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Abstract. We implement the Lax-Friedrichs sweeping (LFS) method to approxi-
mate the solution to the Hamilton-Jacobi (HJ) equation arising in an infinite horizon
optimal control problem. The fast sweeping method approximates the viscosity so-
lution of a boundary value problem for HJ equations. The static HJ equation is
discretized by using the Lax-Friedrichs numerical Hamiltonian and the solution is ap-
proximated iteratively by using a Gauss-Seidel like new updating process. Through
the Dynamic Programming Principle and a convexity assumption on the control vari-
able on Hamiltonian, we derive a pair of HJ equations for continous-time dynamics.
The LFS method is applied to solve the coupled PDEs by successive iteration of the
optimal cost and control. The LFS scheme also applies to optimal control problems
in hybrid systems in which it admits the viscosity solution for the HJ equation. We
demonstrate the efficiency of the method through some numerical examples in both
continuous and hybrid dynamics.

Keywords: Hamilton-Jacobi PDE, optimal control, hybrid system, Lax-Friedrichs
sweeping method

1. INTRODUCTION

The aim of this paper is twofold: (1) to solve coupled HJ equations and (2) to
approximate viscosity solutions of optimal control problems in hybrid dynamics. The
Lax-Friedrichs sweeping (LFS) method is an effective tool for both problems.

These HJ-type equations appear in many problems in control theory. A pair of
HJ-type equations arise in optimal control and H, control problems and systems of
HJ equations occur in mathematical finance.

Hybrid systems naturally arise in business and industry whenever there is an in-
teraction between computer-embedded controllers with mechanical, chemical, or elec-
trical processes. Hybrid systems occur in the interactions of both continuous and
discrete-event dynamics. Here we consider hysteresis in smart materials as the hybrid
system. Within their microstructures, smart materials, such as piezoelectric mate-
rials, electro-rheostatic and magneto-rheostatic materials, and shape memory alloys,
have inherent features allowing them to have built-in sensors, actuators, and control
mechanism. Because of these unique characteristics, smart materials have extensive
applications, e.g. in aerospace, automative industry, and manufacturing. However,
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one debilitating factor of smart materials is hysteresis. Several papers have studied
and classified hysteresis into phenomenological or physics-based models. The paper
of Tan and Baras [15] explores the control methodology for smart actuators showing
hysteresis based on the Jiles-Atherton model [8].

Since there is a such wide-range of applicability for solving pairs or systems of HJ
equations in continuous dynamics and for approximating viscosity solutions in hybrid
dynamics, it is imperative to study numerical techniques for these problems.

The paper is organized as follows. In next section, we describe the LFS method
as a numerical technique for solving boundary value problems for HJ PDEs. In
Section 3, the coupled equations are derived from the optimal control formulation for
continuous dynamics. We also discuss several numerical examples. In the last section,
we numerically solve for the optimal control of hysteresis. The derivation of the
HJ equations corresponding to hybrid dynamics which appears in the ferromagnetic
model is described.

2. LAX-FRIEDRICHS SWEEPING METHOD

The boundary value problem for the Hamilton-Jacobi equation that we solve here
is

(2.1) AV(z)+ H (w, g—‘;(:::)) =R(z), z€Q

V(z) =Vo(z), z €T

where ' C Q2 C R™, A > 0 represents a fixed discount factor, R(z) > 0 for all z
and V(z) is the unknown. The solutions to (2.1) are typically continuous but not
differentiable even if V(z) is smooth. The existence and uniqueness of the solution
to (2.1) rely on the notions of viscosity solutions; see the classical paper of Crandall
and Lions [6].

The fast sweeping method was motivated originally by Boué and Dupuis [3] and
used in [18, 16, 10] with Godunov numerical Hamiltonian. Here we use the Lax-
Friedrich sweeping method to solve HJ equations. The method is described in the
one-dimensional case for simplicity of exposition. For the treatment of problems in

higher dimensions, see [9]. The scheme is based on the Lax-Friedrichs monotone flux

+ —
~ _ pT+p o _
(2:2) B (pt,p7) = H(E5E) - 20t -p7)
where the artificial viscosity o, satisfies the monotonicity enforcing bound
0H
Oy > max‘— .
Op
Here we denote p = % and p* is the forward and backward difference approximations
v
of 5.
Assume Q = [a,b] where a = 29 < 21 < ... < 2y < 2Zny1 =band h = x4 —

zj. The function H in the boundary value problem is then discretized where % is

approximated according to (2.2); i.e.

AV (zj) + H (afj, V(le)Q_hV(xj_l)) - 07@ (V(ij) — 2V}(lxj) hs V(xj_l)) = R(z;).




Other monotone schemes can be used, based on, for example, the Godunov numer-
ical Hamiltonian [2]. However, LFS avoids a cumbersome optimization at each grid
point. This feature keeps the LFS algorithm fast, simple and easily applicable to very
complicated Hamiltonians.

Henceforth, we denote a function f(x) evaluated at the mesh point z; at the k

iteration simply by f}k).

The discretized equation (2.3) is solved for Vj(k) iteratively and is updated by the
current values of its nearest neighbors V;i; and V;_;. We require that the most
current iterate value of its neighbors must be used to calculate Vj(k); this updating
process is adapted from Gauss-Seidel type iterative schemes using a special sweeping
strategy. In the 1-dimensional case, we have forward and backward sweeps. If the
updating process is moving forward (left to right), then to find Vj(k) we utilize the

values V](f)l and Vj(f;l). The formula at the k + 1 iteration in a forward sweep is:

(k) (k+1) (k) (k+1)
Vi =V Vi + VY o
Vk+t R — H g+t Jj—1 J+1 Jj—1 z
i < ' (x 2h ) u 2h )/(A h)'

In one-dimension, two sweeps are counted as one iteration. The direction alternates
at each sweep. In general, 2" sweeps are required per iteration for n dimensional
problems.

To update the value of points on the computational boundary Q¢ C 2 requires
numerical assignments on grid points lying outside the domain. The values on grid
points outside Q¢ are selected in such a way that the inflow of spurious data along the
characteristics into the domain is prohibited. For detailed discussion and formulas,
see [9].

The HJ equation has been solved using the fast sweeping scheme for the value
function V(z). In this paper, solutions to a pair of HJ equations are approximated
simultaneously generating a sequence of iterates {(V(*) u(¥))}. Most coupled toy
problems reduce to solving a HJ equation for V' and an equation where u is expressed
in terms of %—‘; . We next describe the implementation of LFS in the following to
these coupled systems.

3. OPTIMAL CONTROL IN CONTINUOUS-TIME

3.1. Hamilton-Jacobi-Bellman Equations. Hamilton-Jacobi (HJ) type equations
arise in many control problems. In particular, the Hamilton-Jacobi-Bellman (HJB)
partial differential equation occurs in the reformulation of the infinite horizon optimal
control problem. The infinite horizon optimal control minimizes the cost

/ Wz, u)er™ 0 dr

t
subject to the dynamics

(3.3) i = f(z,u)
and initial condition
(3.4) z(t) = zo.

The state vector z € R™, the control u € R™, and A > 0 is a discount factor.



Define the value function as

Vixg) = min/ Uz(7), u(r))eM™ dr
v Je

where x; is the trajectory satisfying (3.3,3.4) at time ¢. Let ¢ = 0; then the optimality

principle states:

V(wo) = eV (z,) + min /Osum(T)m(T)e—Af dr.

Through the dynamic programming formulation, if the maximum exists and V (zo)
is a smooth function of the initial condition, it then satisfies the HJB PDE:

(3.5) AV (z) —|—max{—g—‘;(x)f(m,u) —l(w,u)} =0

u

and the optimal control u*(x) satisfies
(3.6) u*(z) = argmax {—g—‘;(x)f(x,u) — l(m,u)} =0

We assume that f(z,u) and I(z,u) are sufficiently smooth and V(z) € C'. Gen-
erally, the solution to nonlinear first order PDE is not in C!. Therefore, the solution
are interpreted in a weak or viscosity sense. Although the LFS method approximates
viscosity solutions, our examples in the continuous case have value functions that
have continuous derivatives. Our goal here is to show how LFS solves the coupling of
these HJ equations.

3.2. Numerical Examples. For the following examples, the discount factor A = 0
in (3.3). The optimal control problem can be conveniently expressed in terms of a
Hamiltonian:

ﬁ(p, m) = mgx{—pf(:c,u) - l(.Z’,U)}

where the argument p = % is an n dimensional row vector. Then, we have equations

(3.5,3.6)
0 = ﬁ(aa—Z(m),m)

w@) = agmax {5200 -l

X

If the Hamiltonian H(p,z,u) is strictly convex in v for all p and z then (3.5, 3.6)
become

(5.7 O @)t @) + U (@) = 0
and
59 L 0+ oL (07 (@) = 0

Observe that H = H — R where H and R are taken from the boundary value
problem. The first example is taken from the paper [12]. Let the cost functional to
be minimized over u

/ In*(x +1) +u? dt
0
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FIGURE 1. One-dimensional example: cost (above) and control (below).

subject to
z = (z+ 1)u, z(0) =0, for z > —1.

One can easily verify that the true control law is u*(z) = —In(xz + 1) and the corre-
sponding value function is V(x) = In?(z + 1). The HJB equations are

Y (z+1u* +In*(z+1)+u? =0
Y (z+1) +2u* =0.

The above equations are reduced to

dv\® _ Ain?(z +1)
(39) (%) ="oow
(3.10) ur = —%%(@« +1).

The equation (3.9) is solved for iterates V(¥) by the LFS scheme. Then u*®*) are
updated according to (3.10). The optimal control u* can be written as a function of
%—‘w/ when the dynamics (3.3) is affine in w.

The initial value V() is provided by the boundary condition V(0) = 0 and the
assignment of arbitrary large values on the rest of the domain. After only 2 iteration,
we see in Fig. 1 convergence is achieved in L; norm, i.e. ||V — V||, <107S.

We next consider another example in [12] where we minimize
o
/ (z3 + w$0/3 + :cf/3:c§/3(:cf/3 + x§/3) +u*?)dt
0

subject to the dynamics
r, = x?/3 + 2:1:1.7:;/3 —x — Zx}/su

. 7/3 2/3
Iy = —.’L‘2/ —.’L‘l/ T2



25

o\

154

10

FIGURE 2. Optimal cost (left) and optimal control (right).

The HJB equations are

oV 53 4/3 13 «, OV 7/3  2/3
(3.11) 8—m1$1/ + 2w1z2/ —x — 2w1/ u* + 5 w2/ — wl/ To
a2 + 2P 2B L 22 vt =0
10V 43
3.12 e —
( ) Y 26(171 xl

Similarly, the initial values V(® and u*(®) are from the point source V(0) = 0 and
u(0) = 0 In Fig. 2, after 115 iterations, the pair of approximations {(V/(115)), ¢*(115)}
are within 1079 of the Ly norm.
Another example describes the motion of the inverted pendulum in [7]:
T = 2

mar

e cos(z1)u

4 sin(zy) — $m,a3 sin(2z1) —

Ty =
2 3 —m, cos?(z1)
Here z; is the angle measured from the vertical up position, x5 is the angular
velocity, m, = (m + M) is the mass ratio of mass m of pendulum and mass M of the
cart, and g is the gravitational constant. The cost function is quadratic and depends

on the state variables z1, x5, and the input wu:
l(z1,29,u) = o3 + poxs + pyu’.

We choose m = 2kg, M = 8kg, | = 0.5m, g = 9.8m/s?, u; = 0.1, pu2 = 0.05, and
fy = 0.01. The contours of the optimal control and the associated optimal cost are
in Fig. 3.

4. HJB ARISING IN HYBRID SYSTEMS

Viscosity solutions have been considered for optimal switching problem in [5].
Capuzzo-Dolcetta and Evans have studied controlling an ordinary differential equa-
tion that switches among m vector fields so that associated cost, the running and
switching costs, is kept at a minimum. For optimal switching problem, the value
functions satisfy the quasi-variational inequalities. If the switching cost is zero, then
the value function satisfies the HJB equation in the viscosity sense. Yong [17] ex-
tended the results of Capuzzo-Dolcetta and Evans by adding continuous switching
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FiGURE 3. Inverted pendulum problem: cost (left) and control
(right), 543 iterations on 400 by 400 grid
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and impulse controls in the hybrid dynamics. In the paper of Tan and Baras [15], op-
timal control of hysteresis in smart actuators is specifically discussed. The dynamics
of the low dimensional ferromagnetic bulk exhibit hysteresis along with continuous
switching controls. Tan and Baras have shown that the corresponding HJB equation
admits a unique value function in the viscosity sense.

In this section, we discuss our implementation of the LFS scheme as a numerical
approach for approximating the optimal cost. But first, we give some preliminaries
for the optimal control with hybrid dynamics.

4.1. Optimal Control for Hybrid Systems. Consider the problem of optimal
control of an ordinary differential equation, whose dynamics with a control parameter
can be changed into any of the m different settings at the price of switching and
running costs.

Let us define the admissible control a as a pair of switching continuous control u;
and decisions d;;

o ={u;,di}Z,
where d; = {1,...,m}. For eachd = {1,...,m}, we define an associated set .A? where
A? = {a|a is an admissible control, where dy = d and u;(-) € U}
and
U = {u(:) : [0,00) = R™|u(-) is measurable}.

A? is called the set of all admissible controls starting with decision d.

For any dy € {1,2,---,m}, uo(-) € U, the path y,,(a) satisfies the initial value
problem
(4.13) z = f(z,u4,d;), fori={1,2,--- ,m}
(4.14) z(0) = =xo.

Define an associated cost

(4.15) i l

=1

0;
/ Iz, ui,di)e™ dt + k(d;i_q,d;)e %
0i—1

where I(z,u,d) is the running cost, k(d,d) is the switching cost from d to d and
u;(t),d;(t) are functions defined for ¢ € [0;-1,6;]. The question is: what is the best
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admissible control o* or a sequence of {u},df}$°, so that the dynamics is continually
adjusted that the cost incurred while traversing along the optimal path y,,(a*) is
always at the minimum.

Let an open set € R” and a curve £(t) € Q. We shall describe the switching
phenomena that are related to the ferromagnetic bulk model in [15]. One is a con-
sequence of a hysteresis. This is when the dynamics switches among a finite number
of vector fields in response to when the state variable z = £(t) for some ¢. Another
swapping event is when a decision d; dictates a dynamics with a specific continuous
control u;.

Assume k(d,d) = 0 for d,de {1,2,---,m} as this is consistent with the modelling
of the control of hysteresis. It follows that the minimun cost has no dependence on d,
since the best setting can be choosen at no cost. In addition, we assume the running
cost is independent of d; as well. Then the associated cost in (4.15) reduces to

00 ,f;
(4.16) Z/ I(z,u;)e M dt.
i=1 701

and the admissible control @ = {u}$2,. Thus we have an infinite horizon problem of
minimizing a cost functional (4.16) subject to the dynamics (4.13). Moreover, formal
calculations of the dynamic programming lead to the HJB equation

(4.17) AV(z) + max {_6_V (z,u;,d;) — l(w,ui)} =0

1=1,--,m a.’E

as in Section 3.

4.2. Example 4. The bulk ferromagnetic hysteresis model in [15] is the following:

5= fr(@)u, welUy, ifd=1
) fe@)u, weU-, ifd=2

where

s ifxeﬂz ; if.Z'EQl

1 1

fi(z) and f_(z) = fi(z)
1 . 1
( ifze Ql (

fs(z) )’ f2(z)

The domains are Q; = {z = (H,M) € R*|M < My,} and Q, = {z = (H,M) €
R?|M > M,,} and the control sets are Uy = {ulu. > u > 0} and U_ = {u| — u, <
u < 0}. See Table 1. for fi, f2, f3 and other parameters. The minimization of the
cost functional

f+(@) =
s if.ﬁEEQz

/ (100(H — Hy)? + .0M? + .01u?)e M dt
0
is subject to the hysteresis model above. Then equation (4.17) becomes

AV (z) +max{1£r€1%>i {—g—‘;ﬂr(w,u) - l(x,u)} , max {—g—‘;f(x,u) - l(w,u)}} =0.
(4.18)



Parameters A=158x10%, ¢=.3, M, = 9.89 x 10,

a=190, k=48, o =1, a=1.9 x 1074,
T, = 189.8, Ty = 8.40 x 10%, u, = 1.22 x 10°
Equations | H, = H + aM, M,, = M,L(z), L(z) = coth(z) — L » = =

: _ cM,L' _ ckM,L —poa Man—M)
Functions fl(H;M) = a—acM,L"’ fQ(H;M) = k(a(facMsL')H-EH(()Oéa(Man*M)’
— kM, L'+ Man—M
fB(H’ M) — k(afacMsL’)‘uiZoaa(ManfM)
Cost I(H, M, u) = 100(H — Ho)® + .1M? + .01u?, H, = 213.3

TABLE 1. Parameters and functions for hysteresis model.

grid size 64 128 256 512 1024 | 2048
[EZIE 5.1786 | 2.6206 | 1.3187 | 0.6614 | 0.3313 | 0.1658

o 2.0397 | 2.0202 | 2.0100 | 2.0048
h %Ih

TABLE 2. Smart actuators

This is then solved by LFS for the value function V(H, M). The control law is then
found by solving

u*(z) = argmax{max {—g—‘;ﬁr(x,u) - l(:c,u)} , Max {—Z—Zf_(:c,u) — l(a:,u)}} .

uelUy ueU_

Given the approximation V" the control u¥) is constructed such that

ij ©]

k *(k
AV, i) =0

where the operator A is the discrete version of the HJB operator in (4.18). Thus, the
approximation of the optimal control is reduced to finding u*(¥) such that A(u*®*)) =
0. In Fig. 4, we see a smooth value function and an optimal control that has discon-
tinuous derivatives. As in the Table. 2, the numerical approximations of V' (z) shows
that the LHS method is order 1. Let the residual vector r be defined as

(k)
r®) = Ay ) 4 {—%f(m,u*(k)) - l(x,u*(k))} .

The L; norm of r associated with the pair of approximate solutions to (V, u*) decreases
to 0 as the grid is refined, as is shown in Table 2.
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