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Abstract Algebraic Riccati equations of large dimension arise when using approximations to design controllers for
systems modelled by partial differential equations. For large model order direct solution methods based
on eigenvector calculation fail. In this paper we describe an iterative method that takes advantage of
several special features of these problems: (1) sparsity of the matrices (2) much fewer controls than
approximation order and (3) convergence of the control with increasing model order. The algorithm is
straightforward to code. Performance is illustrated with a number of standard examples.

Introduction

We consider the problem of calculating feedback controls for systems modelled by partial differ-
ential or delay differential equations. In these systems the state x(t) lies in an infinite-dimensional
space. A classical controller design objective is to find a control u(t) so that the objective function

∫ ∞

0
〈Cx(t), Cx(t)〉+ u∗(t)Ru(t)dt (1)

is minimized where R is a positive definite matrix and the observation C ∈ L(X,Rp). The the-
oretical solution to this problem for many infinite-dimensional systems parallels the theory for
finite-dimensional systems [9, 16, 17, e.g.]. In practice, the control is calculated through approxi-
mation. This leads to solving an algebraic Riccati equation

A∗P + PA− PBR−1B∗P = −C∗C. (2)

for a feedback operator

K = −R−1B′P. (3)

The matrices A, B, C arise in a finite dimensional approximation of the infinite dimensional system.
Let n indicate the order of the approximation, m the number of control inputs and p the number
of observations. Thus, A is n×n, B is n×m and C is p×n. There have been many papers written
describing conditions under which approximations lead to approximating controls that converge to
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the control for the original infinite-dimensional system [3, 10, 13, 16, 17, e.g.]. In this paper we
will assume that an approximation has been chosen so that a solution to the Riccati equation (2)
exists for sufficiently large n and also that the approximating feedback operators converge.

For problems where the model order is small, n < 50, a direct method based on calculating the
eigenvectors of the associated Hamiltonian works well [18]. Due the limitations of the calculation
of eigenvectors for large non-symmetric matrices, this method is not suitable for problems where n
becomes large.

Unfortunately, many infinite-dimensional control problems lead to Riccati equations of large
order. This is particularly evident in control of systems modelled by partial differential equations
with more than one space dimension. For such problems, iterative methods are more appropriate.
There are two methods that may be used: Chrandrasekhar and Newton-Kleinman iterations.

In Chrandrasekhar iterations, the Riccati equation is not itself solved directly [2, 6]. A system
of 2 differential equations

K̇(t) = −B∗L∗(t)L(t), K(0) = 0,

L̇(t) = L(t)(A−BK(t)), L(0) = C,

is solved for K ∈ Rm×n, L ∈ Rp×n. The feedback operator is obtained as limt→−∞K(t). The
advantage to this approach is that the number of controls m and number of observations p is
typically much less than the approximation model order n. This leads to significant savings in
storage. Furthermore, the matrices arising in approximation are typically sparse and this can be
used in implementation of this algorithm. Unfortunately, the convergence of K(t) can be very slow
and a very accurate algorithm suitable for stiff systems must be used. This can lead to very large
computation times.

Another approach to solving large Riccati equations is the Newton-Kleinman method [15]. The
Riccati equation (2) can be rewritten as

(A−BK)∗P + P (A−BK) = −C∗C −K∗RK. (4)

We say a matrix Ao is Hurwitz if σ(Ao) ⊂ C− If A − BK is Hurwitz, then the above equation
is a Lyapunov equation. An initial feedback K0 must be chosen so A − BK0 is Hurwitz. Define
Si = A−BKi, and solve the Lyapunov equation

S∗iXi +XiSi = −C
∗C −K∗

i RKi (5)

for Xi and then update the feedback as Ki+1 = −R−1B∗Xi. If A − BK0 is Hurwitz, then Xi

converges quadratically to P [15]. For an arbitrary large Riccati equation, this condition may be
difficult to satisfy. However, this condition is not restrictive for Riccati equations arising in control
of infinite-dimensional systems. First, many of these systems are stable even when uncontrolled
and so the initial iterate K0 may be chosen as zero. Second, if the approximation procedure is
valid then convergence of the feedback gains is obtained with increasing model order. Thus, a gain
obtained from a lower order approximation, perhaps using a direct solution, may be used as an
initial estimate, or ansatz, for a higher order approximation. This technique was used successfully
in [12, 24]and later in this paper.

In this paper we use a modified Newton-Kleinman iteration first proposed by Banks and Ito [2]as
a refinement for a partial solution to the Chandraskehar equation. In that paper, they partially
solve the Chandrasekhar equations and then use the resulting feedback K as a stabilizing initial
guess for a modified Newton-Kleinman method. Instead of the standard Newton-Kleinman form
(5) above, Banks and Ito rewrote the Riccati equation in the form

(A−BKi)
∗Xi +Xi(A−BKi) = −D

∗
iDi (6)

where Xi = Pi−1−Pi, Ki+1 = Ki−B
TXi, and Di = Ki−Ki−1. The resulting Lyapunov equation

is solved for Xi. Equation (6) has fewer inhomogeneous terms than the equation in the standard
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Newton-Kleinman method (5). Also, the non-homogeneous term D depends on m inputs, not
the observation C. In [2]a Smith’s method was used to solve the Lyapunov equations. Although
convergent, this method is slow.

Solution of the Lyapunov equation is a key step in implementing either modified or standard
Newton-Kleinman. The Lyapunov equations arising in the Newton-Kleinman method have several
special features: (1) the model order n is generally much larger than m or p and (2) the matrices
are often sparse. We use a recently developed method [19, 23]that uses these features, leading to an
efficient algorithm. In the next section we describe the implementation of this Lyapunov solver. We
then use this Lyapunov solver with both standard and modified Newton-Kleinman to solve a number
of standard control examples, including one with several space variables. Our results indicate
that modified Newton-Kleinman achieves considerable savings in computation time over standard
Newton-Kleinman. We also found that using the solution from a lower-order approximation as an
ansatz for a higher-order approximation significantly reduced the computation time.

1. Solution of Lyapunov Equation

Solution of a Lyapunov equation is a key step in each iteration of the Newton-Kleinman method.
Thus, it is imperative to use a good Lyapunov algorithm. As for the Riccati equation, direct meth-
ods such as Bartels-Stewart [4]are only appropriate for low model order and do not take advantage
of sparsity in the matrices. The Alternating Direction Implicit (ADI) and Smith methods are two
well-known iterative schemes. These will be briefly described before describing a modification that
leads to reduced memory requirements and faster computation.

Consider the Lyapunov equation

XAo +A∗oX = −DD∗ (7)

where Ao ∈ Rn×n and D ∈ Rn×r. In the case of standard Newton-Kleinman, r = m + p while
for modified Newton-Kleinman, r is only m. If Ao is Hurwitz, then the Lyapunov equation has
a symmetric positive semidefinite solution X. For p < 0, define U = (Ao − pI)(Ao + pI)−1 and
V = −2p(A∗o + pI)−1DD∗(Ao + pI)−1. In Smith’s method [26], equation (7) is rewritten. The
solution X is found by using successive substitutions: X = limi→∞Xi where

Xi = U∗Xi−1U + V (8)

with X0 = 0. Convergence of the iterations can be improved by careful choice of the parameter p
e.g. [25, pg. 197].

This method of successive substitition is unconditionally convergent, but has only linear conver-
gence. The ADI method [20, 28]improves Smith’s method by using a different parameter pi at each
step. Two alternating linear systems,

(A∗o + piI)Xi− 1

2

= −DD∗ −Xi−1(Ao − piI) (9)

(A∗o + piI)X
∗
i = −DD∗ −X∗

i− 1

2

(Ao − piI) (10)

are solved recursively starting with X0 = 0 ∈ Rn×n and parameters pi < 0. If all parameters
pi = p then equations (9,10) reduce to Smith’s method. If the ADI parameters pi are chosen
appropriately, then convergence is obtained in J iterations where J ¿ n. Choice of the ADI
parameters is discussed below.

If Ao is sparse, then the linear systems (9,10) can be solved efficiently. However, full calculation
of the dense iterates Xi is required at each step. Setting X0 = 0, it can be easily shown that
Xi is symmetric and positive semidefinite for all i, and so we can write X = ZZ∗ where Z is a
Cholesky factor of X [19, 23]. (A Cholesky factor does not need to be square or be lower triangular.)
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Table 1. Cholesky-ADI Method

Given Ao and D
Choose ADI parameters {p1, . . . , pJ} with <(pi) < 0
Define z1 =

√−2p1(A
∗
o + p1I)

−1D
and Z1 = [z1]
For i = 2, . . . , J

Define Wi = (

√
−2pi+1√
−2pi

)[I − (pi+1 − pi)(A
∗
o + pi+1I)

−1]

(1) zi = Wizi−1

(2) If ‖z‖ > tol
Zi = [Zi−1 zi]
Else, stop.

Substituting ZiZ
∗
i for Xi in (9,10) and setting X0 = 0, we obtain the following iterates for

Z1 =
√

−2p1(A
∗
o + p1I)

−1D

Zi = [
√

−2pi(A
∗
o + piI)

−1D, (A∗o + piI)
−1(A∗o − piI)Zi−1] (11)

Note that Z1 ∈ Rn×r, Z2 ∈ Rn×2r, and Zi ∈ Rn×ir. Recall that for standard Newton-Kleinman,
r is the sum of observations p and controls m. For modified Newton-Kleinman r is equal to m.
In practice, the number of controls m (and often the number of observations p) is much less than
the model order, n. This form of solution results in considerable savings in computation time and
memory. The algorithm is stopped when the Cholesky iterations converge within some tolerance.

In [19]these iterates are reformulated in a more efficient form, using the observation that the
order in which the ADI parameters are used is irrelevant. This leads to the algorithm shown in
Table 1.

1.1 ADI Parameter Selection

As mentioned above, choice of the ADI parameters significantly affects the convergence of the
ADI method. The parameter selection problem has been studied extensively [8, 20, 27, e.g.].
Optimal ADI parameters are the solution to the min-max problem

{p1, p2, . . . , pJ} = argmin
pi

max
λj∈σ(Ao)

|
J
∏

j

pj − λ

pj + λ
|.

It is not feasible to solve this problem. First, solution of the Lyapunov equation arises as a step in
the iterative solution of the Riccati equation and Ao = A−BKi where Ki is the feedback calculated
at the ith iterate. Thus, the matrix Ao and its spectrum changes at each iterate. Second, when Ao

is large, solving this eigenvalue problem is computationally difficult.
The optimal ADI parameters are approximated in several respects. First, the spectrum of the

original matrix A−BK0 is used and the resulting parameters used for each subsequent Lyapunov
solution. In most applications, A is Hurwitz and so we can use the spectrum of the original
matrix A. If these eigenvalues are real and contained in the interval [−b,−a] then the solution to
(11) is known in closed form [20]. For more general problems, the selection procedure in [8]yields
parameters that are approximately optimal. Let λi indicate the eigenvalues of A−BK0. Define

a = min
i
(<λi), (12)

b = max
i

(<λi), (13)

α = tan−1 max
i
|
=λi
<λi
|. (14)
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These parameters determine an elliptic domain Ω that contains the spectrum and is used to deter-
mine the ADI parameters pi. The closeness of Ω to the smallest domain containing the spectrum
affects the number of iterations required for convergence of the Cholesky-ADI. The parameter α is
the maximum angle between the eigenvalues and the real axis. When the spectrum contains lightly
damped complex eigenvalues, α is close to π/2. In this case, Ω is a poor estimate of this domain.
This point is investigated in the third example below.

2. Benchmark Examples

In this section we test the algorithm with a number of standard examples: a one-dimensional
heat equation, a two-dimensional partial differential equation and a beam equation. All computa-
tions were done within MATLAB on a a computer with two 1.2 GHz AMD processors. (Shorter
computation time would be obtained by running optimized code outside of a package such as MAT-
LAB. The CPU times are given only for comparision purposes.) The relative error for the Cholesky
iterates was set to 10−8.

2.1 Heat Equation

Consider the linear quadratic regulator problem of minimizing a cost functional [2, 7]

J(u) =

∫ ∞

0
(|Cz(t)|2 + |u(t)|2)dt

subject to

∂z(t, x)

∂t
=

∂2z(t, x)

∂x2
, x ∈ (0, 1),

z(0, x) = ψ(x) (15)

with boundary conditions

∂z(t, 0)

∂x
= u(t)

∂z(t, 1)

∂x
= 0. (16)

Setting

Cz(t) =

∫ 1

0
z(t, x)dx, (17)

and R = 1, the solution to the infinite-dimensional Riccati equation is

Kz =

∫ 1

0
k(x)z(x)dx

where k = 1 [3]. Thus, for this problem we have an exact solution to which we can compare the
approximations.

The equations (14-17) are discretized using the standard Galerkin approximation with linear
spline finite element basis on an uniform partition of [0, 1]. The resulting A matrix is symmetric
and tridiagonal while B is a column vector with only one non-zero entry. Denote each basis element
by li, i = 1..n. For an approximation with n elements, the approximating optimal feedback operator
K is

Kz =

∫ 1

0
kn(x)z(x)dx, (18)
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Newton-Kleinmann Iteration Optimal Feedback Gain

1 50.005

2 25.0125

3 12.5262

4 6.303

5 3.2308

6 1.7702

7 1.1675

8 1.012

9 1.0001

10 1

11 1

Table 2. Heat Equation: Feedback Gain at each Newton-Kleinman Iteration

Table 3. Heat Equation: Standard Newton-Kleinman Iterations

n Newton-Kleinman Itn’s Lyapunov Itn’s CPU time

25 11 19,22,23,26,27,29 0.83
30,31,31,31,31

50 11 24,26,28,30,32,34 1.2
35,35,35,35,35

100 11 28,31,32,35,36,38 3.49
39,40,40,40,40

200 11 33,35,37,39,41,43 23.1
44,44,44,44,44

where kn(x) =
∑n

i=1 kili(x). The solutions to the approximating Riccati equations converge [3,
13]and so do the feedback operators.

Table 2 shows the approximated optimal feedback gain at each Newton-Kleinman iteration. The
data in Table 2 is identical for n = 25, 50, 100, 200 and for both Newton-Kleinman methods.
The error in K versus Newton-Kleinman iteration in shown in Figure 1 for standard Newton-
Kleinman and in Figure 2 for the modified algorithm. In Tables 3 and 4 we compare the number
of Newton-Kleinman and Lyapunov iterations as well as the CPU time per order n. We use the
ansatz k0(x) = 100 for all n. With the modified algorithm, there are 1− 2 fewer Riccati loops than
with the the original Newton-Kleinman iteration. Also, the modified Newton-Kleinman method
requires fewer Lyapunov iterations within the last few Newton-Kleinman loops. The computation
time with the modified Newton-Kleinman algorithm is significantly less than that of the original
algorithm.

2.2 Two-Dimensional Example

Define the rectangle Ω = [0, 1]× [0, 1] with boundary ∂Ω. Consider the two-dimensional partial
differential equation [7]

∂z
∂t

= ∂2z
∂x2 + ∂2z

∂y2 + 20∂z
∂y

+ 100z = f(x, y)u(t), (x, y) ∈ Ω

z(x, y, t) = 0, (x, y) ∈ ∂Ω
(19)

where z is a function of x, y and t. Let

f(x, y) =

{

100, if .1 < x < .3 and .4 < y < .6
0, else

.
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Table 4. Heat Equation: Modified Newton-Kleinman Iterations

n Newton-Kleinman Itn’s Lyapunov Itn’s CPU time

25 10 19,22,23,26,27,29 0.66
30,31,29,1

50 10 24,26,28,30,32,34 0.94
35,35,33,1

100 9 28,31,32,35,36,38 2.32
39,40,1

200 9 33,35,37,39,41,43 14.2
44,44,1

Table 5. Iterations for 2-d Equation (Newton-Kleinman)

grid K0 n Newton-Kleinman Itn’s Lyapunov Itn’s CPU time

12× 12 0 144 14 12,44,41,39,36,34,32 4.98
30,28,27,27,27,27,27

23× 12 0 276 15 16,47,45,42,40,38,35,33 22.2
31,30,30,30,30,30,30

23× 12 K12x12
proj 276 6 29,30,30,30,30,30 10.8

23× 23 0 529 16 20,51,48,46,44,41,39,37 139.
35,34,33,33,32,32,32,32

23× 23 K23x12
proj 529 5 33,32,32,32,32 65.7

Central difference approximations are used to discretize (19) on a grid of N × M points. The
resulting approximation has dimension n = N ×M : A ∈ Rn×n and B ∈ Rn×1. The A matrix is
sparse with at most 5 non-zero entries in any row. The B matrix is a sparse column vector. We
chose C = B∗ and R = 1.

We solved the Riccati equation on a number of grids, using both standard and modified Newton-
Kleinman methods. The data is shown in Tables 5 and 6. Modified Newton-Kleinman is clearly
much more efficient. Fewer Lyapunov iterations are required for convergence and this leads to a
reduction in computation time of nearly 50%.

We also investigated the use of non-zero initial estimates for K in reducing computation time.
We first solve the Riccati equation on a 12 × 12 grid. Since σ(A) ⊂ C−, K144

0 = 0 is a possible
ansatz. It required 13 Newton-Kleinman iterations and a total of 419 Lyapunov iterations to obtain
a relative error in K of 10−11. Linear interpolation was used to project this solution to a function
on a finer grid, 23 × 12, where n = 276. Indicate this projection by K12×12

proj . On the finer grid

23× 12 where n = 276, we used both zero and K12×12
proj as initial estimates. As indicated in Table 6,

the error of K was 10−12 after only 150 Lyapunov and 54 Newton-Kleinman iterations. The same
procedure is applied to generate a guess K529

0 where the mesh is 23× 23 and n = 529. Neglecting
the computation time to perform the projection, use of a previous solution lead a total computation
time over both grids of only 6.3 seconds versus 11.9 seconds for n = 276 and a total computation
time of only 27.8 versus 79.5 for n = 529. Similar improvements in computation time were obtained
with standard Newton-Kleinman.

3. Euler-Bernoulli Beam

Consider a Euler-Bernoulli beam clamped at one end (r = 0) and free to vibrate at the other
end (r = 1). Let w(r, t) denote the deflection of the beam from its rigid body motion at time t and
position r. The deflection is controlled by applying a a torque u(t) at the clamped end (r = 0).
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Table 6. Iterations for 2-d Equation (Modified Newton-Kleinman)

grid K0 n Newton-Kleinman Itn’s Lyapunov Itn’s CPU time

12× 12 0 144 13 12,44,41,39,36,34,32 2.94
30,28,27,27,27,1

23× 12 0 276 13 16,47,45,42,40,38,35 11.9
33,31,30,30,30,29

23× 12 K12x12
proj 276 4 29,30,30,29 3.36

23× 23 0 529 14 20,50,48,46,44,41,39 79.5
37,35,34,33,33,33,31

23× 23 K23x12
proj 529 4 33,32,32,1 21.5

We assume that the hub inertia Ih is much larger than the beam inertia Ib so that Ihθ̈ ≈ u(t). The
partial differential equation model with Kelvin-Voigt and viscous damping is

wtt(r, t) + Cvwt(r, t) +
∂2

∂r2

[

CdIbwrrt(x, t) +
EIr
ρA

wrr(r, t)

]

=
ρr

Ih
u(t), (20)

with boundary conditions

w(0, t) = 0

wr(1, t) = 0.

EIwrr(1, t) + CdIbwrrt(1, t) = 0

∂

∂r
[EI(1)wrr(r, t) + CdIbwrrt(r, t)]r=1 = 0.

The values of the physical parameters in Table 1.3 are as in [1].
Define H be the closed linear subspace of the Sobolev space H2(0, 1)

H =

{

w ∈ H2(0, 1) : w(0) =
dw

dr
(0) = 0

}

and define the state-space to be X = H×L2(0, 1) with state z(t) = (w(·, t), ∂
∂t
w(·, t)). A state-space

formulation of the above partial differential equation problem is

d

dt
x(t) = Ax(t) +Bu(t),

where

A =





0 I

−EI
ρ

d4

dr4
−CdI

ρ
d4

dr4
− Cv

ρ



 , B =





0

r
Ih



 ,

with domain

dom (A) = {(φ, ψ) ∈ X : ψ ∈ H and

M = EI d2

dr2
φ+ CdI

d2

dr2
ψ ∈ H2(0, 1) withM(L) = d

dr
M(L) = 0} .

We use R = 1 and define C by the tip position:

w(1, t) = C[w(x, t) ẇ(x, t)].
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E 2.68× 1010 N/m2

Ib 1.64× 10−9 m4

ρ 1.02087 kg/m

Cv 1.8039 Ns/m

Cd 1.99× 105 Ns/m

L 1 m

Ih 121.9748 kg m2

d .041 kg−1

Table 7. Table of physical parameters.

Let HN ⊂ H be a sequence of finite-dimensional subspaces spanned by the standard cubic B-
splines with a uniform partition of [0, 1] into N subintervals. This yields an approximation in
HN ×HN [14, e.g.]of dimension n = 2N.

This approximation method yields a sequence of solutions to the algebraic Riccati equation that
converge strongly to the solution to the infinite-dimensonal Riccati equation corresponding to the
original partial differential equation description [3, 21].

The spectrum of A for various n is shown in Figure 4. For small values of n, the spectrum of
An only contains complex eigenvalues with fairly constant angle. As n increases, the spectrum
curves into the real axis. For large values of n, the spectrum shows behaviour like that of the
original differential operator, and contains two branches on the real axis. For these large values of
n, the ADI parameters are complex numbers. We calculated the complex ADI parameters as in
[8]. Although there are methods to efficiently calculate with complex parameters by splitting the
calculation into 2 real parts [19]their presence increases computation time.

Figure 5 shows the total Lyapunov iterations for various values of n. Although the number of
Newton-Kleinman iteration remained at 2 for all n, the number of Lyapunov iterates increases as
n→∞.

Figure 6 shows the change in the spectrum of A as Cd is varied. Essentially, increasing Cd

increases the angle that the spectrum makes with the imaginary axis. Recall that the spectral
bounds α, a, and b define the elliptic function domain that contains the spectrum of A [20]. The
ADI parameters depend entirely on these bounds. The quantity π

2 − α is the angle between the
spectrum and the imaginary axis and so α→ π/2 as Cd is decreased. Figure 7 shows the effect of
varying Cd on the number of iterations required for convergence. Larger values of Cd (i.e. smaller
values of α) leads to a decreasing number of iterations. Small values of Cd lead to a large number
of required iterations in each solution of a Lyapunov equation.

There are several possible reasons for this. As the spectrum of A flattens with increasing Cd

the spectral bounds (12-14) give sharper estimates for the elliptic function domain Ω and thus the
ADI parameters are closer to optimal. Improvement in calculation of ADI parameters for problems
where the spectrum is nearly vertical in the complex plane is an open problem.

Another explanation lies in the nature of the mathematical problem being solved. If Cd > 0
the semigroup for the original partial differential equation is parabolic and the solution to the
Riccati equation converges uniformly in operator norm [16, chap.4]. However, if Cd = 0, the partial
differential equation is hyperbolic and only strong convergence of the solution is obtained [17].
Thus, one might expect a greater number of iterations in the Lyapunov loop to be required as Cd is
decreased. Any X ∈ Rn×n to the matrix Lyapunov equation is symmetric and positive semi-definite
and so we can order its eigenvalues λ1 ≥ λ2 ≥ ...λn ≥ 0. The ability to approximate X by a matrix
of lower rank X̂ is determined by the following relation [11, Thm. 2.5.2]

min
rankX̃≤k−1

‖X − X̃‖

‖X‖
=
λk(X)

λ1(X)
.
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Table 8. Beam: : Effect of Changing Cd (Standard Newton-Kleinman)

Cv Cd α Newton-Kleinman Itn’s Lyapunov Itn’s CPU time

2 1× 104 1.5699 – – –

3× 105 1.5661 – – –

4× 105 1.5654 3 1620;1620;1620 63.14

1× 107 1.5370 3 1316;1316;1316 42.91

1× 108 1.4852 3 744;744;744 18.01

5× 108 1.3102 3 301;301;301 5.32

Table 9. Beam: Effect of Changing Cd (Modified Newton-Kleinman)

Cv Cd α Newton-Kleinman It’s Lyapunov It’s CPU time

2 1× 104 1.5699 2 – –

3× 105 1.5661 2 – –

4× 105 1.5654 2 1620;1 24.83

1× 107 1.5370 2 1316;1 16.79

1× 108 1.4852 2 744;1 7.49

5× 108 1.3102 2 301;1 2.32

This ratio is plotted for several values of Cd in Figures 8 and 9. For larger values of Cd the solution
X is closer to a low rank matrix than it is for smaller values of Cd. Recall that the CF-ADI
algorithm used here starts with a rank 1 initial estimate of the Cholesky factor and the rank of
the solution is increased at each step. The fact that the solution X is closer to a low rank matrix
for larger values of Cd implies a smaller number of iterations are required for convergence. If the
fundamental reason for the slow convergence with small Cd is the “hyperbolic-like” behaviour of
the problem, then this convergence will not be improved by better ADI parameter selection. This
may have consequences for control of coupled acoustic-structure problems where the spectra are
closer to those of hyperbolic systems than those of parabolic systems.
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Figure 1. Heat Equation: Error versus Standard Newton-Kleinman Iterations
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Figure 2. Heat Equation: Error versus Modified Newton-Kleinman Iterations
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