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Abstract

We consider the problem of a thin film driven by a thermal gradient with an opposing
gravitational force. Under appropriate conditions, an advancing film front develops
a leading undercompressive shock followed by a trailing compressive shock. Here, we
investigate the nonlinear dynamics of these shock structures that describe a surpris-
ingly stable advancing front. We compare two dimensional simulations with linear
stability theory, shock theory, and experimental results. The theory/experiment con-
siders the propagation of information through the undercompressive shock towards
the trailing compressive shock. We show that a local perturbation interacting with
the undercompressive shock leads to nonlocal effects at the compressive shock.
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1 Introduction

When a liquid film is driven by a body force, such as gravity on an inclined plane
[1], or by a Marangoni surface stress as imposed by a temperature gradient [2], the
steep leading edge of the film typically evolves into fingers. Mathematically, the rapid
variation in height at the front of the film corresponds to the presence of a smoothed
compressive shock; the region around the shock is often referred to as the capillary ridge.
A standard linear stability analysis shows the shock to be unstable to large wavelength
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perturbations [3,4]. It is this instability that leads to the fingering phenomena seen in
experiments. Detailed numerical simulations (see, for example, [5] and [6] and references
therein) support this theory. More complex dynamics can arise in experimental systems
when a thin film is jointly driven by a surface stress and a comparable body force. In
the experiments of [7] a large capillary ridge developed, but the moving front of the film
remained surprisingly stable and fingering phenomena did not occur.

A one-dimensional theory was first put forward for the observed experimental results in
[8] and [9]. Here, it was shown that, in general, solutions to a model evolution equation
typically evolve into either (1) a single compressive shock, (2) a separating double shock
structure involving a leading undercompressive wave and trailing compressive wave, or
(3) a rarefaction-undercompressive shock structure. Recently, a new structure involving
an undercompressive and reverse undercompressive shock was also identified in [10] and
[11]. Case (1) is generic when there is a single driving force acting on the thin film (as
described above). We shall focus on cases (1) and (2) so that we can make a comparison
between the well understood dynamics of case (1) versus the time evolving dynamics of
case (2). The leading undercompressive shock in case (2) is stable to perturbations (an
issue we explore in detail later) and is the reason why, in the experiments of [8], the film
front resists the fingering instability. This provides an interesting mechanism to produce
uniform coating flows.

We compare (to the best of our knowledge, for the first time) experimental results
featuring undercompressive-compressive shock pairs with fully two dimensional numerical
simulations and show that large scale patterns can be predicted by a combination of linear
theory and shock dynamics, including transport along characteristics. We also show how
to extend the stability analysis for a single compressive shock to dynamically evolv-
ing base states featuring multiple nonlinear structures (in this case undercompressive-
compressive shock pairs). We note that a standard stability analysis fails not just because
the base state is time dependent and features multiple shocks, but because the interaction
of the shocks with perturbations cannot be investigated completely independently for
each shock; experimental evidence and numerical simulations indicate that perturbations
impinging onto the leading undercompressive shock are partially transferred to the trail-
ing compressive shock and consequently the dynamics are not localised to either shock.
The methodology can be easily developed to handle more complex problems involving
various spatial structures and timescales.

2 Mathematical model and background

We model the dynamics of a thin liquid film on an inclined substrate, driven by the
combined effects of a thermally induced Marangoni force and gravity. By application of
a lubrication approximation (see [9,8] and references therein for more details) we arrive



at the evolution equation
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The film height u is a function of position along the incline z and of the transverse variable
y as well as of time, ¢. The parameters are a (angle of inclination of the substrate from
the horizontal), p (density), g (gravity), n (viscosity), 7 (temperature gradient) and 7
(surface tension). We rescale to dimensionless units: u = Hu, © = l%, t = Tt, where

1/3
H = 37/2pgsina, | = (377/2,0292 sin? a) / ,and T = (2n/72) (47ypgsina/9)"/%. This
leads to (dropping the hats for ease of notation) the nondimensionalised equation
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where D = (972/4vpg)""* cot o/ (sin a)!/3 and f(u) = u? — u3. For typical experiments,
D < 1, and we simplify the model by setting D = 0,
ou 0

S+ [f(w)] = -V - PV Au); (23)

a complete investigation for the one-dimensional problem of the role of the second order
diffusive term in (2.2) in terms of the size of D can be found in [12]. Equation (2.3) is
also coupled to the far-field conditions

U— uU_ as T — —00, U—> Uy as  x — +00 (2.4)

representing a precursor film of thickness u ahead of the front [8] and a trailing flat film
with thickness u_ [13]. Symmetry boundary conditions are applied in the y-direction. We
also take single-step initial data consistent with the boundary conditions (2.4), namely

U_ for T < T
Uy for x> I

for some fixed z;.

On large length and time scales, the fourth order diffusive term in (2.3) (representing
surface tension effects) is negligible and the consequent dynamics of the solution are
given by the reduced quasilinear scalar hyperbolic equation on the left hand side of (2.3),
namely

ou 0

o+ W) =0. (2.6)



The overall dynamics of the solutions are therefore controlled by the competing con-
vective fluxes due to gravity and the Marangoni stress. In the absence of the diffusion
term, equation (2.6) may be tackled by application of characteristic methods (see [14]).
Characteristics are, for this problem, straight lines in (x, ) space along which the solution
to (2.6) remains constant. A simple calculation shows that the slope of each of the
characteristics is dt/dz = 1/(2ug — 3u3) where uyg is given by (2.5) for each value of z at
t = 0. Locally, therefore, information is transferred with a characteristic speed given by

F(ug) = 2ug — 3ug (2.7)

where ug takes the constant value u_ for x < xy and similarly uy = uy for x > zy. If vy
and u_ are chosen so that F'(u_) > F(u4), the discontinuity in the initial data at z = z,
is preserved and moves to the right with a finite speed s; propagating discontinuities in
the solution to (2.6) are typically termed shocks. At the shock, the characteristic formula
given above is not valid and is replaced by the Rankine-Hugoniot jump condition which
gives s in terms of the change in height across the shock (see (2.10)). Shocks in the solution
of (2.6) represent rapidly changing height profiles in the experiments; smoothing of the
shocks occurs due to the fourth order diffusive term on the right-hand side of (2.3) which
becomes important when large gradients arise in the solution.

Unperturbed solutions of (2.3) are plane wave solutions independent of y. We consider a
travelling wave solution u = 4(z — st). Transforming to a moving reference frame, with
speed s and adjusted flux function

fla) =4a* - 4* - sa, (2.8)

leads to the condition that 4 satisfies

Equation (2.9) is immediately integrable, the constant of integration being specified by
the far-field conditions (2.4). For a single shock (as in case (1)) this gives the standard
Rankine-Hugoniot condition for the speed

flu) ~ flun) =l = (2 =)

(wp —u) (uy —u-)

(2.10)

Choosing s from (2.10) for the travelling wave speed therefore leads to a single shock
profile that appears to be fixed in space. Strictly speaking, however, we have to be
careful with our choice of s for case (2) as, in general, it will take different values
for the compressive and undercompressive shocks. This explains (as discussed in the
introduction) why the separation between the undercompressive and compressive shocks
changes with time.



2.1 Compressive and undercompressive shocks — a comparison

If the speed of the shock satisfies the entropy condition F'(u_) > s > F(u,) (alternatively,
in a moving reference frame, f'(u_) > 0 > f’(u4)), the shock is said to be compressive.
An example of a compressive shock solution for (2.3) is illustrated in Figure 1 (left) along
with the corresponding characteristic diagram given as Figure 1 (right). A compressive
shock has characteristics which enter on both sides suggesting a loss of information into
the shock from the surrounding medium. The initial data (2.5) was fixed by choosing
uy = 0.1, u_ = 0.3321 and zy = 500; we explain the choice of u_ below. The one-
dimensional version of equation (2.3) was then integrated forward in time (in a moving
reference frame of speed s given by (2.10)) until the shock profile formed. Also shown
in Figure 1 (left) is the motion of a Gaussian perturbation, exp(—(z — z,)?), imposed
on the solution (in the translating reference frame the shock appears fixed with the
perturbation moving). Figure 1 (left) contains two sets of numerical data, one for a
perturbation initially placed at z, = 450 and the other set of results for z, = 590; the
numerical methodology is discussed in Section 5.

Non-classical undercompressive shocks, which do not satisfy F(u_) > s > F(uy), can
also occur in the solution of (2.3). The undercompressive shocks, which we consider here,
satisfy the supersonic speed relationship s > F(u_) > F'(u,) (which corresponds to 0 >
f'(u=) > f'(uy)). Figure 2 (left) shows a solution to (2.3) featuring an undercompressive
shock. Here, uy = 0.1, u_ = 0.5679 and 2o = 500 in (2.5), and we again work in a moving
reference frame such that the shock appears fixed in space). It is noteworthy that only the
value of u_ has been changed from the compressive shock simulation shown in Figure 1
(left). For an undercompressive shock, information propagates into the shock on one side
and escapes on the other (as shown in Figure 2 (right)). This does not imply, however, that
information simply passes through unhindered. In fact, as later numerical simulations
of transient behaviour illustrate (see Figure 8 (left)), the transition of a perturbation
through an undercompressive shock is definitely not a simple transport process. As for
the compressive shock simulation shown in Figure 1 (left), a perturbation is applied to the
solution in Figure 2 (left). The perturbation is initially located at x, = 590 for the results
shown on the right of the undercompressive shock and at x, = 480 for the results shown
on the left. The characteristic diagram, Figure 2 (right), should be contrasted with the
analogous schematic (Figure 1 (right)) for a compressive shock. It is important to note
that in both the compressive and undercompressive shock simulations, the perturbation
is carried in the direction of the characteristics. This phenomena will play a fundamental
role in understanding the observed experimental results investigated throughout the rest
of this paper.

We also note that the values of u_ chosen for the compressive and undercompressive
shocks shown in Figure 1 (left) and Figure 2 (left) respectively, have not been chosen
arbitrarily. A single undercompressive shock, can only be found, for v, = 0.1, when
u_ = 0.5679, and the value of u_ = 0.3321 for the compressive shock was chosen so that
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Fig. 1. The movement of perturbations for a compressive shock. We work in a moving reference
frame in which the shock is stationary. (left) Numerical illustration of the movement of a
perturbation with wavenumber k£ = 0.25. Arrows indicate the direction of increasing time (the
perturbation on both sides of the shock is shown at times ¢t = 100, 300, 550). (right) Schematic
for the characteristics of a compressive shock.
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Fig. 2. The movement of perturbations for an undercompressive shock. The notation is as used
in Figure 1. We work in a moving reference frame in which the shock is stationary. (left)
Numerical illustration of the movement of a perturbation with wavenumber &£ = 0.25. Arrows
indicate the direction of increasing time (the perturbation on both sides of the shock is shown at
times ¢ = 50, 300, 600). (right) Schematic for the characteristics of an undercompressive shock.

it travels with the same speed as the undercompressive shock (see [15]).

3 Description of experiments

The experiments are carried out with silicone oil (PDMS, viscosity, 100 cSt; surface
tension, 0.0209 N.m at 25°C) on a Silicon wafer. As sketched in Fig. 3, the wafer is
clamped mechanically and thermally to a thin brass plate, across which we apply a
uniform and temporally constant temperature gradient. We monitor this gradient by
means of a series of thermistors embedded in the brass plate. We create the temperature
gradient by means a resistive heater at the hot end, and a circulating water bath at the
cold end. At the hot end, there is a bath of silicone oil. The meniscus emanating from this
bath is located just above the lower end of the region of uniform temperature gradient.
The film motion is then controlled by competing effects due to gravity and to the surface
tension gradient, which has a typical value of 0.11 Pa. The substrate angle « is one of the



He—Nelaser

gao ", top (cooler)
v20----0— --------------
silicon wafer 840 T
brass plate 5 .
Egﬁ@er %_1 bottom (heater)-

20 40 60 , 80
temperature ( C)

cooler ] .
oil reservoir

Fig. 3. Sketch of experimental apparatus. A thin film of silicon oil moves on an optically flat
Silicon wafer along which there is a temperature gradient. This gradient drives a thin film
against gravity through Marangoni forces. The temperature gradient is established along an
underlying brass surface that lies between a lower heated reservoir of oil, and an upper brass
block that is temperature-controlled by means of a water bath. We visualise the film profile
interferometrically, as indicated. An additional IR laser can be applied to the surface in order
to generate local heating.

key control parameters. As « increases, the effect of gravity is stronger, and the mean
film height decreases.

We visualise the film thickness interferometrically. The film/substrate is illuminated by
He-Ne laser light (A = 632.8nm) that passes through a beam-expander/collimator, and
reflects from a beam splitter. It then passes through the film, reflects from the polished
Silicon substrate, and arrives at a CCD camera via the beam splitter. Images are then
recorded digitally by a framegrabber. Each of these images shows a series of light and
dark fringes, such that the difference between fringes corresponds to 0.225um.

The last component of the apparatus that is relevant here involves a second 100mW
IR laser. By directing the beam from this laser on the substrate, we can locally thin
the film to effectively zero height. This provides a convenient way of generating local
perturbations, and it also allows us to obtain an absolute determination of the film
thickness (by counting the number of fringes between the bare spot and a point of
interest). We can also sweep the beam across the substrate to generate perturbations of
a well defined wavelength. Results using this technique will be reported elsewhere [16].
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Fig. 4. The initial data is a jump discontinuity from u_ to w4 = 0.1. (left) For u_ = 0.3 , a
compressive shock forms that is unstable to fingering. (right) For u_ = 0.4 , an shock pair with
a leading undercompressive and trailing compressive wave forms. The perturbation does not
affect the leading wave.

4 Two-dimensional perturbations of shock structures

Previous analytical and numerical studies have focussed on the one-dimensional form
of equation (2.3) (ignoring variations in y). However, the interaction of a moving front
with a transverse perturbation is clearly a multi-dimensional phenomena and so one-
dimensional studies alone do not explain the overall dynamics. Therefore, in this section,
we introduce fully nonlinear two-dimensional simulations and make direct comparisons
with experimental results. The simulations use an alternating direction implicit (ADI)
method as discussed, for example, in [17] and [18]. Such a comparison, in which the
numerics captures the full nonlinear dynamics in two dimensions, has not been considered
before. These comparisons indicate that the model (2.3), starting from the initial data
(2.5), is capable of accurately reproducing the complex structures seen in the experiments.
This is followed, in Section 5, with a detailed linear stability analysis of the evolving
double-shock structures.

We begin by considering the initial condition (2.5). This is consistent with the experi-
mental procedure, as the existence of a precursor meniscus naturally leads to a step-like
structure forming at the beginning of the experiments. We take u, = 0.1 and to contrast
cases (1) and (2) we consider two different values of u_, namely 0.3 and 0.4. Equation
(2.3) is then integrated forward in time until the two-dimensional (although independent
of y) shock structures form. In case (1) (corresponding to u_ = 0.3), a single compressive
shock forms, while for case (2) (with u_ = 0.4) a double shock structure, comprised of a
leading undercompressive shock and trailing compressive shock appears in the solution;
this is consistent with the one-dimensional analytical study of [9].

We then impose a transverse perturbation with wavenumber £ = 0.24 (cf. (5.11)) at
the contact line, and track the ensuing dynamics. In case (1), the perturbation results
in a classical fingering instability as shown in Figure 4 (left) which resembles the corre-
sponding experimental flow, as shown in Figure 5 (top). In case (2), the leading front is



stable to transverse perturbations as shown in Figure 4 (right) and Figure 5 (bottom).
We study this issue in detail in Section 5.

An important item of note in Figure 4 (right) is that although the perturbation ini-
tially interacts with the leading undercompressive shock, at later times the effect of the
perturbation is present at both the undercompressive and trailing compressive shock.
This suggests, for double-shock structures, that the perturbation is not localised to
the leading front. This phenomena can be understood in terms of characteristics as
introduced in Section 2. As indicated in Figure 2, a perturbation placed ahead of the
leading undercompressive shock is swept along characteristics towards the front. Once the
perturbation impinges onto the undercompressive shock, the characteristics emanating
from behind the shock allow transfer of some of the perturbation towards the trailing
compressive shock. The compressive shock, as illustrated in Figure 1 has characteristics
that enter on both sides and so the escaping perturbation becomes blocked by the shock
and cannot pass behind it. The overall effect is that the perturbation appears at both
shocks as well as connecting between them. As the interaction of the perturbation with
the undercompressive shock effects the behaviour of the perturbation at the trailing
compressive shock, the linear stability analysis of the double shock structure cannot be
performed by studying each shock independently . We discuss this issue further in Section
5 where we develop a ‘dynamic’ linear stability analysis of the double-shock structures.

Analysis [19] of the trailing shock in Figure 4 (right) shows it to be linearly unstable
for disturbances with wavenumbers less than k. =~ 0.17. It is noteworthy, that although
we impose a k = 0.24 wavenumber disturbance for which the trailing shock should be
stable, we initially gain a ‘backward-finger’ as seen in Figure 4 (right). However, for larger
times, the finger decays in length and eventually vanishes. The early fingering dynamics
are a consequence of nonlinearities being excited by the perturbation which is initially
amplified by the compressive shock (see Section 5).

A perturbation can, in fact, be imposed experimentally at any location on the film
surface by shining an infrared (IR) laser spot (wavelength 830 nm, 100 mWW) onto the
film. The laser spot heats the liquid film locally and induces a local Marangoni flow.
The film profile is visualised by an interferometric method, as discussed above, and each
interference fringe represents a different thickness (one fringe = 0.226 pm)[10]. Figure
6 shows an example of the resulting film flow due to the combination of local heating
and the uniform surface tension gradient (top - experimental results, bottom - numerical
results). In order to produce the numerical results seen in Figure 6 (bottom), we modify
equation (2.3) by the introduction of the additional terms

0 2 2 0 2 2
— _ —[(z—zc)?+(y—yc)?], 2 — _ —[(z—zc)?+(y—ve)?], 2
20{(% ((z Te)e u ) + 9 ((y Ye)e u )}

to represent the local surface tension gradient induced by the laser spot. We start with
initial data (2.5) (u— = 0.3, uy = 0.01, xy = 55). After letting the double-shock form,



Fig. 5. Experimental results showing the two kinds of nonlinear structures that evolve.
(top) A compressive wave that is unstable to fingering as in Figure 4 (left), (bottom) an
undercompressive-compressive shock pair that appears to be stable as in Figure 4 (right).
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Fig. 6. (top) Experimental observation of a perturbation travelling into a trailing compressive
shock. (bottom) Contour plots of two-dimensional numerical results which simulate the
experiment in Figure 6 (top). The times indicated on the numerical results corresponds to
the time after the double shock structure formed.

we ‘turn on’ the laser spot behind the bump (z. = 10, y. = 0) at ¢ = 600 by setting
o = 1.8; before this time o is taken to be zero. Even though the parameters are not
exactly numerically matched with the experimental parameters, the numerical results are
sufficient to illustrate that the qualitative behaviour is consistent with the experiments.
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5 Dynamic linear stability and characteristic phenomena

We now present a dynamic linear stability theory for the one-dimensional shock structures
by perturbing around a base state that evolves in time. The dynamic theory allows us
to study stability of developing shocks and multiple shock solutions. Analysis of similar
problems in thin film flow has been undertaken by [20] and [21], but to our knowledge,
this is the first study to investigate the stability of solutions featuring multiple shock
profiles that develop with time. We begin by reviewing the theory in [19] for the linear
stability of single travelling waves (either compressive or undercompressive). This theory
shows that, although compressive shocks lead to eigenfunctions with localised structure,
the eigenfunctions for undercompressive shocks have a non-local structure. This has
important consequences in understanding the dynamics of perturbations interacting with
undercompressive-compressive shock pairs, as observed in experiments and numerical
computations. In particular, we show that the non-localised eigenfunction for the under-
compressive shock allows transport of information away from the shock (this is consistent
with the characteristic diagram, Figure 2 (right)). Consider the solution ansatz

u(z,y,t) = u(z,t) + eh(z, t) cos(ky) (5.11)

where u = 4(x,t) is a dynamically evolving solution of

up + [f(u)]y = —0, (u?’aiu) : (5.12)

Substitution of (5.11) into (2.3) and neglecting terms of O(g?) and higher yields

he = —[hf'(0)]s — Ou (@03 + 3Ru*0P0) + k?[0,(a*,:h) + @3(02h)] — k*@h = Lih.(5.13)

We numerically solve (5.12) for @ and consequently find h(z,t; k) from (5.13). For the
numerical simulations included here we use an exponentially localised initial condition
for h(z,t; k) as described earlier (non-localised perturbations play a role later). We show
examples of solutions generated by this numerical procedure in Figure 1 (left) and Figure
2 (left) (also see the later figures). In regions of the solution where the base state is locally
constant, equation (5.13) reduces, in the limit of small &, to the simple convection-
diffusion equation

hi + f'(@)h, = —u*2h. (5.14)
Therefore, away from the shock, perturbations with small wavenumber travel with the
characteristic speed of the underlying @-profile, f'(u). For a compressive shock we have

flluz) > 0 > f'(uy) and this explains the movement of perturbations in Figure 1
(left), and also why the imposed perturbation catches the trailing compressive shock in

11



Figure 6. For undercompressive shocks, we have 0 > f'(u_) > f'(uy), so perturbations
are always transported in the negative z direction (see Figure 2 (left)). Perturbations
placed behind the undercompressive shock are thus swept away from the shock. In the
eigenfunction analysis that follows, this is tantamount to requiring an exponentially
growing eigenfunction as x — —oo (see equation (5.20)). This is an undercompressive
shock phenomena that does not occur for compressive shocks.

We pursue the eigenvalue problem by considering @(z, t) = 4(z) and looking for a solution
of (5.13) of the separable form h(z,t;k) = e#®)*)(z, k). This leads to the eigenvalue-
eigenfunction relationship

Ly = By (5.15)

where the operator £ takes the form L, = Lo + k*>L, + k*L,, with

Loy = ~[Wf' ()] — 0,(0°0 + 39a’030), L1y = 8,(a° ) + 8*(0;0),

(5.16)
Lot = —031).
In the small k£ limit, we can expand 3 and v as
B(k) = Bo + K>+ O(k),  ¥(x, k) = dho(a) + k> (z) + O(K?). (5.17)

For the choice By = 0 with ¢y = 4, as a solution to Loty = Bytyy, we obtain the
translational mode of (2.3) that arises due to the invariance of (2.3) to translations in x.
For small k, therefore, whether solutions grow or decay for large time is dependent on
the sign of 3;, which can be found from the solvability condition

o o o0

b1 / Ugpmodr = /Wow@%mdaj—{— / molf(4) — f(uy)]dx. (5.18)

— 00 —00

Here, my(z) is the left eigenfunction that satisfies the formal adjoint of Ly, and de-
pends on the structure of the shock, i.e. whether it is compressive or undercompressive.
This influences the growth rate of perturbation governed by ;. In Figure 7 we plot
log(||h||ec) = log(max,{h}) against ¢ for k = 0, £k = 0.25 and k£ = 0.8 for the compressive
and undercompressive shocks shown in Figure 1 and Figure 2 respectively. The rapid
change in ||h||« at early times corresponds to the amplification of the perturbation by the
shock front (see also [22]) and Figure 7 (left) also indicates the existence of the well known
long-wave instability for compressive shock fronts. It is noteworthy that a similar long-
wave instability does not occur for the undercompressive shock, as indicated in Figure 7
(right), and it is this absence which yields the stable front seen in the experiments.

12
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Fig. 7. (left) Transient growth for a perturbation interacting with a compressive shock. (right)
Transient growth for a perturbation interacting with an undercompressive shock.

The work of [19] showed (by application of spectral theory) that, for compressive shocks,
there exists a unique left eigenfunction given by the constant function mo = 1/(uy —u_)
and (5.18) yields 1 = [°0, a(x) dz/ [°2,[f(4) — f(us)] dz. This consequently validates
the previous compressive shock front stability analyses undertaken by [23] and [22].

We now turn our attention to double shock structures (featuring a leading undercom-
pressive shock and a trailing compressive shock). We will show that a perturbation
interacting with the undercompressive shock leads to non-local effects and consequently,
the linear stability analysis of a single travelling wave is insufficient for describing the
overall dynamics of a shock pair. We begin by explaining the mechanism for the transfer
of information away from the undercompressive shock and then use this as a basis
to investigate the subsequent interaction between the non-local perturbation and the
trailing compressive shock. We find that the eigenfunction for undercompressive shocks
grows exponentially in the far-field as £ — —oo and this exponential growth is, in fact,
exactly that required to yield a translating wave which carries information away from the
undercompressive shock; this is consistent with characteristics emanating from behind
the undercompressive shock as described in Section 2. To understand the non-localised
behaviour of the perturbation interacting with the undercompressive shock we employ a
formal argument based on the structure of the eigenfunctions for small k. We consider
(5.15) in the limit £ — —oo and look for solutions of the form ¢ (x) ~ e**. The resulting
quartic relationship for p

B=—f(u)p—ulp' + 2k p? — k' (5.19)

is valid for any k. For 8 = 0, £k = 0, one of the roots of (5.19) is 4 = 0 corresponding
to the translational mode. For small f3,k, equation (5.19) coupled with (5.17) yields
w o~ —B1/f'(u) where f'(u_) < 0. So assuming we have stability in time, i.e. f; < 0
(as suggested by Figure 7 (right)), then p < 0, implying ¢ ~ e#* — oo as x — —oo. In
addition

h(z, t; k) ~ ¥ Prte Pik?/f' (") — o= Bik*(a—f"(w))t/f' (u-) as T — —00 (5.20)

13
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Fig. 8. Transient behaviour for a perturbation interacting with an undercompressive shock .
The arrows indicate the direction of increasing time. (left) k& = 0.25. (right) k£ = 0.8.

which is a translating wave with characteristic speed f'(u_o). It is this non-local be-
haviour of the perturbation that leads to a transfer of information between undercom-
pressive/compressive shock pairs (see Figure 8 (left) and Figure 10). We also note, from
equation (5.19), that for large k, 3 ~ —k*u® < 0 as z — —oo. Therefore, the spatial
and temporal scales (corresponding to p and [ respectively) are no longer coupled and
any spatial phenomena as * — —oo is rapidly damped by the exponentially decaying
Pt term (see Figure 8 (right) for an illustration of this behaviour for k¥ = 0.8). The far-
field behaviour for undercompressive shocks should be contrasted to that for compressive
shocks which have ; > 0 for small k (see Figure 7 (left)). The characteristic speed for
compressive shocks is found to be negative for v = u_, and so p > 0 as ¢ — —o0;
a similar analysis as * — oo yields u < 0 [19]. Consequently, the eigenfunction v for
compressive shocks decays exponentially in the far-field.

The form of h(z,t;k) suggests rescaling the solution to (5.13) by e’* with the value of
B taken from the data shown graphically in Figure 7 (right). We show such a rescaling
for £ = 0.24 and 8 ~ —0.00098 in Figure 9, where the undercompressive shock fronts
have been shifted to coincide with one another. Solving for u from (5.19) yields only
one real, negative root, u, =~ —0.003377. Figure 9 includes the curve of Ae#** with A =
0.436. There is good correspondence between the rescaled solutions and the calculated
exponential growth rate as x — —oo. It is this far-field behaviour that we must use for
matching into the compressive component of a double shock structure.

We show the interaction of the non-local perturbation with the trailing compressive
shock in Figure 10; alternatively the compressive shock can be established indepen-
dently and the exponential behaviour described above used to fix the right hand far-
field boundary condition for the perturbation. The non-local perturbation interacts with
the trailing shock and an initial amplification of the perturbation occurs (see Figure 10
(right)). The large transient growth of the perturbation excites nonlinearities in the full
equation (2.3), and a backward-finger forms, as illustrated in Figure 4. The connection
between the undercompressive and compressive shocks then allows a continual flux of
mass into the compressive shock, until, at larger times, the size of the perturbation at
the undercompressive shock becomes small with the transition layer between the two
shocks becoming negligible. At this time, the linear stability dynamics correspond to a
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460

Fig. 9. Rescaled undercompressive shock solutions of (5.13) along with the curve Aexp(u.x)
(dashed line). The parameters are p, ~ —0.003377, A = 0.436, k¥ = 0.24 and S =~ —0.00098.
The solutions shown correspond to times ¢ = 500, 600, 700, 800, 900, 1000.
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Fig. 10. Transient behaviour of shock pairs. (left) Non-local effects of the perturbation interact-
ing with the undercompressive shock. (right) The perturbation connects the undercompressive
and compressive shocks.

localised perturbation interacting with the trailing compressive shock. For a wavenumber
of kK = 0.24, analysis [19] and numerical simulations show that the large time growth
rate of the perturbation is negative, so that the perturbation (and consequently the
backward-finger) decays away. Choosing a wavenumber disturbance where k < k. =~ 0.17
yields a perturbation that continues to grow for large time; similarly, the backward-finger
continues to lengthen.

6 Conclusions

In this work, we have considered the propagation of information through the dou-
ble shock structures that form under appropriate conditions for thin films that are
driven by Marangoni stresses acting against gravity. By application of a lubrication
approximation we derived an evolution equation (2.3) that models the experimentally
observed behaviour extremely well as indicated by the close similarity between the
experimental results and the two-dimensional numerical computations of (2.3); these
results are also supported by the previous one-dimensional results from [9]. We have
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considered mathematically the propagation of a perturbation, and have shown that the
effects of a localised perturbation in front of the leading undercompressive shock lead to
nonlocal effects at the trailing compressive shock.

The application of characteristic methods allows an investigation to be undertaken into
the transfer of information between the two shocks. This approach consequently provides
a clear interpretation of the interaction of perturbations with the shock pairs. The
coupling of this theory with a numerical stability study of the time dependent base
states then leads to a detailed understanding of the free surface phenomena.

The stability of the undercompressive shock as noted in previous papers (see [19] and
references therein) and which is due, in part, to the exponentially growing eigenfunction
as * — —oo, has an obvious applicability to many industrial coating processes where
the stability of the coating front is of utmost importance. Although we have employed
a combination of a Marangoni stress and gravity, we expect that similar results can be
obtained for other opposing body forces, such as the centripetal force arising in spin
coating processes. It is also a relatively simple matter to extend the stability study
undertaken in this paper to more complicated problems involving several timescales and
complex spatial structures including multiple shocks, rarefaction fans and various other
profile discontinuities. The work in this paper therefore provides a basis on which to
build detailed investigations of various complex free surface phenomena relevant to the
coatings industry.
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