au, v〉 = a(u, v)

〈B(u), v〉 = b(u, u, v)

〈F, v〉 = (f, v)

for all v ∈ V .

Now we define
G(u)

def
= Au + B(u)− F

and compute the linearization of G in direction φ ∈ V :

G′(u)[φ] = Aφ + B′(u)[φ]

where
〈B′(u)[φ], v〉 def

= b(u, φ, v) + b(φ, u, v) ∀v ∈ V.

The Newton iteration is then given by

Algorithm 5.12 (Newton–Method).

For k = 0, 1, 2, . . .

1. Given uk ∈ V , solve

δuk ∈ V : G′(uk)[δuk] = −G(uk).

2. Update uk+1 = uk + δuk .

The assembly of the matrix corresponding to the discretization of G′(uk) is computa-
tionally expensive. Moreover, the system has the disadvantage of not being symmetric,
so that suitable solvers have to be used.

Therefore, one often uses Quasi–Newton method instead, which need an approxima-
tion of G′(uk) only. One possibility is a so-called frozen Newton method, where the



5.2 Nonlinear Iterative Methods 55

matrix G′(uk) or an approximation is used for ` steps, i.e., for computing the iterates
uk+1, . . . , uk+` . Then the Newton matrix G′(uk+`) will be computed again and used
for the next ` iterations. Of course, using a Quasi–Newton method will result in a
lower than quadratic, but still superlinear rate of convergence.

Another important aspect for Newton-type methods is the starting value, since one
only obtains local convergence in general. One possibility is to use some steps of an
Oseen–iteration first, and to use the result as a starting value for a Newton method. An
alternative is to use globalization strategies based on the minimization of the residual.

5.2.3 Least–Squares Method

Let u ∈ V . We define ξ = ξ(u) ∈ V via the defect

a(ξ, v) = a(u, v) + b(u, u, v)− (f, v) ∀v ∈ V.

The bilinear form a defines an equivalent norm on H1
0 (Ω) via

‖ξ‖2
a

def
= a(ξ, ξ)

and u ∈ V is a solution of the Navier–Stokes equation iff it is a minimizer of

J(w)
def
=

1

2
‖ξ(w)‖2

a

i.e.,
J(u) = min

w∈V
J(w) = 0.

In a least–squares method, the computation of u is based on minimizing the functional
J , e.g. using a cg–iteration. In this case, each iteration step enforces the solution of
some linear Stokes problems.

5.2.4 Peaceman–Racheford Method

The Peaceman-Racheford method is an iteration based on alternating directions for
the Navier–Stokes equations

−ν∆u + (u · ∇)u +∇p = f in Ω

div u = 0 in Ω

u = 0 on Γ

where the sequence of approximations (un, pn) is constructed through the following
algorithm:
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Algorithm 5.13.

1. Choose an initial value (u0, p0) .

2. For k = 0, 1, 2, . . .

(a) Solve

−ν∆uk+1/2 + rk uk+1/2 +∇pk+1/2 = f − (uk · ∇)uk + rk uk

div uk+1/2 = 0

uk+1/2|Γ = 0

for (uk+1/2, pk+1/2) .

(b) Use the result to solve

−ν∆uk+1 + (uk+1 · ∇)uk+1 + rk uk+1 = f −∇pk+1/2 + rk uk+1/2

uk+1|Γ = 0

for (uk+1, pk+1) .

with suitable parameters rk ∈ R+ .

Hence, the first step consists in solving a linear stokes-type equation, while the second
step is the solution of a nonlinear partial differential equation of the form

−ν∆y + (y · ∇)y + c y = f (5.3a)

y|Γ = 0 (5.3b)

with c ≥ 0 , in absence of the incompressibility condition.

For the first step we can use the same methods as discussed above for the Stokes
problem, but it still remains to solve the nonlinear problem (5.3). We investigate a
least–squares method, using the notation X = [H1

0 (Ω)]
n

and

A
def
= −ν∆ + c I

G(y)
def
= (y · ∇)y − f.

Sei X∗ der Dualraum von X . Then we have A ∈ L(X,X∗) and

〈Ax, y〉X∗,X = 〈Ay, x〉X∗,X ∀x, y ∈ X

as well as

∃γ > 0 : 〈Ax, x〉X∗,X ≥ γ ‖x‖2
X ∀x ∈ X.

The nonlinear operator G has the following derivatives:
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Lemma 5.14. G : X → X∗ is twice Fréchet–differentiable with

G′(y)[u] = (y · ∇)u + (u · ∇)y,

G′′(y)[u, v] = (v · ∇)u + (u · ∇)v.

A solution x ∈ X of (5.3) is found from

0 = F (x)
def
= Ax + G(x).

Since G is not symmetric, it is not a derivative of a nonlinear functional on X ,
and consequently this equation is not the optimality condition for some optimization
problem. Therefore we rather consider the associated least–squares functional

J(x) =
1

2
‖F (x)‖2

A

with
‖f‖A

def
=

√
〈f,A−1f〉X∗,X .

Lemma 5.15. The map f →
√
〈f,A−1f〉X∗,X defines a norm on X∗ , which is

equivalent to the dual norm on X∗ .

Theorem 5.16. Let x ∈ X be a solution of F (x) = , with F ′(x) : X → X∗ being a
homeomorphism. Then the functional

J(x) =
1

2

〈
F (x), A−1F (x)

〉
X∗,X

is strictly convex in a neighbourhood of x .

Proof: We compute the first two variations of J using the symmetry of A :

J ′(x)[v] =
〈
F (x), A−1F ′(x)[v]

〉
X∗,X ,

J ′′(x)[v, w] =
〈
F ′(x)[w], A−1F ′(x)[v]

〉
X∗,X +

〈
F (x), A−1F ′′(x)[v, w]

〉
X∗,X .

Let F (x) = 0 with F ′(x) : X → X∗ regular. Then

J ′′(x)[v, v] =
〈
F ′(x)[v], A−1F ′(x)[v]

〉
X∗,X

≥ δ ‖F ′(x)[v]‖2
A

≥ ε ‖v‖2
X ∀v ∈ X.

Since J is twice Fréchet–differentiable, there exists a neighbourhood B(x) of x with

J ′′(y)[v, v] ≥ ε

2
‖v‖2

X ∀(y, v) ∈ B(x)×X.

Hence, J is strictly convex in B(x) .
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We can now use a gradient method for the minimization of J . In order to compute
the gradient, we use the linear functional v 7→ J ′(y)v for v ∈ X and compute its
Riesz–representation in X . In X we use the scalar product

(x, y)A
def
= 〈Ax, y〉X∗,X .

For the representing element g(y) for J ′(y) in X we have

(g(y), v)A = J ′(y)[v]

=
〈
F (y), A−1F ′(y)[v]

〉
X∗,X

=
〈
F ′(y)∗A−1F (y), v

〉
X∗,X

=
〈
AA−1F ′(y)∗A−1F (y), v

〉
X∗,X

= (A−1F ′(y)∗A−1F (y), v)A

and hence,
g(y) = A−1F ′(y)∗A−1F (y).

Consequently, the gradient method is given by

Algorithm 5.17.

1. Choose x0 ∈ X .

2. For k = 0, 1, 2, . . .

(a) zk = A−1F ′(xk) , gk = A−1F ′(xk)
∗zk

(b) αk = argminα≥0 J(xk − α gk)

(c) xk+1 = xk − αk gk

In each step of the iteration we have to solve two linear equations and obtain a step
size solving a one-dimensional equation. Taking into account that J(xk − α gk) is a
polynomial of order four in α , then one can determine the optimal α exactly solving
a third order algebraic equation.

5.3 Discretization

Having discussed nonlinear iteration methods for the original system of partial dif-
ferential equations, we shall now investigate the discretization of the Navier–Stokes
equations, respectively of the subproblems arising in the nonlinear iteration schemes.
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5.3.1 Existence of Discrete Solutions

Let Ω ⊂ R2 be a polygonales Gebiet and Th a regular triangularization. For the
discretization of

u ∈ V : a(u, v) + b(u, u, v) = (f, v) ∀v ∈ V

one can use the non-conforming finite element subspaces

Xh
def
=

{
vh ∈ L2(Ω) : Vh|T ∈ P1 ∀T ∈ Th und vh stetig in den Seitenmittelpunkten

}

Vh
def
=

{
vh ∈ X2

h : div(vh|T ) = 0 und vh(Qj) = 0 ∀Qj ∈ ∂Ω
}

within the variational formulation

uh ∈ Vh : ah(uh, vh) + bh(uh, uh, vh) = (f, vh)h ∀vh ∈ Vh, (5.4)

where

ah(uh, vh)
def
=

∑
T∈Th

∫

T

∇uh · ∇vh dx

bh(uh, vh, wh)
def
=

1

2

∑
T∈Th

∫

T

2∑
i,j=1

(
uhj

∂vhi

∂xj

whi − uhjvhi
∂whi

∂xj

)
dx

(f, vh)h
def
=

∫

Ω

f vh dx.

Since the space Vh 6⊂ [H1(Ω)]
2

is non-conforming, summation has to be carried out
over single triangles.

Remark 5.18. For u, v ∈ [H1(Ω)]
2

with div u = 0 and w ∈ [H1
0 (Ω)]

2
we have

b(u, v, w) = bh(u, v, w).

In this sense the trilinearform is approximated in a consistent way.

Remark 5.19. For vh ∈ Vh gilt (1, div vh)h =
∑

T∈Th

∫
T

div vh dx = 0 .

Theorem 5.20. The discrete Navier–Stokes problem (5.4) has at least a solution uh ∈
Vh and there exists a corresponding pressure ph ∈ Qh

def
= {qh ∈ L2(Ω) : qh|T ∈ P0 ∀T ∈ Th}

such that

ah(uh, vh) + bh(uh, uh, vh) = (f, vh)h + (ph, div vh)h ∀vh ∈ Xh0. (5.5)

Remark 5.21. In an analogous way one can study the existence of discrete solutions
for conforming finite element subspaces.
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Existence of discrete solutions is a first fundamental properties, but obviously for
a reasonable numerical methods we should obtain convergence towards the original
solution, which is guaranteed by the following result:

Theorem 5.22. Let

1. Ω be sufficiently smooth

2. Th be a regular triangularization

3. f ∈ [L2(Ω)]2 , ν > 0

4. (uh, ph) ∈ Vh ×Qh|R solves (5.5) for h ∈ (0, h0)

Then there exists a subsequence h → 0 and (u, p) ∈ V × L2(Ω)|R , such that

uh → u in [L2(Ω)]2

∇uh → ∇u in [L2(Ω)]4

ph ⇀ p weakly in L2(Ω)

and (u, p) is a weak solution of the Navier–Stokes problem.

If (u, p) ∈ [H2(Ω)]2 ×H1(Ω) then

ph → p in L2(Ω).

Unfortunately, this result is reflected in practice often only by convergence for very fine
discretization size h , in particular for large Reynolds numbers the discrete solution
does not need to be close to the original solution. One reason for this behaviour is the
dominating convective term (u · ∇)u . We shall discuss this effect and its treatment
for a simple model problem in the following.

5.4 Singularly Perturbed Equations

When we discretize e.g. the Oseen iteration, each step leads to alineare equation of
the form

−ε∆u + b∇u + c u = f in Ω

u = 0 on ∂Ω.

For simplicity we only consider one component of the velocity u only and c ≥ 0 . For
large Reynolds numbers we have 0 < ε ¿ 1 and ‖b‖L∞ ≈ 1 . Such problems are
called singularly perturbed, since the stabilizing elliptic part −∆u is multiplied by the
small parameter ε , and for ε → 0 one obtains a non-elliptic first-order problem. As
a consequence, one has to expect that uε 6→ u0 , where u0 solves the so-called reduced
problem arising for ε = 0 .
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Example 5.23. Consider the equation

−εu′′ − u′ = 0, u(0) = 0, u(1) = 1

which has the exact solution

uε(x) =
1− ex/ε

1− e1/ε
.

A standard finite difference discretization yields

−εD+D−ui −D0ui = 0, u0 = 0, uN = 1

and

ui =
1− ri

1− rN
, with r =

2ε− h

2ε + h
.

As a consequence on obtains a bound on the grid size h < 2ε , in order to obtain an
M–matrix, which is needed for a stable discretization and in order to obtain a solution
without artificial oscillations. For small ε , this is a unpleasant complication, since it
leads to a very large problem. But even with h = ε we have

lim
h→0

u1 =
2

3
, but lim

h→0
u(x1) = 1− 1

e
.

The reason for this behaviour is not only the numerical algorithm, but the boundary
layer that appearsin the solution at x = 0 .
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5.4.1 Upwind Method

In order to avoid a bound on the grid size, one has to replace the central difference
quotient biD

0ui by a one-sided difference operator. For such a choice we obviously
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have to possibilities - forward or backward. The correct one (the upwind discretization)
is somehow determined by the direction of the flow, which means in our model example
by the sign of the coefficient b :

biD
+ui, falls bi < 0

biD
−ui, falls bi > 0

This yields the so-called Upwind method:

−εD+D−ui + max{bi, 0}D−ui + min{bi, 0}D+ui + ciui = fi, u0 = uN = 0.

Assume for simplicity that b > 0 . Then each line of the discretization matrix is of
the form (

0 · · · 0 − ε
h2 − bi

h
2ε
h2 + bi

h
+ ci − ε

h2 0 · · · 0.
)

Consequently, we obtain an L–Matrix, which turns out to be even an M–Matrix, and
one can show that:

Lemma 5.24. The Upwind–method is uniformly stable in ε , i.e.

‖uh‖∞ ≤ M ‖fh‖∞
with M > 0 independent of h and ε .

The same upwind approach can be applied in the two-dimensional case: In order to
discretize a term of the form b∇u = b1ux + b2uy on a grid with points xi , yj , we can
use

(b∇u)ij ≈ max{b1
ij, 0}D−

x uij+min{b1
ij, 0}D+

x uij+max{b2
ij, 0}D−

y uij+min{b2
ij, 0}D+

y uij.

We shall transfer the idea to 2d finite elemente discretizations. We consider again

−ε∆u + b∇u + c u = f in Ω

u = 0 on ∂Ω

with polygonal domain Ω ⊂ R2 and c− 1
2
div b ≥ 0 . Sei Th being a regular triangu-

larization of Ω . We generate a secondary grid as follows:
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We first define

Λi = {j : ∃T ∈ Th mit Pi, Pj ∈ T}
mij = |Γij|
lij = |PiPj| .

Discretizing −∆u using piecewise linear finite elements, we obtain a finite difference
scheme for the nodal values of the form∑

j∈Λi

mij

lij
(u(Pi)− u(Pj)),

which again yields an M–matrix.

Now we consider the discretization of the convective term (b · ∇uh, vh) . We have

(b · ∇uh, vh) = (div(uhb), vh)− ((div b)uh, vh).

and for the first term we obtain

(div(uhb), vh) =
∑

i

∫

Di

div(uhb) vh dx

≈
∑

i

vh(Pi)

∫

Di

div(uhb) dx

and Gauss’ Theorem implies

=
∑

i

vh(Pi)

∫

∂Di

(b · νi)uh dΓi

=
∑

i

vh(Pi)
∑
j∈Λi

∫

Γij

(b · νij)uhdΓij.
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We use an integration rule
∫

Γij

(b · νij)uhdΓij = b(Pij) · νij |Γij| (λijuh(Pi) + (1− λij)uh(Pj))

with weights λij ≥ 0 to be determined. Then,

(div(uhb), vh) ≈
∑

i

vh(Pi)
∑
j∈Λi

b(Pij) · νij |Γij| (λijuh(Pi) + (1− λij)uh(Pj)).

In a similar way we can approximate the second term

((div b)uh, vh) =
∑

i

∫

Di

(div b)uh vh dx

≈
∑

i

uh(Pi)vh(Pj)

∫

Di

div b dx

=
∑

i

uh(Pi)vh(Pj)
∑
j∈Λi

(b(Pij) · νij)mij.

Thus, the approximation of the convective term becomes

(b · ∇uh, vh) ≈
∑

i

vh(Pi)
∑
j∈Λi

(b(Pij) · νij)mij((λij − 1)uh(Pi) + (1− λij)uh(Pj)),

which yields a discretization matrix B with entries

Bkk =
∑
j∈Λk

(b(Pkj) · νkj)mkj(λkj − 1),

Bkl = (b(Pkl) · νkl)mkl(1− λkl), for l ∈ Λk,

Bkl = 0, sonst.

Finally, the choice

λkl =

{
1, b(Pkl) · νkl ≥ 0,

0, b(Pkl) · νkl < 0

guarantees that B is an M–matrix.

The discretization of the remaining term cu− f can be performed in a standard way
using piecewise linear finite elements, one can also apply mass lumping.

The discrete problem can now be summarized as

uh ∈ Hh : ah(uh, vh) = (f, vh)h ∀vh ∈ Hh.

If we use the special norm

‖vh‖ε

def
=

√(
ε |vh|2H1 + ‖vh‖2

h

)
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with
‖vh‖2

h =
∑

i

v2
h(Pi) meas(Di),

then:

Theorem 5.25.

• ‖u− uh‖ε ≤ Cε−
1
2 h (‖u‖H2 + ‖f‖W 1,p)

• ‖u− uh‖ε ≤ C h (‖u‖H2 + ‖f‖W 1,p) , if we have a regular triangularization on
Ω .

5.4.2 Stream-line Diffusion

The Upwind method discussed in the previous section cannot be applied to finite
element subspaces using higher order polynomials, since the M–matrix property and
the stability of the scheme will be lost.

An suitable alternative is the stream-line diffusion method, which achieves a stabiliza-
tion by an appropriate choice of test functions. We start from the weak formulation

uh ∈ Vh : ε(∇uh,∇wh) + (b∇uh + c uh, wh) = 0 ∀wh ∈ Wh.

The choice of test functions Wh needs not necessarily be equal for the space Vh , which
is usually called a Petrov–Galerkin method.

The idea of streamline diffusion methods consists in choosing test functions of the form

wh
def
= vh + βb∇vh, vh ∈ Vh

with β ∈ R . Note that for C0 –elements we have vh + βb∇vh 6∈ H1(Ω) , and hence
one has to be careful with defining the associated bilinear form. We define

A(u, v) = ε
∑

T

∫

T

∇u∇v dx +

∫

Ω

(b∇u + cu)v dx.

Then, A is well-defined since v|T is polynomial.

The weak formulation is obtained as

uh ∈ Vh : A(uh, vh + βb∇vh) = (f, vh + βb∇vh) ∀wh ∈ Vh.

Hence, we modify the right-hand side and obtain the additional terms

(b∇uh + cuh, βb∇vh)
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and

ε
∑

T

∫

T

∇uh∆vh dx

on the leftt-hand side. The latter vanishes for example for piecewise linear elements.
For vh = uh we obtain an additional term β ‖b∇uh‖2

L2 in the coercivity estimate, i.e.,
we obtain artifical viscosity in direction of b .

We shall now investigate the streamline diffusion method using piecewise linear trian-
gular elements, assuming

c ∈ R+, div b = 0.

We denote the error by e = u − uh and by η = Ihu − u the difference between
interpolation and exact solution. From the Galerkin orthogonality A(uevh) = 0 for
all vh ∈ Vh we obtain

A(e, e) = A(e, η).

Hence, after applying Young’s inequality we obtain the estimate

ab ≤ α

2
a2 +

1

2α
b2, α > 0

and together with the standard estimate

‖η‖L2 ≤ C h2 ‖u‖H2

‖∇η‖L2 ≤ C h ‖u‖H2 ,

for the interpolation error one may conclude

ε ‖∇e‖2
L2 + β ‖b∇e‖2

L2 + c ‖e‖2
L2

≤ C ‖u‖H2

{
βε(ε + h) + h2(ε + β + β2) + (c + β)h4

}

Choosing β = β∗ h we may conlude:

Theorem 5.26. Let β = β∗ h and ε < h . Moreover, let c ∈ R+ and div b = 0 .
Then the streamline diffusion method with piecewise linear finite elements allows the
error estimate

‖u− uh‖L2 ≤ C h3/2 ‖u‖H2

ε1/2 ‖u− uh‖H1 ≤ C h3/2 ‖u‖H2

‖b∇(u− uh)‖L2 ≤ C h ‖u‖H2

Remark 5.27. Note that all these estimates depend on ε , since ‖u‖H2 → ∞ as
ε → 0 .
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Compared to the Upwind method one obtains a significantly improved convergence
order, in particular for the gradient in stream line direction. The reason is the non-
homogeneous distribution of the artifical viscosity. Another advantage is the straight-
forward generalization to higher order finite elements. The disadvantage is the loss of
the M–matrix property.

5.5 Exercises

Exercise 5.1. Implement the Oseen-iteration for the stationary Navier-Stokes equa-
tion in the same setup as Exercise 4.5. Discretize the additional convective term using
the Upwind method. Vary the viscosity ν and observe the convergence behaviour.

Exercise 5.2. Implement the Newton-iteration for the stationary Navier-Stokes equa-
tion in the setup of the previous exercise. Use a starting value obtained from few
Oseen-iterations.

Exercise 5.3. Implement a least-squares / gradient method for the stationary Navier-
Stokes equation in the setup of the previous exercise. Vary the viscosity ν and observe
the convergence behaviour.
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6 Instationary Navier–Stokes Equations

After the analytical and numerical investigation of the incompressible Navier–Stokes
equations in the stationary case, we shall now turn our attention to the instationary
case, where we have to deal with additional time dependence. We shall first start with
the basics in the analysis and then discuss different discretization strategies.

In the instationary case we are looking for a velocity field u(x, t) : Ω̄ × [0, T ] → RN

and a pressure p(x, t) : Ω̄ × [0, T ] → R , determined by the initial-boundary value
problem

div u = 0 in Q
def
= Ω× (0, T ) (6.1a)

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f in Q (6.1b)

u = 0 on Σ
def
= ∂Ω× (0, T ) (6.1c)

u(x, 0) = u0(x) in Ω (6.1d)

Definition 6.1. A pair (u, p) is called classical solution of the instationary Navier–
Stokes problem, if it satisfies (6.1) and u ∈ C2(Q̄) , p ∈ C1(Q̄) .

As usual, the existence of classical solutions can be obtained only under restrictive
assumptions. The study of classical solutions of the instationary Navier–Stokes equa-
tions and their regularity is still a somewhat open topic, it has been formulated as one
of the ”Mathematical Millennium Problems” by the Clay Math Institute in 2000.

We shall consider weak solutions in the following. For this sake we need some tools
from functional analysis:

Definition 6.2. Let X be a Banach space. Then the space Lp(0, T ; X) (shortly
Lp(X) ) is the class of all measurable (vector-valued) functions v : (0, T ) → X , such
that

‖v‖Lp(X)

def
=

(∫ T

0

‖v(t)‖p
X dt

)1/p

is finite.

Remark 6.3. For p = ∞ we define

L∞(X)
def
=

{
v : (0, T ) → X : sup

t∈(0,T )

‖v(t)‖X < +∞
}

.

Remark 6.4. Lp(0, T ; X) is again a Banach space. If X is reflexive and separable,
with dual space X∗ , then Lq(0, T ; X)∗ is the dual space of Lp(0, T ; X) for 1 < p <
∞ , where q = p

p−1
.



6.1 Existence and Uniqueness 69

Definition 6.5. A Gelfand triple is given by

X ⊂ H ⊂ X∗

with

• X being a separable, reflexive Banach space, with dual X∗

• H being a separable Hilbert space

• X being dense in H

Example 6.6. X := H1
0 (Ω) , H := L2(Ω) , V ∗ := H−1(Ω) = (H1

0 (Ω))∗ . Then,
obviously H1

0 (Ω) ⊂ L2(Ω) , but L2(Ω) ⊂ H−1(Ω) is not trivial, since

g ∈ L2(Ω)

has to be identified with a linear functional

Tg(f)
def
=

∫

Ω

f g dx ∀f ∈ H1
0 (Ω)

on H1
0 (Ω) .

Definition 6.7. The function u ∈ L2(0, T ; X) has the generalized time derivative
u′ ∈ L2(0, T ; X∗) , iff

∫ T

0

φ′(t) u(t) dt = −
∫ T

0

φ(t) u′(t) dt ∀φ ∈ C∞
0 (0, T ).

Definition 6.8. W (0, T ; X)
def
= {v ∈ L2(0, T ; X) : v′ ∈ L2(0, T ; X∗)}

6.1 Existence and Uniqueness

Let in the following

V def
= {v ∈ C∞

0 (Ω) : div v = 0} ,

V
def
= VH1

0 (Ω)
,

H
def
= VL2(Ω)

.

Lemma 6.9. Let H⊥ def
= {u ∈ L2(Ω) : (u, v) = 0 ∀v ∈ H} . Then,

H⊥ =
{
u ∈ L2(Ω) : u = ∇p, p ∈ H1(Ω)

}
.
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Definition 6.10. Let ν, T > 0 , f ∈ L2(0, T ; V ∗) , u0 ∈ H . Then u is called weak
solution of the instationary Navier–Stokes problem (6.1), iff

1. u ∈ L2(0, T ; V ) ∩ L∞(0, T ; H)

2.
d

dt
(u, v) + a(u, v) + b(u, u, v) = 〈f, v〉 ∀v ∈ V (6.2)

3. u(0) = u0

The equation (6.2) has to be understood in the sense of scalar distributions, i.e.,

−
∫ T

0

(u(t), v)φ′(t) dt+

∫ T

0

[a(u(t), v) + b(u(t), u(t), v)] φ(t) dt =

∫ T

0

〈f(t), v〉φ(t) dx

∀φ ∈ C∞
0 (0, T ).

Remark 6.11. The condition u ∈ L∞(0, T ; H) seems to be restrictive, but (3) would
not be well-defined for u ∈ L2(0, T ; H) only.

The initial condition is satisfied in the following sense:

Lemma 6.12. If u ∈ L2(0, T ; V ) satisfies the equation (6.2), then u ∈ C0([0, T ]; V ∗) .

The regularity for the time derivative depends on the spatial dimension, which is one
of the reasons for the difficulties in the analysis of the system.

Theorem 6.13. Let u be a weak solution of (6.1). Then,

1. u′ ∈ L1(0, T ; V ∗) for N ∈ N
2. u′ ∈ L2(0, T ; V ∗) for N = 2

3. u′ ∈ L4/3(0, T ; V ∗) for N = 3

With these preliminaries we can now state the main existence result:

Theorem 6.14. Let ν, T > 0 , f ∈ L2(0, T ; V ∗) , and u0 ∈ H . Then there exists a
weak solution of (6.1).

The proof of this result would exceed the time frame of this course, we just comment
on the basic steps:

• First we apply an implicit semi-discretization in time (e.g. implicit Euler), which
yields a sequence of nonlinear stationary problems (Rothe method).
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• Since the stationary problems are similar to the stationary Navier–Stokes prob-
lem, only including an additional stabilization term from the time derivative, one
can conclude existence of a solution for each stationary problem by analogous
reasoning as for the stationary Navier–Stokes equations.

• The next step is to derive appropriate a-priori estimates independent of the time
step, which turns out to be the most difficult part.

• Finally, one can use compactness arguments to extract a subsequence converging
to the solution of the instationary problem as the time step tends to zero.

To verify uniqueness of the solution is even more complicated, the results also depend
on the spatial dimension.

Theorem 6.15. Let N = 2 . Then there exists a unique weak solution of (6.1).

The basic ingredient of the proof is to use

d

dt
(u(t), u(t)) = 2 〈u′(t), u(t)〉

and to apply Gronwall’s lemma.

In three spatial dimensions, no uniqueness result is available so far in the class of
functions we use for weak solutions. Uniqueness can be obtained by considering classes
of solutions of higher regularity. On the other hand it is not clear if solutions of such
higher regularity exist at all.

Theorem 6.16. Let N = 3 . Then there exists a unique weak solution of (6.1) with

u ∈ L8
(
0, T ;

[
L4(Ω)

]3
)

.

The question of uniqueness and regularity of solutions of the instationary Navier–
Stokes equations are fundamental from a physical viewpoint, too, since they have a
strong relation to the appearance of turbulence phenomena.

6.2 Time Discretizations

Approximations of the instationary Navier–Stokes problem are usually based on a
semidiscretization in time, followed by a spatial discretization at each time step, e.g.
using finite elements.

In the following we present some possibilities for the time discretization. We shall
always consider a time discretization into the times tk = kτ , for a positive time step
τ . The solution at step k is abbreviated by (uk, pk) = (u(tk), p(tk)) .
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6.2.1 Explicit Euler Method

The explicit Euler method is probably the simplest time discretization using a forward
differencing for the time derivative. This would yield the explicit formula

uk+1 − uk

τ
= −(uk · ∇)uk + ν∆uk −∇pk + fk

for the velocity uk+1 , given uk and fk(x) = f(x, kτ) . This method has several
disadvantages, in particular for incompressible flows. First of all, any explicit method
for a second order problem enforces τ ≤ Ch2 for some constant C which results in a
very high number of time steps. The second disadvantage, which is even more serious,
is the fact that the incompressibility constraint cannot be satisfied exactly and the
error in this equation will increase linearly with the number of time steps. Therefore
it isusually not a good idea to use an explicit scheme for incompressible flows.

The explicit time discretization may make sense if one uses a discrete subspace that
exactly incorporates the incompressibility condition and if the viscosity ν is small. In
this case the restriction of the time step ( νh2 ) is not too small, and the solution of a
stationary problem in an implicit method is expensive.

6.2.2 Implicit Euler Method

The implicit Euler method is a straight-forward time discretization based on backward
time differencing, which yields the nonlinear stationary problem

uk+1 − uk

τ
+ (uk+1 · ∇)uk+1 − ν∆uk+1 +∇pk+1 = fk+1

div uk+1 = 0,

with fk+1(x) = f(x, (k + 1)τ) .

Thus, in each time step we have to solve a modified stationary Navier–Stokes problem.
For this sake one can use e.g. the Newton iteration or the Oseen iteration. If the time
step is not too large the solution uk at the previous time step should provide a good
starting value for the nonlinear iteration, which consequently should converge fast. As
for ordinary differential equations, one can only expect first order convergence in time,
i.e., the error between the solution of the instationary Navier–Stokes problem and the
solution of the semi-discrete problem is of order τ .

An advantage of the implicit Euler method is the unconditional stability, which can
be seen by using the weak formulation of the time discrete problem with test function
uk+1 , implying

〈uk+1, uk+1〉+ τν〈∇uk+1,∇uk+1〉 = 〈uk, uk+1〉+ τ〈fk+1, uk+1〉.
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Using the Cauchy-Schwarz inequality we can estimate

〈uk, uk+1〉 ≤
∥∥uk

∥∥ ∥∥uk+1
∥∥ ≤ 1

2

∥∥uk
∥∥2

+
1

2

∥∥uk+1
∥∥2

and

〈fk+1, uk+1〉 ≤
∥∥∇∆−1fk+1

∥∥ ∥∥∇uk+1
∥∥ ≤ 1

2ν

∥∥∇∆−1fk+1
∥∥2

+
ν

2

∥∥∇uk+1
∥∥2

.

Thus,
1

2

∥∥uk+1
∥∥2

+
τν

2

∥∥∇uk+1
∥∥2 ≤ 1

2

∥∥uk
∥∥2

+
τ

2ν

∥∥∇∆−1fk+1
∥∥2

.

Summing up over time, we obtain

1

2

∥∥uk
∥∥2

+
τν

2

k∑
j=0

∥∥∇uj
∥∥2 ≤ 1

2
‖u0‖2 +

k∑
j=0

τ

2ν

∥∥∇∆−1f j
∥∥2

.

which is a time-discrete version of

‖u(t)‖2 +
ν

2

∫ t

0

‖∇u(s)‖2 ds ≤ ‖u0‖2 +
1

2ν

∫ t

0

∥∥∇∆−1f(s)
∥∥2

ds.

In particular, the norm of the velocity remains bounded.

In order to investigate the order of convergence with respect to the time step τ , we
consider the error vk := uk − u(tk) and qk = pk − p(tk) , where (u, p) is the solution
of the full instationary Navier–Stokes equations. Then, these variables satisfy

vk+1 − vk

τ
+ (uk+1 · ∇)vk+1 + (vk+1 · ∇)u(tk+1)− ν∆vk+1 +∇qk+1 = Rk

div vk+1 = 0,

with

Rk =
∂u

∂t
(tk+1)− u(tk+1)− u(tk)

τ
.

Multiplying the first equation by vk+1 and integration over Ω as usual we obtain

1

τ
〈vk+1 − vk, vk+1〉+b(u(tk+1), v

k+1, vk+1)+b(vk+1, u(tk+1), v
k+1)+ν〈∇vk+1,∇vk+1〉 = 〈Rk, v

k+1〉

Due to the usual properties of the trilinear form in the Navier–Stokes problem we
obtain

〈(uk+1 · ∇)vk+1, vk+1〉 = 0.

If u is sufficiently regular we may find a constant c > 0 such that ‖∇u‖∞ < c and
‖Rk‖ ≤ cτ . Consequently, we have

b(vk+1, u(tk+1), v
k+1) =〉vk+1 · ∇u(tk+1), v

k+1〉 ≥ −c
∥∥vk+1

∥∥2
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and
〈Rk, v

k+1〉 ≤ cτ
∥∥vk+1

∥∥ ≤ c

2
τ 2 +

c

2

∥∥vk+1
∥∥2

.

The first term can be estimated using the Cauchy-Schwarz inequality, which implies

1

τ
〈vk+1 − vk, vk+1〉 ≥ 1

2
(
∥∥vk+1

∥∥2 − ∥∥vk
∥∥2

).

Altogether, this implies the estimate

(1− 3cτ)
∥∥vk+1

∥∥2
+ 2τν

∥∥∇vk+1
∥∥2 ≤ 2cτ 3 +

∥∥vk
∥∥2

.

Now let q = 1
1−3cτ

, which is positive if τ is sufficiently small, and define ak :=

q−k
∥∥vk+1

∥∥2
. Then,

ak+1 ≤ ak + 2cτ 3q−(k+1).

By summation we finally obtain

∥∥vk+1
∥∥2 ≤ qk+1 1− q−k−1

1− q
2cτ 3 =

2

3
cτ 2(qk+1 − 1) ≤ 2

3
cτ 2(qN − 1),

where N is the total number of time steps, i.e., T = Nτ . From a standard inequality,
we obtain

qN =

(
1 +

3cTq

N

)N

≤ e3cTq,

and thus, ∥∥vk+1
∥∥2 ≤ 2

3
cτ 2(e3cTq − 1).

For τ → 0 , we have q → 1 and e3cTq → e3cT and thus,

∥∥vk+1
∥∥ = O(τ).

6.2.3 Crank–Nicholson Method

The Crank–Nicholson method is a semi-implicit method based on taking the ”average”
of the explicit and the implicit Euler method in the parabolic equation, while enforcing
the incompressibility condition exactly:

uk+1 − uk

τ
+ (uk+1/2 · ∇)uk+1/2 − ν∆uk+1/2 +∇pk+1/2 = fk+1/2

div uk+1 = 0,
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with

uk+1/2 =
1

2
(uk+1 + uk), uk+1/2 =

1

2
(pk+1 + pk), fk+1/2 =

1

2
(fk+1 + fk).

Again, each step enforces the solution of a modified stationary Navier–Stokes prob-
lem, and therefore needs the same computational effort as the implicit Euler method.
Why should one then use Crank–Nicholson ? The main reason is the higher order of
convergence, the Crank-Nicholson method achieves second order in the time step.

6.2.4 Semi-implicit Oseen Method

In order to reduce the computational effort at each time step, it seems reasonable to
replace the nonlinear stationary problems by linear ones in a similar way as in the
Oseen iteration, which yields a modified Oseen equation at each step:

uk+1 − uk

τ
+ (uk · ∇)uk+1 − ν∆uk+1 +∇pk+1 = fk+1

div uk+1 = 0.

6.2.5 Semi-implicit Oseen–Crank–Nicolson Method

In an analogous way as above we can obtain a successive linearization of the Crank-
Nicholson method, which leads to

uk+1 − uk

τ
+ (uk · ∇)uk+1/2 − ν∆uk+1/2 +∇pk+1/2 = fk+1/2

div uk+1 = 0.

6.2.6 Analysis of Time Discretizations

In general, the analysis of time discretizations is guided by the questions of convergence
and stability. We start by considering the simple linear test equation

x′ = −λx, t ≥ 0,

with Re λ > 0 . For fixed time step τ the behaviour of the method for large t depends
on the factor ω = ω(λτ) . In particular, the one step methods we have discussed so
far yield

xk = ωkx0.

A look at the theory of ordinary differential equations shows that the following prop-
erties should be maintained by each scheme:



6.2 Time Discretizations 76

• Local Stability: |ω(λτ)| ≤ 1

• Global Regularity: lim Re λ→∞ |ω(λτ)| ≤ 1−O(τ)

• Strong A–Stability: lim Re λ→∞ |ω(λτ)| ≤ 1− δ < 1

• Weak Dissipation: |ω(λτ)| ≈ 1 for Re λ = 0

For classical one-step- θ -methods, i.e., discretizations of the form

xk+1 − xk = −λτ(θxk+1 + (1− θ)xk)

the factor ω satisfies

ω(z) =
1− (1− θ)z

1 + θz
.

Example 6.17.

1. Explicit Euler (θ = 0) : Conditional stability only for τ < 1/λ

2. Implicit Euler (θ = 1) : Strongly A-stable ( |ω(z)| → 0 for Re λ → ∞ ), but
dissipative ( |ω(iτ)| < 1 , e.g. |ω| = 0.995 for τ = 0.1 )

3. Crank–Nicolson Method (θ = 1/2) : only A–stable |ω(z)| → 1 for Re λ →∞ ),
but not dissipative ( |ω(iτ)| = 1 )

6.2.7 Fractional–Step– θ –Method

With the exception of the explicit Euler method, the methods discussed above are
(semi–) implicit schemes. For schemes of higher order of convergence, like the Runge–
Kutta method, it is not clear if the regularity for the nonlinear Navier–Stokes problem
is sufficient to guarantee a high order of convergence. The Crank–Nicholson method
achieves a second order convergence, but instabilities can arise since the method is
only A–stable.

We shall therefore consider a different class of method, which is of second order and
strongly A–stable, with few dissiplation: the so-called fractional–step– θ –methods. The
idea of such schemes is an operator splitting, which has a macro time step τ = tk+1−tk
that is decomposed into three micro time steps si via τ = s1+s2+s3 . The advantage
of this approach is that different algorithms can be used for each micro time step. One
possibility is presented in the following scheme:

Let

θ = 1−
√

2

2
, θ′ = 1− 2θ

α =
1− 2θ

1− θ
, β = 1− α

θ̃ = αθτ − βθ′τ.
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A macro time step is then composed by the following micro time steps

1.

uk+θ − uk

θτ
+ α(uk+θ · ∇)uk+θ − αν∆uk+θ +∇pk+θ = fk+θ + βν∆uk − β(uk · ∇)uk

div uk+θ = 0,

2.

uk+1−θ − uk+θ

θ′τ
+ β(uk+1−θ · ∇)uk+1−θ − βν∆uk+1−θ +∇pk+1−θ =

= fk+1−θ + αν∆uk+θ − α(uk+θ · ∇)uk+θ

div uk+1−θ = 0,

3.

uk+1 − uk+1−θ

θτ
+ α(uk+1 · ∇)uk+1 − αν∆uk+1 +∇pk+1 =

= fk+1 + βν∆uk+1−θ − β(uk+1−θ · ∇)uk+1−θ

div uk+1 = 0.

Lemma 6.18. The above fractional–step– θ –method satisfies

ω(z) =
(1− βθz)2(1− αθ′z)

1 + αθz)2(1 + βθ′z)

and using the parameters given above we have:

• Strong A–stability ( lim Re λ→∞ |ω(z)| = β
α
≈ 0.7 )

• Second Order Convergence

• Good Smoothing Property ( |ω(iτ)| ≈ 0.9998 for τ = 0.8 ).

6.2.8 Projection Methods

Another class of time discrete schemes are so-called projection methods, which have
the following form in general:

Algorithm 6.19.

1. Choose u0, p0 .



6.2 Time Discretizations 78

2. For k = 0, 1, 2, . . .

(a) Solve
uk+1/2 + N(uk+1/2) = uk + τ

[
M(uk) + fk −∇pold

]
.

(b) Solve

∆qk+1/2 =
1

τ
div uk+1/2 in Ω

∇qk+1/2 · n =
1

τ
uk+1/2 · n auf ∂Ω

.

(c) Update
pk+1 = pold + qk+1/2, uk+1 = uk+1/2 − τqk+1/2.

There is still a certain freedom in choosing M,N and pold , which leads to a variety
different schemes:

• N(v) = 0 , M(v) = ν∆v − (v · ∇)v ,

• N(v) = −ν∆v , M(v) = −(v · ∇)v ,

• N(v) = (v · ∇)v , M(v) = ν∆v .

For the old value of the pressure pold one has e.g. the following choicess

pold = 0, pold = pk, pold = 2pk − pk−1.

The main idea of this method is first to compute a velocity field without taking into
account incompressibility, and then perform a pressure correction, which is a projection
back to the subspace of divergence free vector fields. Note that the step (b) is equivalent
to the minimization of ∫

Ω

|τ∇q − uk+1/2|2 dx

over q , i.e., τqk+1/2 corresponds to the projection of uk+1/2 to the subspace of gradient
vector fields, which is the orthogonal complement of the space of divergence-free vector
fields. For the different choices of M and N , problems of different complexity are
obtained in each iteration step. The Neumann problem for the pressure correction can
be solved using fast standard methods.

The choice of pold mainly influences the order of convergence of the scheme.
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Remark 6.20. The boundary conditions qk+1/2 are obtained from a compatibility
relation for the Neumann problem:

0 =

∫

Ω

div uk+1 dx =

∫

Ω

div uk+1/2 dx− τ

∫

Ω

∆qk+1/2 dx

and hence,

∫

∂Ω

∇qk+1/2 · n ds =
1

τ

∫

Ω

div uk+1/2 dx =
1

τ

∫

∂Ω

uk+1/2 · n ds.
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7 Turbulence

In the following we provide a short introduction into turbulence models derived from
the instationary Navier–Stokes model.

Turbulent flows have the following properties:

• Irregular instationary behaviour

• High vorticity

• Dissipativity

Therefore, turbulent flows are three-dimensional, full of losses and irreversible, which
makes there numerical simulation difficult. The irreversibility appears in the phe-
nomenon of vortices breaking up into smaller and smaller vortices until complete dis-
sipation is reached. Moreover, many models consider the force term f to be rather
of stochastic than derministic nature. The small spatial scales appearing in turbulent
flows need extremely fine grids and therefore an enormous computational effort and
memory consumption.

A way to (partially) overcome the difficulties arising in turbulent flows is to derive
simplified models, which do not incorporate all detailed effects as the nonlinear Navier–
Stokes model, but focus on specific important parts of the behaviour. For stationary
incompressible flows with constant viscosity one can derive the Reynolds–Averaged–
Navier–Stokes equations (RANS), which we shall sketch in the following.

The main idea of the averaging is to decompose the velocity u into a deterministic
mean velocity ū and a (stochastic) perturbation u′ with mean zero, i.e.,

ui = ūi + u′i, i = 1, 2, 3.

In the same way we can decompose the pressure into p = p̄ + p′ .

Since the mean value 〈u′〉 vanishes, and since we can interchange differentiation and
averaging, we obtain that

〈∆u′〉 = ∆〈u′〉 = 0

〈ū.∇u′〉 = ū.∇〈u′〉 = 0

〈u′.∇ū〉 = 〈u′〉.∇ū = 0

〈div u′〉 = div〈u′〉 = 0

〈∇p′〉 = ∇〈p′〉 = 0.

Hence, if we apply averaging over the stochastic perturbations to the stationary
Navier–Stokes equations we obtain the Reynolds-averaged Navier–Stokes equations

ū.∇ū− ν∆ū +∇p̄ = 〈f〉 − 〈u′.∇u′〉,
div ū = 0.
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By averaging we obtain a Navier–Stokes system for the mean value, with an additional
source term, that can also be rewritten as

−〈u′.∇u′〉 = − div〈u′ ⊗ u′〉.
Hence, it acts like an additional stress tensor, called Reynolds stress tensor.

Since we have to treat the tensor u′⊗u′ as an additional variable, we need additional
equations to determine the Reynolds stress tensor. A common approach is the vortex
viscosity model

−〈u′ ⊗ u′〉 = τt = νt

(∇ū +∇ūT
)− 2

3
ktI,

where νt denotes the turbulent viscosity and kt the turbulent kinetic energy, given
by

kt =
1

2
〈|u′|2〉.

In the following we shall discuss three possible models:

7.1 Prandtl Model

In an analogous way to the kinetic theory of gases, in which single molecules have
a mean free path, one can formulate an algebraic one-dimensional turbulence model
based on a characteristic length ` . This length can be interpreted in two different
ways, either as a diameter of a fluid ball, or the way a fluid ball is moving until
mixture effects cause its dissipation. In order to connect these possibilities one can
assume that these two quantities (radius and mean free path) are proportional.

In the following we assume that the turbulence effect enters in the y -direction. Then,
for a fluid ball entering into the layer y from y + ` we have a velocity difference

δū1 = ū1(y)− ū1(y + `)

with respect to the mean velocity ū1 . Hence, the perturbation velocity u′1 can be
approximated to first order as

u′1 = k1`
∂ū1

∂y
.

If a fluid ball with perturbation velocity u′1 is displacing another one into the layer
below, this means for the second ball that its perturbation velocity v′1 in direction y
is given by

v′1 = k2`
∂v̄1

∂y
.

Hence, we obtain the Reynolds stresses (with k1 = k2 = 1 )

|τt| ≈ |u′1 ⊗ v′1| = `2∂ū1

∂y

∂v̄1

∂y
,
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i.e., this gives another nonlinear term in the Navier–Stokes equations.

Note that in a purely one-dimensional model this corresponds to

νt = `2

∣∣∣∣
∂ū1

∂y

∣∣∣∣ .

7.2 Baldwin-Lomax Model

The Baldwin-Lomax model is a generalization of the Prandtl mixture model to multiple
dimensions by using

νt = `2|ω|
with the vorticity

ω =
1

2
∇× u.

Note that for a flow between two plates in the absence of a pressure gradient the
Baldwin-Lomax model reduces to the Prandtl model since ω = (0, 0, ∂ū1

∂y
) .

7.3 k − ε Model

The most prominent and probably most important turbulence model is the k - ε model.
The name of this model arises from the fact that one solves two additional differential
equations, one for the dissipation rate ε and the second for the turbulent kinetic
energy k . The turbulent viscosity is given by

νt = C
√

k` = C
k2

ε
.

Hence, after computing k and ε , we can use them to obtain the Reynolds stress tensor

τt = C
k2

ε

(∇ū +∇ūT
)− 2

3
kI.

The equation for the dissipation is given by

Dε

Dt
=

∂ε

∂t
+ div(εū) = Cε,1

ε

k
(τt : ∇ū)− Cε,2

ε2

k
+ νt∆ε

and the one for the kinetic energy by

Dk

Dt
=

∂k

∂t
+ div(kū) = div〈1

2
τtu

′ − p′u′〉+ τt : ∇ū− νt〈|∇u′|2〉+ νt∆k.

The terms on the right-hand side model the following effects:
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• The first term div〈1
2
τtu

′ − p′u′〉 is the turbulent diffusion of the kinetic energy.

• The second term τt : ∇ū models the production of turbulent kinetic energy due
to deformation.

• The third term −νt〈|∇u′|2〉 = −2νtk models dissipation effects.

• The final term νt∆k is a standard diffusion effect.

Obviously, in the above form the equations for k and ε do not suffice to obtain a
closed system, since it still depends on u′ and even p′ via the turbulent diffusion
of kinetic energy and the production of turbulent kinetic energy due to deformation.
Therefore we need further simplifications, which we shall discuss in the following.

Since the turbulent diffusion of the kinetic energy is usually modeled as a standard
diffusion term of k , i.e.,

div〈1
2
τtu

′ − p′u′〉 ≈ νt

σk

∆k.

The constant σk is called Prandtl number.

In the second term, the Reynolds stress is replaced by the mean stress (i.e., the one
created by the mean velocity ū ), which leads to the approximation

τt : ∇ū ≈ νt

(∇ū +∇ūT
)

: ∇ū =: P (∇ū)

If we introduce all these approximations into the above two equations as well as into
the Reynolds averaged Navier–Stokes equations, we obtain the following system (using
the short notation u for the mean velocity ū ):

∂u

∂t
+ u.∇u− ν∆u = f −∇p + νt div

(∇u +∇uT
)− 2

3
∇k +∇νt

(∇u +∇uT
)

∂ε

∂t
+ div(εu)− νt∆ε = Cε,1

ε

k
P (∇u)− Cε,2

ε2

k
∂k

∂t
+ div(ku)− νt∆k =

νt

σk

∆k + P (∇u)− 2νtk

div u = 0.

Collecting all diffusion terms on the right-hand side and using the relation for νT and
div∇uT = ∇ div = 0 , we obtain

∂u

∂t
+ u.∇u− (ν + C

k2

ε
)∆u = f −∇

(
p− 2

3
k

)
+ C∇

(
k2

ε

) (∇u +∇uT
)

∂ε

∂t
+ div(εu)− C

k2

ε
∆ε = Cε,1

ε

k
P (∇u)− Cε,2

ε2

k
∂k

∂t
+ div(ku)− C

k2

ε

(
1 +

1

σk

)
∆k + 2C

k3

ε
= P (∇u)

div u = 0.
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The numerical solution of the k - ε is a challenging problem for several reasons: First
of all, the number of equations increases with respect to the Navier–Stokes model.
Moreover, the new equations include additional nonlinearities and couplings which
increase the difficulty.

In the final version of the k - ε model, we need five additional constants: C, Cε,1, Cε,2, σk ,
and σε . For a flow between plates the constants below can be used, which are usually
the default values in simulation tools for the k - ε model:

C Cε,1 Cε,2 σk σε

0.09 1.44 1.92 1.0 1.3

Another delicate part is the formulation of suitable boundary conditions for the k - ε
model, which we omit here. For a detailed exposition and analysis of the k - ε model
we refer to the monography by Mohammadi and Pironneau [MP94].
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