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Abstract

We consider both second order and fourth order TV-based PDEs for im-
age processing in one space dimension. A general class of nonlinear regular-
ization of the TV functional result in well-posed uniformly parabolic equa-
tions in two dimensions. However for the fourth order analogue (Osher et.
al. Multiscale Methods and Simulation 1(3) 2003) based on a total variation
minimization in an H−1 norm, has very different properties. In particular,
nonlinear regularizations should have special structure in order to guarantee
that the regularized PDE does not produce finite time singularities.
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Nonlinear PDEs are now quite commonly used in image processing for issues
ranging from edge detection, denoising, image inpainting, to texture decomposi-
tion. Second order PDEs for image denoising and boundary or edge sharpening
date back to the seminal work of Rudin-Osher-Fatemi [14], and Perona-Malik
[13]. All of these methods have some common features, they are based on a non-
linear version of the heat equation

ut = ∇ · ((g(|∇u|)∇u) (1)

in which the ‘thresholding function’ g is small in regions of sharp gradients. A
number of mathematical issues arise with these equations and their use. For ex-
ample, Perona-Malik, suggest using a smooth g that decays fast enough for large
∇u so that significant diffusion only takes place in regions of small change in the
image, i.e. away from edge boundaries. A typical choice might be

g(s) = k/(k2 + s2). (2)

However, this and similar choices results in a PDE that is linearly ill-posed in re-
gions of high gradients and the ensuing dynamics results in a characteristic “stair-
case” instability.

A particular class of denoising algorithms are the TV (total variation) methods
introduced by Rudin, Osher and Fatemi [14]. The technique minimizes the total
variation norm of the image. The TV functional is defined as

TV (u) =
Z

Ω
|∇u|. (3)

The TV functional does not penalize discontinuities in u and thus allows one
to recover the edges of the original image. The restoration problem can be written
as

min
u

Z

Ω
(|∇u|+ λ

2
(u− f )2). (4)

To solve the minimization problem, one typically writes down the Euler-Lagrange
equation and performs a gradient descent. For the above problem, this means
solving the nonlinear PDE

ut = ∇ · ( ∇u
|∇u|)+λ( f −u). (5)

In the past few years, a number of authors have proposed analogous fourth or-
der PDEs for the same functions (i.e. edge detection, image denoising, etc.) with
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the hope that these methods might perform better than their second order ana-
logues. Indeed there are good reasons to consider fourth order. Firstly, fourth or-
der linear diffusion damps oscillations at high frequencies (i.e. noise) much faster
than second order diffusion. Secondly, there is the possibility of having schemes
that include effects of curvature, i.e. the second derivatives of the image, in the
dynamics, which opens up a richer set of functional behaviors. On the other hand,
the theory of fourth order nonlinear PDEs is much less well-developed than their
second order analogues. And such equations often do not possess a maximum
principle or comparison principle which could introduce artificial singularities or
undesirable behavior in their implementation.

This paper contrasts the well-known second order TV methods with the fourth
order PDE derived by Osher, Solé and Vese [12]

ut =− 1
2λ

∆[∇ · ( ∇u
|∇u|)]− (u− f ). (6)

for texture-noise decomposition using TV minimization in the H−1 norm.

1 Texture-Cartoon decomposition and fourth order
PDEs

An important problem in image processing is to separate textures from larger scale
features in images. Yves Meyer, in [11] suggested replacing the ROF model by

u = argmin

(

Z

(∇u)+λ‖ f −u‖∗
)

. (7)

Here the * norm corresponds to the space G, the dual of BV. This should enable
us to get a model which does not smear textures. Instead, at the scale λ, u is a
cartoon version of f and f −u = v consists of texture plus noise.

This is a beautiful idea, but apparently difficult to implement because the ∗
norm is fairly complicated. It consists of functions of the form

v = (g1)x +(g2)y = ∇ ·g (in two dimensions)

with

‖v‖∗ = inf
g

sup
(x,y)

√

g2
1 +g2

2.
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Thus, this variational problem does not have a simple Euler-Lagrange PDE which
could be used to find the minimum.

In [16] an approximation to Meyer’s model was obtained

(u,g1,g2) = argmin
R

|∇u|+µ
R

| f − (u+∂xg1 +∂yg2)|2

+λ
(

R

(
√

g2
1 +g2

2)
p

)
1
p

.

As µ, p→∞, this model approaches Meyer’s. This variational problem gives very
good texture/cartoon separation. It is a model of the form f = u + v + w, u is
cartoon, v = ∇ ·g is texture and w becomes small as µ increases.

An f = u+v approximation to Meyer’s model was obtained in [12] as follows:
One writes

f = u+ v = u+∇ ·g.

Then decompose g = ∇p+w where ∇ ·w = 0, i.e. one uses the Hodge decomposi-
tion. This means that g = ∇∆−1( f −u) (see [12] for more details). For simplicity,
i.e. in order to obtain a local Euler-Lagrange equation to minimize the model, the
following functional was chosen

u = argmin
Z

|∇u|+λ
Z

|∇∆−1( f −u)|2.

The resulting Euler-Lagrange equation is

−∇ · ∇u
|∇u| +2λ∆−1( f −u) = 0.

It was shown in [12] that the resulting minimizer is the solution of equation (6) as
t → ∞. This model appears to give the best denoising results of the three models,
while preserving edges. It also apparently separates texture from cartoon, but not
as well as the model in [16] does.

In this paper we discuss the problem of regularizing the singularity in the non-
linearity of (6) which is an important problem for the numerical implementation
of these methods. We show that special care must be taken in the choice of reg-
ularizing function. This same issue does not arise for second order equations due
to a maximum principle. In the case of fourth order nonlinear diffusion equations
it is the structure of the nonlinearity that determines whether a weak maximum
principle can be derived; hence effecting the choice of regularization.
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2 Well-posedness of second order TV regularizations

It is common practice in numerical implementation of the second order equation
(5) to consider a regularization of jump singularity when ∇u vanishes. For ex-
ample, Vogel and Oman [17], Marquina and Osher [10], and Chan et al [5, 6] all
consider the following regularization of the PDE:

ut = ∇ · ( ∇u

(ε2 + |∇u|2)1/2
)+λ( f −u) (8)

where ε is a smoothing parameter. This has the advantage of solving for a PDE
with classical smooth solutions. This particular choice of regularization also arises
in data analysis, it is the “Huber function” or “Huber norm” which interpolates
between smooth (least-squares) measures and robust L1 error measures [9].

In fact it does not matter so much how one chooses the regularization provided
that it is monotone and smooth. Below we review the derivation of these equations
from a variational formulation.

2.1 Variational form for the regularization

Consider the following variational problem:

u∗ = argmin F(u)≡
Z

|∇u|dx+
λ
2
||f−u||22. (9)

in which we are minimizing total variation, without deviating too wildly from the
measured data f . Differentiating the right hand side, we obtain the corresponding
Euler-Lagrange equation. In 1D we get

DF(u) =−
(

ux

|ux|

)

x
−λ( f −u) = 0, (10)

while in 2D and higher dimensions we have

DF(u) =−∇ ·
(

∇u
|∇u|

)

−λ( f −u) = 0, (11)

with the corresponding gradient descent PDE

ut =−DF(u) = ∇ ·
(

∇u
|∇u|

)

+λ( f −u). (12)
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Notice that we now have a highly non-regular equation: in one dimension
equation 10 is nothing more than DF(u) = −φ(ux)− λ( f − u) where φ() is the
Dirac delta “function”. To regain some regularity we modify the variational prob-
lem as follows:

u∗ = argminF(u)≡
Z

√

∇u ·∇u+δ2dx+
λ
2
|| f −u||22 (13)

where δ is a small parameter (and δ = 0 corresponds to the un regularized version
in equation 9). Differentiating, we arrive at

ut = ∇ ·
(

∇u√
∇u·∇u+δ2

)

+λ( f −u) (14)

= ∇ ·Hδ(∇u)+λ( f −u) (15)

where Hδ(v) = v√
v·v+δ2 . This is equation (8) in arbitrary dimension. The choice of

regularizing functional is somewhat arbitrary. As we discuss in the next section,
almost any ‘nice’ choice of regularization leads to a PDE that satisfies a maximum
principle and thus has globally smooth solutions. This trait is special for second
order PDEs. When we consider the fourth order analogues of these problems, we
will see that the choice of regularization indeed can and affect the dynamics of the
gradient descent.

Finally note that for the above to be useful, it should apply (since image gray
levels are often discontinuous) to discontinuous u for which ux and ∇u are now
radon measures. A detailed discussion of the space of functions of bounded vari-
ation, BV, can be found in Evans and Gariepy [7]. For the related Mumford-Shah
functional see Ambrosio, Fusco and Pallara [1]. We also mention the notes by
Chambolle [4] which are available online.

2.2 Maximum principle

Following the classical theory of nonlinear second order parabolic PDEs, we see
that equation (14) admits global smooth solutions provided that the gradient of
the solution, ∇u, can be shown to stay bounded for all time. This fact is a result
of the maximum principle for second order equations. The following lemma can
be proved for (14) in one space dimension with a variety of standard boundary
conditions used in imaging, including Neumann and periodic.

Lemma 1. (A priori bound for the slope) Consider a smooth solution of (14)
in one space dimension, then the gradient is a priori bounded in time by max
(| fx|, |u0x|).
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In practice of course the observed data f may be quite jumpy, possibly pos-
sessing a singular gradient. The point of this exercise is to show that jump dis-
continuities can not possibly form spontaneously due to the minimizing flow, that
they have to come from the matching to the observed data.

Proof. Let w = ux denote the slope. Then the equation for w is

wt = H ′′
δ (w)w2

x +H ′
δ(w)wxx +λ( fx−w). (16)

If Hδ is smooth and monotone in w then the equation satisfies a maximum
principle. Standard arguments then complete the proof.

3 The 1D H−1 equation with smoothing, some exam-
ples

Behavior of the fourth order PDE in one dimension is very relevant for two dimen-
sional images. This is because a lot of the structure involves edges and information
separated by edges, which are basically one-dimensional objects. Moreover, we
can obtain a lot of insight about the dynamics in 1D by combining ideas from
numerics, asymptotics, and rigorous analysis that may not be so tractable in 2D
(given things like energy estimates and the Sobolev lemma).

In one space dimension we have the PDE

ut =− 1
2λ

[
ux

|ux|
]xxx− (u− f ). (17)

As in the classical ROF model, we can solve this numerically by using a reg-
ularization of the signum function. Below we discuss some special cases and the
consequence of using different choices for the smoothing function.

3.1 Example: Arctan regularization

Consider replacing ux
|ux| in (17) with 2

π arctan(ux/δ) where δ is the smoothing pa-
rameter. Then the PDE becomes

ut =− 1
πλ

[arctan(ux/δ)]xxx− (u− f ). (18)

We now introduce a new variable w = arctan(ux/δ) and rewrite the PDE as

δ(tanw)t =− 1
πλ

wxxxx− (δ tanw− fx) . (19)
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which we can rewrite (to remove the cosw singularity) as

δ(w)t =− 1
πλ

cos2 wwxxxx − (δsinwcosw− cos2 w fx) . (20)

This is a variant of a PDE that arises in a modified lubrication equation (MLE) for
thin films [2],

ut =−unuxxxx (21)

and as the equation for the smoothness estimator in Low Curvature Image Simpli-
fiers [3]. Results for (21) in one dimension are that smooth positive data gives a
smooth positive solution for all time if n≥ 5/3. Numerical and asymptotic results
suggest that n = 3/2 is the critical exponent, above which finite time singularities
do not occur and below which they do occur. These results also imply similar re-
sults for fourth order degenerate diffusion equations with the same structure, i.e.
a degenerate nonlinearity in which un is replaced by f (u), here it is cos2 u. Thus
the degeneracy here corresponds to the case n = 2 in (21) for which we have a
theorem that singularities can not occur.

We have the following theorem, which can be proved following the arguments
in [3], which is essentially the same equation as (20) (note the only new terms are
the ones from the fidelity, which are mild):

Theorem. Equation (20) with smooth initial data and forcing function f has a
unique smooth solution for all time.

Remark: Transforming back to the original PDE we see that this implies well-
posedness with a priori bounds on ux, i.e. the slope. This is actually relevant for
solutions with rough data, i.e. the bound on the slope is a bound related to the
initial data and the forcing. The resulting dynamics insure that the solution of the
PDE can not become singular from the dynamics of the gradient descent, as in the
general case for the second order equations discussed in the previous section.

3.2 Example: square root smoothing

We show that a different smoothing can have a different result with respect to
well-posedness. Consider instead of the arctan above the substitution ux

(u2
x+δ2)1/2 ,

following the conventional approach in image processing. Following the same
argument as in the previous example, we have an equation for w = ux

(u2
x+δ2)1/2 :

δ(
wδ

(1−w2)1/2
)t =− 1

2λ
wxxxx− (

wδ
(1−w2)1/2

− fx) . (22)
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Note that this produces a degeneracy in the w equation at ±1 that has a 3/2
power, i.e. it is analogous to (21) with n = 3/2. For this problem we do not have
a theorem that guarantees well-posedness, however careful empirical studies of
forced singularities in equation (21) [2] show that they happen in infinite time, not
finite time, which suggests that this regularization could have practical use.

From these last two examples we see that the behavior of the regularized PDE,
with respect to the possibility of finite time singularities (in ux), is related to the
rate at which the regularizing function approaches a constant in the far field. I.e.
we substitute f (ux/δ) for ux/|ux| and the issue is how fast does f approach ±1
as ux → ∞. In the arctan case we have a quadratic nonlinearity in the w equation
(from taking a derivative of the inverse). In the square root case the decay is like
1/|ux|1/2 which gives us a 3/2 power degeneracy in the w equation.

3.3 Example: tanh smoothing

Consider instead of the arctan above the substitution tanh(ux/δ) = w. Following
the same argument as in the previous example, we have an equation

δ(tanh−1 w)t =− 1
2λ

wxxxx− (δ tanh−1 w− fx) . (23)

which gives

δ(w)t =− 1
2λ

(1−w2)wxxxx− (δ(1−w2) tanh−1 w− fx) . (24)

Note that here the degeneracy at w =±1 is linear, which suggests that this regular-
ization has finite time singularities, perhaps making it a bad choice for a numerical
method.

4 General smoothing functions and well-posedness
in 1D

In this section we consider a general class of smoothing functions for the fourth
order equation and show that for a subset of such functions we can guarantee well-
posedness of the resulting regularized PDE. We conjecture that there are smooth-
ing functions within the general class that do not produce globally smooth solu-
tions. This is in sharp contrast to the second order case for which the maximum
principle guarantees well-posedness of all smooth monotone regularizations.
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Consider the regularized equation

ut =−(H(ux))xxxx , (25)

which we interpret as a nonlinear regularization of (17). For simplicity here,
we set λ = 0 in order to simplify the analysis and to focus on the nonlinearity in
the gradient descent. The results here extend directly to the case with nonzero λ.

Define

γ :=
Z ∞

0

1
(1+ s2)α (26)

and

H(y) :=
1
γ

Z y

0

1
(1+ s2)α , (27)

we see that for α > 1
2 , H is a regularization of the Heaviside function. α = 3

2 is
the typical choice of regularization for TV. α = 1 gives an arctan regularization.
In this section we prove the following theorem

Theorem. Consider smooth initial data h0 and (25) on a periodic interval. Then
for all 1/2 < α ≤ 5/4, there exists a unique smooth solution of (25) for all time
t > 0. Moreover, the solution is bounded away from the singular values ±1 by a
fixed constant independent of t.

In this paper we prove the key part of the theorem, namely the a priori bound.
Local existence and continuation in time can be proved following the arguments
in [3] for a related image processing equation. We are unable to prove such a
bound for all α > 1/2 due to the nonlinear structure of the equation; values of
alpha described above correspond precisely to n > 5/3 in the analogous result for
the (MLE). Moreover we conjecture that for sufficiently large α the regularized
equation (25) admits solutions with finite time singularities even if the forcing
function f is smooth. Note that here we have set δ = 1 for simplicity of notation,
although the analysis holds with other values of δ.

We will be interested in the behavior of H−1(w) for w near ±1, which corre-
sponds to large y in H(y). Using A∼ B to mean that there exists constants C1 and
C2 such that A≤C1B and B≤C2A, we have

1−H(y)∼ 1
y2α−1 (28)

for positive ∞ > y >> 0 and

−1−H(y)∼− 1
y2α−1 (29)
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for −∞ < y << 0. It follows that

∣

∣H−1(w)
∣

∣∼ 1

|1−|w||
1

2α−1

for w near ±1.
For α = 1,

H(y) =
2
π

arctany,

H−1(w) = tan
(π

2
w
)

,

and

tan(πw/2)∼ 1
|1−|w||

for w near ±1.

4.1 The change of variables

Consider the equation ut =−(H(ux))xxx . Defining w = H(ux) and differentiating
once with respect to x, the equation becomes

(

H−1(w)
)

t =−wxxxx. (30)

Using the property of general invertible functions f ,

(

f−1(u)
)′

=
1

f ′ ( f−1 (u))
,

we rewrite (30) as
wt =−H ′ (H−1 (w)

)

wxxxx. (31)

For α = 1,

H ′ (H−1 (w)
)

=
1

1+ tan2 (πw/2)
= cos2 (πw/2),

so the corresponding equation is

wt =−cos2(πw/2) wxxxx.
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4.2 Relationship with the modified lubrication equation (MLE)

Since

H ′(H−1(w)) =
1

(

1+(H−1 (w))
2
)α ,

for w near 1, (28) gives us

H ′ (H−1 (w)
)

∼ (1−w)
2α

2α−1

and a similar result for w near −1. Thus near any singularity, (30) behaves like
(MLE) for

n =
2α

2α−1
. (32)

Since Bertozzi proved that solutions to (MLE) can be continued for all time
when n ≥ 5

3 , we expect a similar result for (30), when 1
2 < α ≤ 5

4 (Note that in
(32), n→ ∞ as α decreases to 1

2 ). We remind the reader that α = 1
2 does not give

a regularized step function H, since the integral in (26) is infinite in that case.

4.3 A priori bounds

In all that follows, we assume periodic boundary conditions on [0,1]. Taking the
L2-inner product of (30) with wxxxx gives

d
dt
‖ wxx ‖2

0=−
Z

H ′ (H−1 (w)
)

(wxxxx)
2 ≤ 0. (33)

Integrating over time then gives
Z T

0

Z

H ′ (H−1 (w)
)

(wxxxx)
2 ≤‖ (w0)xx ‖2

0 . (34)

Since w is assumed to be in [−1,1], we have w ∈ H2. The Sobolev Embedding
Theorem gives w ∈C1, 1

2 .

4.4 Entropy

We now find an integral that remains bounded for this equation, but would neces-
sarily blow up if w →±1. Consider

Ψ =
Z

wH−1(w)≥ 0.
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d
dt

Z

wH−1(w) =
Z

wtH
−1(w)+

Z

w
(

H−1(w)
)

t

= −
Z

H−1(w)H ′ (H−1 (w)
)

wxxxx−
Z

wwxxxx

≤ C
∣

∣H−1(w)H ′ (H−1 (w)
)
∣

∣

1
2
L∞

(

Z

H−1 (w)

)
1
2
(

Z

H ′(H−1(w))(wxxxx)
2
)

1
2

We note that
yH ′(y) =

y

(1+ y2)
α ,

so we have a bound
∣

∣

∣

∣

H−1(w)
(

H ′ (H−1 (w)
))

1
2

∣

∣

∣

∣

L∞
≤ 1 (35)

as long as α≥ 1
2 . Also since H−1 (w) is bounded for small w,

Z

H−1 (w)≤C

(

1+
Z

wH−1 (w)

)

,

and we therefore have

d
dt

Ψ(t)≤C1Ψ(t)+C2

(

1+

Z

H ′(H−1(w))(wxxxx)
2
)

(36)

Grönwall’s inequality gives

Ψ(T ) =

Z

wH−1 ≤
(

Ψ(0)+C2T +

Z T

0

Z

H ′(H−1(w))(wxxxx)
2
)

eC1T (37)

and the a priori estimate (34) implies that Ψ(T ) is bounded.

4.5 Uniform bound on w.

A priori estimates give w ∈C
3
2 , so given a maximum value δ(t) of w at x0(t) for a

particular time t, there is some constant K satisfying

w(x, t)≥ δ(t)−K |x− x0(t)|
3
2 . (38)

Assuming existence of w on [0,T ), pick t ∈ [0,T ). Then
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C ≥
Z

wH−1 (w)dx

≥ C1

Z

1

(1−w)
1

2α−1

dx

≥ C1

Z

1
(

1−δ+K |x− x0|
3
2

)
1

2α−1

dx

= C1 (1−δ)
−1

2α−1

Z

1
(

1+ K
1−δ |x− x0|

3
2

)
1

2α−1

dx

≥ C2 (1−δ)
2
3− 1

2α−1

Z
K
2 (1−δ)−

2
3

0

1
(

1+ y
3
2

)
1

2α−1

dy

So
(1−δ)

2
3− 1

2α−1 ≤C3,

which gives a bound M with δ ≤M < 1 as long as

2
3
− 1

2α−1
< 0,

or

α <
5
4
. (39)

Similar steps bound δ away from 1 for the case α = 5
4 . We can therefore follow

the arguments in [3] to prove existence of solutions to (31) globally in time for
1
2 < α ≤ 5

4 . Essentially the same arguments bound δ away from −1 for the same
range of α.

5 Conclusions

Total variation based algorithms have led to an interesting class of nonlinear PDEs
in image processing. The second order equations have been in use for over ten
years with much success. Their numerical implementation often requires a regu-
larization of the nonlinearity in the TV functional. Although there is a common
way to do this, the choice of regularization is not so important due to the maximum
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principle for second order parabolic equations. That is, essentially all reasonable
choices of regularizations lead to PDEs that are globally well-posed for smooth
initial data.

More recently there has been an interest in higher order equations in image
processing. Here we consider a method introduced in [12] motivated by the work
of Meyer [11]. The equation (6) is a fourth order analogue of the now classical
ROF method ([14]).In this paper we focus on the one dimensional version of (6),
showing that one can not in general regularize the TV functional in (6) and be
guaranteed of a well-posed problem. The issue is that the maximum principle
does not hold for fourth order equations. However, using ideas from the thin films
literature, in particular [2], we show that there is a subclass of nonlinear regular-
izations for which the PDE is well-posed. The point is that the structure of the
differential operator does not lead to a maximum principle as in the second order
case, however the structure of the nonlinearity does results in a weak maximum
principle (bounding the solution away from the singular values) for carefully cho-
sen nonlinearities.

While our results focus on the problem in one dimension, we believe that this
idea has relevance to higher dimensions. Recently, two of the authors [3] have
used this idea to prove global well-posedness of a related image processing prob-
lem known as Low Curvature Image Simplifiers, originally introduced by Tumblin
and Turk [15]. While well-posedness was proved in one space dimension, the idea
behind the design of the scheme works for two dimensions as well. Other related
fourth order imaging equations are believed to produce singularities [8] and we
believe this issue is critical in understanding how to design and implement higher
order methods in imaging.
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