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ABSTRACT functions, describing the influence of deforming surfaces on

. . points in their vicinity, to extend a surface-based deforma-
In [1], we developed two different techniques to study Vol- 4,4 the whole brain volume for the purpose of register-

ume mapping problem in Computer Graphics. The first one ing a brain with another. Christensen et al. [6] present dif-

is to find a harmonic map from a 3 mam_fold to a_3D sohql feomorphic transformations of three-dimensional anatomi-
sphere and the second is a sphere carving algorithm which ;5,200 gata using fluid deformation method. It forces
calculates the simplicial decomposition of volume adapted " yie smorphic transformation by tracking the Jacobian of
:g Elgﬁcﬁg I?nthlsrgglpé(re;, steaﬁgley ;htiigﬁggrgﬁcrgggﬁigth.e transforma}tion. Geg [7] stud_ied brain vqu_mg matching
represent thpep brgai% volumé The experimental results cmwr[h a generalized elastic matching method within a proba-
b Eh thetic and brain volume dat b ted. Wi bilistic framework. The approach can resolve issues that are
Ot Synthetic and brain volume gata are reported. We st sqq natyrally addressed in a continuum mechanical setting.

gest that 3D harmonic mapping of brain volumes to a solid Ferrant et al. [8] presented an algorithm for non-rigid regis-

sphere can provide a canonical coordinate system for fe€ay ijo of 3p MR intraoperative image sequences showing
ture identification and segmentation, as well as anatomical

normalization brain shift. The 3D anatomic deformation field, in which
' surfaces are embedded, is then inferred from the displace-
ments at the boundary surfaces using a biomechanical finite
1. INTRODUCTION element model for the constituent objects. Wang, Gu and
Yau [1] proposed a general 3D volumetric harmonic map-
The rapid growth in brain imaging technologies has been ping algorithm. The algorithm can work with manifolds
matched by an extraordinary increase in the number of in-with genus zero and non genus zero surfaces. They demon-
vestigations analyzing brain structure and function in clini- strated their algorithm in object modeling and animation ap-
cal and research settings [2]. Brain surface conformal map-plications.
ping research [3, 4] has been successful and this motivates
our more general investigation of 3D volumetric brain har- In 2D case, a harmonic map between two convex pla-
monic mapping. The motivations for 3D volumetric brain nar regions is diffeomorphic if and only if the restriction on
mapping research are clear. The brain is inherently 3D, the boundary is diffeomorphic. 3D harmonic map is much
and besides the surface information, MRI also yields rich more complicated. In this paper, we construct a harmonic
morphometric information for interior brain structures. By map inR? with a heat flow method. First we conformally
transforming the full 3D brain volume to a solid sphere, our map the boundary of the 3D volume to a sphere, then min-
goal is to investigate how features map into this canonical imizes the volumetric harmonic energy while keeping the
3D coordinate system in the same way as 2D conformal flat-surface fixed. To build volumetric brain data, we applied
tening has helped in analyzing cortical surface geometry.sphere carving algorithm of [1] to calculate the simplicial
Nonlinear mapping of two brain volumes to a sphere can decomposition of volume adapted to surfaces. To the best
also assist with the subsequent nonlinear registration of oneof our knowledge, this is the first work to apply volumet-
brain volume to another. ric harmonic map to brain mapping problem. This work is
For 3D brain volume transformation research, Thomp- also quite general and can easily be generalized to higher-
son et al. [5] used weighted linear combinations of radial dimensional cases.
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ITslglrxli?_oﬁNsI#ET\évsogﬁ nléiLnglF?ALthssEZEOEFI;BI(E)?%BIA’\:\JAIS Section 2, we give the definitions of harmonic energy and
R21 RRO19771; NSF CONTRACT DMS-9973341, NSF CONTRacT & detailed desct:rlptlorllj otfhour ?Lgc;_r |thm.d ﬁeqtlo&glrgports
ACI-0072112, ONR CONTRACT N00014-03-1-0888, AND NIH cOoN-  OUl €Xperiments on both Synthetic and brain iImage
TRACT P20 MH65166. data. We conclude the paper with the discussion of future

research directions in Section 4.



2. VOLUMETRIC HARMONIC MAPPING
ALGORITHM

2.1. Definitions

SupposeK is a simplicial complex, ang’ : |K| — R3,
which embedg K| in R3; then (K, f) is called a mesh.
Given a genus zero tetrahedral méghour goal is to com-
pute its harmonic map to a sphereRA.

Definition 1 All piecewise linear functions defined di
form a linear space, denoted l6y"'*(K)

Definition 2 Suppose a set of string consta®ia:, v) are
assigned, then the inner product 61’ is defined as the
guadratic form:

=<
k(u, v)(f(w) = f(v))(g(u) —g(v)) (1)

{u,v}eK

1
<f7g>*§

The energy is defined as the normG@R*

Definition 3 Supposef € CPL, the string energy is de-
fined as:

> 2

E(f)=</[.f>= k(u, v)|[f(u) = f()]|

{u,v}eK

)

By changing the string constartéu, v) in the energy for-
mula, we can define different string energies.

Definition 4 Suppose for edgf., v}, itis shared by tetra-
hedrathus itis against ta dihedral anglesg;,i = 1,...,n.
Define the parameters

X
l; COt(ai)

i=1

®)

wherel; is the length of edge to which edfe, v} is against

in the domain manifold/. The string energy obtained is
called the harmonic energy. The detailed explanation for
the harmonic energy iR can be found at Appendix.

Definition 5 The piecewise Laplacian is the linear opera-
tor Ap;, : CPL — COPL on the space of piecewise linear
functions on K, defined by the formula
><
Apr(f) = k(u, v)(f(v) = f(u))

{u,v}eK

(4)

If f minimizes the string energy, thehsatisfies the condi-
tion Apr(f) = 0. Supposel;, M, are two meshes and

the mapf : M; — M, is a map from\M/; to R3.

Definition 6 For amapf : M; — R®, f = (fo, f1. f2),
we define the energy as the normfof

X 2
£l

—

E(f)

—

AP =

®)

=0

The Laplacian is defined in a similar way.

Definition 7 For a map f : M; — R® , the piecewise
Laplacian off is
Aprf= (Aprfo, ApLfi,ApLf2) (6)

A mapf: M, — M, is harmonic, if and only if it only has
a normal component, and the tangential component is zero.

()

—

Apr(f)

—

(ApLf)*

2.2. Steepest Descent Method

Suppose we would like to compute a mappﬁg M, —

M, such thatfminimizes a string energ¥(f). This can
be solved easily by the steepest descent algorithm:

aftty A7
- Af(t) (8)
F(My) is constrained to be of/,, so—Af is a section of
M>’s tangent bundle.

Based on the above definitions and algorithm, our volu-

metric harmonic brain mapping algorithm is given below.
Algorithm 1 Volumetric Harmonic Mapping

Input (meshM ,step lengthyt, energy difference threshold
OF),
outputz : M — D?3), wherer, is a harmonic map.

1. Compute the surface structu)/, of the meshv/.
Compute its conformal mapping to the surface of a

sphereg : M — S? [3, 4];

. For each boundary vertex, v € dM, let h(v) =
g(v); for each interior vertex v,v € M\0OM, let

h(v) = (0,0,0), compute the harmonic enerd;

. For each interior vertexp € M\9M, compute its
derivative Dh;

. Updateh(v) by h(v) = —Dh(t)st;

. Compute the harmonic energ@y

. IfE - Ey < 0F, return h. Otherwise, assigi to
Ey and repeat steps 3 through 6.

3. EXPERIMENTS

In our experiments, we use tetrahedra to represent the vol-
ume data. We tested our algorithm on both synthetic and
brain volume data. Our synthetic data is a cube consisting
of many tetrahedra. Figure (a) shows a cube in wireframe
mode and (b) shows the solid sphere onto which it harmon-
ically mapped. We also performed some experiments to
study the harmonic map obtained. As shown in Figure 1(c)

and (d), we assign a random color to each vertex of the cube



model. We then removed some tetrahedra from the cube. 5. REFERENCES

We also remove these tetrahedra from the sphere. Since the ) )
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to the interior as well. [4] Y. Wang, X. Gu, T. Chan, P.M. Thompson, and S.-T. Yau, “In-

. . . trinsic brain surface conformal mapping using a variational
Methods to tetrahedralize the brain for FEM analysis are method.” inSPIE International Symposium on Medical Imag-
somewhat rare in the literature, although they are used oc- ing, 2004.

casionally for surgical simulation, or mapping intraopera- [5] P.M. Thompson and A.W. Toga, “A surface-based technique

tive b(ain change. In our current _ex_periments, we apP'Y Fhe for warping 3-dimenstional images of the braitfEE Trans-
technique developed in [1] to brain image tetrahedralization actions on Medical Imagingvol. 15, no. 4, pp. 1-16, August

problem. This algorithm is called sphere carving algorithm. 1996.
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classify each pixel as white matter (in this case, for illus- [] J.CI.?f;Zee, %g rrizitlchig%gram volumegattern Recognition

tration purposes) and non-white matter. Figure 1(g) ShOWS[8] \l\//lo i:errlaelr’:.s K_Wa’rfield A Nabavi, F.A. Jolesz, and R. Kiki-
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surface. The sphere carving algorithm [1] takes a sequence 2003 pp. 19-28.

of brain MRI images. First it builds a large sphere tetrahe-

dral mesh which totally encloses the brain 3D volume. Then APPENDIX

it keeps removing the tetrahedra outside of the brain volume Proof of Equation 3

while maintaining a genus zero surface. It outputs a brain As shown in Figure 1(h), we defingé = Area(Face i)ii;,i =
tetrahedral mesh with a genus zero boundary. 1,2, 3,4, wherefi; is the normal on Faceé Due to(5;) =

To reduce memory requirements in the implementation, — >_;.; < §j,7; >, ands;, i = 1,2, 3,4 can uniquely de-
we use a multi-resolution method to represent the brain vol-termine a frame in the space, we h@??—l 3, = 0 and
ume data. A coarse-scale brain model (which could be fur- - g & ~— _ S < 5,5 >, = 1,2,3,4. Fora
ther refined) is shown in Figure 1(i) and (j). The volumetric o, om point inside the tetrahedron, its barycentric coor-
brain harmonic mapping result is shown in Figure 1(k) and di isi = S (L here \. 1<rE> h
(I). We show this result at coarse scale to visualize the so-dINate 1S7" = >i=1(Aipi), where); = g=5-=, where
lution grid, but it can be further refined to capture greater IS the volume of tetrahedron. For a function defined on
geometric detail. the tetrahedronf(7) = >, Aif(9i) = X_im1 37—

Thus we havev f = ﬁ Zle 3; f;. We also can see The
4. CONCLUSION AND FUTURE WORK harmonic energy for the tetrahedron can be computed as

T_his paper introduces a noyel volumetric brain mapping methadl f) = % <V, Vf>= ﬁ < < ifi, > gifi >
First we map the volumetric boundary conformally onto a i=1 i=1
sphere. Then with this boundary condition, we compute ;X >

its harmonic map in the object interior with a heat flow =—( <&,&>f+2 < 8,8 > fifi)
method. Our work is general enough to be easily general- 18V, ij

ized to higher dimensional cases, or to other organ systems X <5,5 > ) ©)
than brain, e.g. for representing cardiac motion. To apply == 187‘/(15 = fi)

this algorithm on brain mapping problem, we developed a 73

novel algorithm to calculate the simplicial decomposition _ > ! Cot(qu)(f_ 5

of volume adapted to surface. Our experimental results on - P12 Lo

both synthetic and brain MRI image data are promising. P i te

Since the exterior brain surface is highly convoluted, <55 1831 2Ly g cos(6pq)
computation of 3D harmonic maps is difficult. In the fu- Wherel = {1,2,3,4}, === = —=rapmers " =

ture, we will study the necessary and sufficient conditions —327, cot(6,,), wherel,, andh, are the edge length and
for a 3D harmonic map to be diffeomorphic. We will also height length in triangley, as shown in Figure 1(h). The

use non-structured tetrahedral mesh to represent brain voluproof is general and it can be easily generalized to higher
metric data and test our algorithm on it. dimensional cases.
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Fig. 1. (a) is a volumetric cube. (b) is its harmonic map onto a solid sphere, both of them are shown in wireframe mode.
(c) and (d) illustrates the interior of the cube and its map onto a solid sphere. We plot random colors inside the cube and
take some tetrahedra out of the cube (c). (d) shows the internal geometry after we removed the same tetrahedra from the
solid sphere. This illustrates how the bijection maps simply connected regions to simply connected regions of the sphere, and
points in the two coordinate systems can be associated. (e) and (f) illustrates how a boundary condition affects the harmonic
map. We embedded a bunny inside a cube and got the harmonic map of the cube onto the solid sphere. After we change
the boundary condition, we get a new harmonic map. (e) shows the new boundary condition. (f) shows the distorted bunny
embedded in the solid sphere, which indicates the difference between different harmonic maps. (g) shows some binary brain
images, where white pixels are brain’s white matter, and black pixels are non-white matter. (h) illustrates a tetrahedron. (i) is
a boundary surface of a brain volume. The brain volume is shown in (j) in wireframe. We get a harmonic map of the brain
onto a solid sphere. (k) is the boundary surface of the solid sphere and (1) is the solid sphere in wireframe mode. The resulting
embedding can be used to induce a canonical spherical coordinate system for the brain interior.



