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Abstract. This paper presents and validates a non-linear image registration
method driven by points and curved landmarks using implicit representation.
This approach produces smooth one-to-one mappings between topologically
equivalent images by constraining the transformations to adhere to continuum
mechanical laws. In this paper, the elastic operator is used for fast computation
when only small deformation is needed. For large deformation, the same
strategy is coupled with the method of infinite dimensional group actions to
generate highly non-linear diffeomorphic maps. We applied this method to
register brain magnetic resonance images in a flattened parameter space, and
visualize sulcal variability by pulling back the mapping to 3D. Results show
accurate registration of MRI images using delineated sulcal landmarks, while
relaxing the registration field along the sulcal lines.

I. Introduction

Image registration is an integral part of many areas of medical imaging such as
functional and anatomic brain mapping, image guided surgery, computational
anatomy, and multimodality image combination.  The role of image registration in
these applications is to find a correspondence map between image data sets.  The
transformation that defines the correspondence map between the images should be
diffeomorphic; thus preserving the topology.  Image registration typically uses image
intensity information, or landmarks in the form of points, curves, and surfaces to
determine the correspondence mapping between two images. A combination of
different types of information such as intensity and curvature profiles is helpful in
the landmark registration process especially in applications such as cortical surface
registration [1]. Currently, different formulations make landmark constraints difficult
to combine with other constraints that may significantly improve the image
registration process.

This paper validates and generalizes our previous results [2] and applies them to
brain images. We formulate nonlinear image registration driven by landmark points
and curves in 2D and 3D using an implicit level set representation. This level set
representation avoids the numerical complexities associated with computing flow



equations and differentiating quantities on parameterized surfaces as in [3].  When
anatomical features are represented as parametric curves [3],[4], it is very intricate to
integrate intensity or curvature information into the landmark matching paradigm.
Our proposed algorithm also avoids explicit point matching strategies such as the
thin-plate spline registration method [5], [6], which is also difficult to integrate with
other optimization constraints. By representing points and curves with implicit
functions, our cost function simply has additive terms that can be appended to the
intensity constraints.

II. Methods

The image registration paradigm consists of finding a transformation h  that maps a
source image )(xS to a target image )(xT . The image registration problem can be
stated as follows: Estimate the transformation h , such that hmaps )(xS  to )(xT

subject to the joint constraint C=L+R, where L is a landmark constraint, and R is a
regularizing constraint. The transformation )()( xuxxh −= is often represented in
terms of the displacement field u .

We will focus on formulations for open curve matching and landmark curve
matching with implicit representation in 2D (see also [7]).However, feature-based
image matching in 3D follows similar formulations and implementations thanks to
implicit representation (i.e., the level set method).

II. A. Open curve matching in 2D

Let us first summarize the implicit representation of an open curve C in 2D: we
extend curve C into a closed curve as in [8], represented by the zero level set of a
function φ1, and intersect it at the endpoints of curve C with another closed curve
represented by the zero level set of another function φ2. The open curve C can be
written as

}0)(,0)(|{ 21 >== xxxC ϕϕ (1)

Given two open curves C  and 'C  in 2D, represented by level set functions φ1 ,  φ2
and  ψ1 , ψ 2 respectively, with unsigned distance functions Dφ(x) and Dψ(x) to the
corresponding open curve, the cost function is the following, which evaluates the
line integral along the two curves weighted by the other curve’s distance function:
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This cost function has the following partial derivatives
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The body force that drives the minimization of equation (2) is then simply
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II. A. Landmark point matching in 2D

Now let us describe the matching of point landmarks with implicit representation
(formulations will be given for one pair of points). Let the point 

€ 

Pφ = p1
φ , p2

φ( )  and

€ 

Pφ = p1
φ , p2

φ( )  be the points to be matched in the source and target image. Let

2121 ,,, ψψφφ be any level set functions in 2D such that Pφ is the intersection of φ1 and
φ2 and similarly for ψ1 and ψ2. Let Dφ be the Euclidian distance function to the point
Pφ and similarly for Dψ. Point matching with implicit representation can be
summarized as solving for the field u that minimizes the following functional

€ 

min
u

˜ D φδ(ψ1)δ(ψ2)∇ψ1 ×∇ψ2 dx∫ + Dψδ( ˜ φ 1)δ( ˜ φ 2)∇ ˜ φ 1 ×∇ ˜ φ 2 dx∫( ) = min
u

˜ D φ (Pψ ) + Dψ ( ˜ P φ )( )
i
∑ (5)

Here the notation 

€ 

˜ P φ  denotes the displaced position of the point Pφ under the action
of the displacement field u. As before we need the partial derivatives of this cost
function to perform gradient descent
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The body force for landmark point matching in 2D with implicit representations
can then be constructed similarly as in equation (4). When implemented in 3D, the
left hand side of equation (5) can be used to match 2 closed curves since the
intersection of two level set functions usually denotes a closed curve in 3D. By
introducing one more cut-off level set function as in II.A, we achieve open curve
matching in 3D.

III. Numerical Algorithms

In this section, we will focus on the implementation of point matching in (6) as the
numerical implementation of (3), i.e., the level set based whole curve matching is
straightforward given 2121 ,,, ψψφφ . We will defer the automatic generation of

2121 ,,, ψψφφ to the results section.
Two different algorithms for landmark point matching will be proposed based on

whether x-u-1, the inverse mapping of x-u is being computed or not. Without
computing the inverse mapping, the following choice of level set functions are used

€ 

φ1 = x1 − p1
φ ;

φ2 = x2 − p2
φ ;

˜ φ 1 = φ1(x − u) = x1 − u1(x) − p1
φ ;

˜ φ 2 = φ2(x − u) = x2 − u2(x) − p2
φ ;

ψ2 = x2 − p2
ψ ;

˜ D φ = ˜ φ 1
2 + ˜ φ 2

2( )
1/ 2

;

Dψ = ψ1
2 +ψ2

2( )
1/ 2

(7)

Notice that with this choice, the gradient vectors of 2121 ,,, ψψφφ are transferred to
the gradient vectors of the mapping x-u (thus independent of the position of the
landmarks). This allows pre-computation of the gradient vectors, which then could
be re-used for all landmark points. Moreover, the outer product in the right hand side
of the last equation in (6) evaluates to 1.

With computation of the inverse mapping of x-u, (6) can be further simplified that
results in intuitive and elegant formulae. Let 

€ 

u−1(x) = u1
−1(x),  u2

−1(x)( )  be the
displacement field of x-u-1 (and thus, 

€ 

˜ P φ = p1
φ − u1

−1( p1
φ , p2

φ ), p2
φ − u2

−1( p1
φ , p2

φ )( )), we
then construct the level set functions in the following way
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˜ φ 1 = x1 − ˜ p 1
φ = x1 − p1

φ − u1
−1( p1

φ , p2
φ )( );

˜ φ 2 = x2 − ˜ p 2
φ = x2 − p2

φ − u2
−1( p1

φ , p2
φ )( );

ψ1 = x1 − p1
ψ ;

ψ2 = x2 − p2
ψ ;

˜ D φ = ˜ φ 1
2 + ˜ φ 2

2( )
1/ 2

;

Dψ = ψ1
2 +ψ2

2( )
1/ 2

(8)

Notice that with this choice, the gradient vectors of 2121 ,,, ψψφφ  become unit
vector pointing in either the x1 or x2 direction, thus significantly simplifying the
equations in (6). With this simplification, the body force for landmark point
matching can now be expressed in terms of components in the x1 and x2 direction
given respectively by

€ 

−
∂Dψ

∂x1

δ ˜ φ 1( )δ ˜ φ 2( ) +
∂ ˜ D φ
∂x1

δ ψ1( )δ ψ2( );

€ 

−
∂Dψ

∂x2

δ ˜ φ 1( )δ ˜ φ 2( ) +
∂ ˜ D φ
∂x2

δ ψ1( )δ ψ2( );
(9)

The above final result can be interpreted as computing the body force by
projecting the vector pointing from one landmark point to the other onto the x1 and
x2 direction. Numerically, the projections are computed by smearing using
approximated delta functions onto neighboring grid points. Moreover, body force
derived from both directions (from 

€ 

˜ P φ  toward 

€ 

Pψ  and from 

€ 

Pψ  toward 

€ 

˜ P φ )
should be applied to maintain symmetry and thus numerical stability (omitting either
direction in (9) would cause numerical instability due to the use of approximated
delta functions). Another interesting fact in (9) is the need of the product of two delta
functions instead of one. Moreover, no level set function has to be calculated
explicitly and stored in memory since the partial differentials in (9) can be calculated
analytically using (8). This result can be easily extended to point matching in 3D
where a product of 3 delta functions is needed and shares the similar struture as in
(9).

Minimizing the cost function is not sufficient to ensure that the resulting
transform is diffeomorphic. In this paper, two different regularizers are used: the
method of infinite dimensional group actions as described in [7], [9] and the linear
elastic constraint following the method in [10]. The latter method allows fast
computation under the assumption of small deformation.

For the numerical implementation of the infinite-dimensional group actions, refer
to [9] [7]. The implementation of the linear elastic operator follows the methods in
[10] by representing the displacement field u  using its Fourier series expansion. The



Fourier coefficients are then optimized using gradient descent, driven by the
corresponding body force in the frequency domain
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IV. Results and Discussion

IV. A. Automatic generation of the implicit representation of brain sulcal curves
in 2D

In this section, we describe a method to automatically generate the level set
representation needed to describe any brain sulcal curve by using the point matching
algorithm with implicit representation proposed in the previous section. Given any
sulcal curve, the first step is to generate an artificially defined line segment for which
the level set representation can be easily determined analytically. Secondly, this
curve is discretized into points, and warped to the brain sulcal curve (also discretized
to the same number of points) using the point matching algorithm. The next step
consists of deforming the analytically determined level set representation using the
displacement field generated in the previous step so that now the deformed
representation describes the brain sulcal curve. Lastly, the deformed level set
functions are re-initialized to their respective zero level sets using the fast marching
algorithm, and the corresponding unsigned distance function for the brain sulcal
cruve is then generated using this re-initialized representation. Notice that re-
initalization step guarantees that the level set functions are now signed distance
functions and thus provide a numerically stable representation for the brain sulcul
curve.

Fig. 1 shows an example of generating the level set functions representing the
central sulcal curve of a normal subject in the flattened 2D parameter space. The
straight line segment joining the two endpoints of the sulcal curve is descretized into
50 points and warped to the sulcal curve using the level set based point-matching
algorithm. The analytically determined level set functions are the signed distance
function to the line joining the two endpoints, and the signed distance function to the
circle passing the two endpoints with a diameter equal to the distance between the
two points. The left panel of Fig. 1 shows the warped zero level sets of the two
analytically determined level set functions superimposed with the underlying
deformation needed to match the sulcal curve with the dotted line being the position
of the descretized sulcal curve. The right panel shows the same two zero level sets as
in the left panel after re-initialization superimposed with the level curves of the
unsigned distance function to the sulcal curve. The results are computed first in a 64
by 64 grid and then a 128 by 128 grid for faster convergence. This method is



successful in generating the implicit representations of all the sulcal curves used in
this paper.

Fig. 1. Automatic generation of implicit representations for open curves Left
panel: warped zero level sets of the analytically determined level set representation
superimposed with the underlying deformation needed to match the sulcal curve.
Dotted line: the position of a descretized sulcal curve. Right panel: The same two
zero level sets as in the left panel after re-initialization superimposed with the level
curves of the unsigned distance function to the sulcal curve

Fig. 2. The cost function of landmark point matching with implicit representations
is plotted against the number of iterations. A multi-resolution scheme is employed
with 1000 iterations in a 64 by 64 grid and 200 iterations in a 128 by 128 grid.

In order to quantify the accuracy of our methods, the Euclidian distances between
the point pairs (i.e., the straight line segment joining the two end points and the brain
sulcal curve) are computed before and after point matching. In order to fully
compare the results, the number of iterations is set large enough to achieve numerical
minimum in all cases. A total of 1000 iterations are computed in a 64 by 64 grid and



200 iterations in a 128 by 128 grid. Table I summarizes and compares the results
with different parameters with second column describing the statistics before
applying point matching.  Three different choices of the support of the approximated
delta function are used to examine the effect of the support on the accuracy. It is
shown that a choice of the support equal to one pixel gives the best result, while all
three choices (columns 3, 4, and 5) achieve sub-pixel accuracy.

Using the results in column 3, an implicit representation of the sulcal curve is
generated as described in fig. 1. This representation is then used (column 6) to
validate whole curve matching where the straight line segment joining the two
endpoints is warped to the sulcal curve by minimizing cost function (2) using the
newly generated implicit representation. Though the error in whole curve matching
is slightly higher than point-based matching, the former allows matching with
relaxation/compression along the curve. Fig. 3. second column summarizes statistics
of the stretch/compression along the curve that ranges from 0.8790 to 1.45. It is
noted that without homothetic assumption, the local stretch/compression is highly
variable with a standard variation of 0.17.

We also investigate the inverse consistency error by measuring the displacement
of a point on the curve while deforming the sulcal curve to the straight segment and
back onto itself by applying whole curve matching in both the forward and backward
direction. The last column of Table II summarizes the statistics of the inverse
consistency error along the curve. Although our approach does not incorporate
inverse consistency constraint, it remains relatively robust to the direction of the
mapping (maximum inverse error being 1.8138 pixels in a 128 by 128 grid).

Table I. Point matching with implicit representation

Method of
registration

None Point
based

Point
based

Point
based

Curve
based

Support for
delta function
(in pixels)

- 1.0 1.5 2.0 1.0

Weight for
elastic constraint

- 2×10-6 2×10-6 2×10-6 10-7

ε (64×64) - 10-5 10-5 10-5 10-5

ε (128×128) - 2×10-6 2×10-6 2×10-6 2×10-6

Iterations
(64×64)

- 1000 1000 1000 4000

Iterations
(128×128)

- 200 200 200 400

Landmark point error (in pixels)
Mean error 3.8125 0.0967 0.1230 0.1523 0.4139
Max error 7.6271 0.3848 0.4271 0.4747 0.6808
Std 2.1996 0.0777 0.0933 0.0961 0.1070



Fig. 3. Sulcal curve matching with implicit representation in which the straight line
segment joining the two endpoints of the sulcal curve is warped to the curve. Left
panel shows the zero level sets of the level set functions describing the curve
superimposed with the descretized position (dotted line) of the deformed straight line
segment.  Right panel shows the local stretch/compression along the curve after
warping with the stretch being plotted along the straight line segment (a), and along
the sulcal curve (b).

Table II.  Statistics of the stretch/compression and inverse consistency error along
the curve under whole curve matching using implicit representations

Local stretch along the
curve

Inverse consistency error
along the curve (in pixels)

Mean 1.1343 0.5794
Max 1.45 1.8538
Min 0.8790 0.0012
Std 0.1701 0.5643

IV. B. Point matching and curve matching

To validate the proposed point and curve matching on anatomical test data, the
central sulcus of an individual subject in a 2D cortical parameter space (see Figure 4)
was matched to the average central sulcus for a population of 31 subjects. The
computation was run on the unit square discretized to a 128 by 128 grid, for a total of
1500 iterations. In Figure 4a, the matching is achieved by point matching with the
curve discretized to 50 points. In Figure 4b, the method of whole curve matching is
used. Both methods yield accurate matches. The mean error in 4a between the
corresponding 50 pairs of discretized points sulcus is 0.404 pixels with a standard
deviation of 0.303. The maximum error is found at the end points of the sulci, where



the largest displacement is needed to match the curves (see Fig. 4a). For the whole
curve matching, we measure the error of misregistration by evaluating the distance
function of the individual curve at the positions of the 50 discretized points of the
average curve under the transformation. The mean error is 0.232 pixels with a
standard deviation of 0.217. In both cases, mis-registration occurs at sharp turns and
also the lower end of the curve where large deformation is needed.

   (a)                                                      (b)

                                   (c)                                                     (d)

Fig. 4. Central Sulcus matching: (◊) Warped central sulcus of an individual, (ο) Average
central sulcus, (∗) Individual central sulcus.  (A) Point matching (B) Curve matching (C) Point
matching deformation grid (D) Curve matching deformation grid.

The deformation fields in Fig. 4c and 4d show that the two transformations,
although different, remain smooth.  However, the transformation with a curve-based
representation has a more relaxed grid with an elastic energy of 98.68, compared
with 160.29 from the point-wise representation. At the lower endpoint of the curve
(Figure 5), the point alignment of the curves relaxes along the curve when the curve
is represented as a single implicit function. Notice that in fig. 5b, the same number of



points covers a larger length of the warped curve than in fig. 5a. This is why we
obtain a lower elastic energy in Fig. 4d.

Fig. 5. The positions of the lowest 10 points before and after mapping is shown to
illustrate relaxation along the landmark curve: (◊) Warped central sulcus from an
individual, (ο) Average central sulcus, (∗) Individual central sulcus. (Left Panel)
Point matching; (Right Panel) Curve matching.

IV.C. Curve averaging

The level set based whole curve matching also provides a novel approach for
averaging a set of curves. The most widely used curve averaging technique is
averaging the discretized points evenly placed on the curves (homothetic mapping).
However, with the deformation introduced by mapping curves with implicit
representation (allowing relaxation along the curve), we introduce a different
correspondence mapping from the homothetic mapping between curves. A new point
correspondence mapping between the curves can thus be obtained by discretizing the
new correspondence mapping, such that now equally placed points in one curve do
not map to equally placed points in another and vice versa. The new point
correspondence can then be applied to curve averaging and other related statistical
analysis. In theory, the averaging and analysis of curves based on this new point
correspondence (obtained by whole curve matching) will capture the geometric
characteristics more precisely than those based on averaging the homothetic
mapping. Fig. 6 shows the average curve of the two brain sulcal curves in the
previous section. Fig. 6(a) is the average obtained by averaging the homothetic
mapping, while Fig. 6(b) is obtained by averaging based on the point correspondence
mapping generated using whole curve matching with implicit representation. Notice
that Fig. 6(b) captures a more natural and intuitively correct concept of averaging.



Fig. 6. Curve averaging using homothetic mapping and mapping generated by
whole curve matching with implicit representations Dashed lines: the two brain
sulcal curves used to illustrate curve averaging Solid line: average curve of the two
sulcal curves using homothetic mapping (a) and the mapping generated by whole
curve matching (b)

IV.D. Joint Intensity and Landmark Point Matching

In this section, we examine joint image registration using intensity cost function
(sum of squared intensity difference) and landmark point matching. Due to the
variational nature of the proposed method, the combination of intensity constraint
and feature constraint can be easily achieved by summing up the cost function of
point constraint and squared intensity difference. In this implementation, the
minimization of the cost function is adjusted with respect to point matching, thus a
weight must be assigned to the intensity cost function in order to balance the
influences of these two cost functions. Two neighboring histological sections from
the brain of a mouse are used to validate this joint minimization problem. Fig. 7(a)
and (b) show the two sections being compared with 14 identified landmark points
(marked by diamonds). Fig. 7(c) shows the result of warping 7(a) to match 7(b)
using the intensity cost function alone, while 7(d) the result with only point matching
cost function. Notice in 7(b) the landmark errors are most visible in the areas marked
by the two arrows, while the overall shapes of the sections do not match in7(c). Fig.
7(e) shows the result with both intensity and point constraints, and 7(f) shows the
corresponding deformation field. Notice that in 7(e), mis-registration can be seen in
the area marked by the arrow where no landmark point is placed. This indicates the
case in which intensity matching alone does not give satisfactory results.  Table III
summarizes and compares the results of intensity only, point constraint only, and
combined intensity and point constraint. It is shown that although the incorporation



of intensity constraint increases the landmark error of the 14 landmark point pairs
slightly, all but one (1.9833 pixels) remain subpixel with a mean less than 50% of a
pixel (in a 256 by 256 grid). The numbers in parenthesis in column 4 are the statistics
of the landmark error excluding this outlier of 1.9833 pixels). Our results also show
that the incorporation of point constraints does not increase the intensity cost
function significantly as both constraints are generally consistent with each other.

(a)                                                             (b)

(c)                                                            (d)

(e)                                                            (f)
Fig. 7. Joint intensity and landmark point matching



Table III. Statistics for Joint intensity and landmark point matching

IV.E. Brain mapping application

A set of nine sulcal lines were manually traced on 3D surface models extracted
from a set of 31 individual MRI images.  The sulcal lines correspond to the central
sulcus, post-central sulcus, pre-central sulcus, Sylvian fissure, olfactory sulcus,
olfactory control line, middle superior frontal sulcus, primary intermediate sulcus,
and collateral sulcus as described in [11], [12], [13]. Cortical flat maps of 256x256
pixels and average flattened sulcal curves (discretized into 100 points) were created
as in [14].  This process results in a mapping from the cortical surface in the 3D MRI
image to the flat map. The sulcal lines and flat maps are shown in Figure 8.



Fig. 8. (Left Panels) Sulcal delineation; (Right Panel) Flat map with the delineated
sulci superimposed.

As seen in Figure 9 (left panel), when we superimpose the average sulcal lines on
the flattened cortical map from an individual, the average sulcal lines do not match
the sulcal features on the flat map. Therefore, for each individual, a deformation field
was created by warping the nine sulcal lines from each individual to match the
average set of sulcal lines. This deformation is applied to a grid in Figure 9 (right
panel). Then, the deformation is applied to each individual cortical flat map (middle
panel).  Now, notice that the superimposed average sulcal lines match up with the
cortical features in the individual flat map.

  
Fig. 9. (Left Panel) Average sulcal curves superimposed on the flattened MRI

image of an individual subject. Notice that the average sulcal lines do not match the
sulci in the flat map. (Middle Panel) Average sulcal curves superimposed on the
individual flat map after the deformation field is applied. (Right Panel) The
deformation grid that matches the two sets of sulcal curves is superimposed on the
deformed individual flat map.



Fig. 10. Cortical variability map. The anatomic variability at each point is color coded as the
root mean square magnitude of the 3D displacement vectors assigned to each point in the
surface maps from individual to average [4].

A total of 4 subjects were analyzed using this method and the registration of 2D
cortical features was used to induce a cortical surface correspondence in 3D [4]. Fig.
10 shows sulcal pattern variability across four individuals after an affine alignment
of the individual MRIs: note the areas with greatest variability, in this sample, are the
temporal and parietal lobes.

V. Conclusion

In this paper, we have shown that a level set representation of landmarks can be
used to create diffeomorphic non-linear image registration transformations.  These
transformations yield accurate registrations of landmarks expressed as points or
curves. We demonstrated that these implicitly represented curves can be used to
drive the registration of cortical surfaces and in turn create sulcal variability maps.
In conclusion, the proposed method is promising for multimodality data fusion,
shape analysis, and many other registration applications as it can straightforwardly
combine multiple cost functions as constraints in a computationally tractable way.

Grant Support. Funded in part by NIH Grants R21 EB001561 and R21 RR019771 (to PT),
and P41 RR13642 (to AWT).
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