
UCLA

COMPUTATIONAL AND APPLIED MATHEMATICS

Accelerated Solutions of Nonlinear Equations Using Stabilized

Runge-Kutta Methods

Christopher R. Anderson

Christopher J. Elion

May 2004

CAM Report 04-26

Department of Mathematics
University of California, Los Angeles

Los Angeles, CA. 90095-1555

ACCELERATED SOLUTIONS OF NONLINEAR EQUATIONS USING
STABILIZED RUNGE-KUTTA METHODS∗

CHRISTOPHER R. ANDERSON† AND CHRISTOPHER J. ELION‡

Abstract. In this paper we discuss the use of stabilized Runge-Kutta methods to accelerate
the solution of systems of nonlinear equations. The general idea is to seek solutions as steady state
solutions of an associated system of ordinary differential equations. A class of stabilized Runge-
Kutta methods are derived that can be used to efficiently evolve the associated system to steady
state. Computational results for a set of reaction-diffusion equations and a set of Schroediner-Poisson
equations are presented.

Key words. nonlinear equations, ordinary differential equations, explicit Runge–Kutta methods

AMS subject classifications. 47J25, 65L06

For large coupled systems of nonlinear equations, typically arising from discretiza-
tion of nonlinear partial differential equations, it is common practice to obtain solu-
tions by evolving an associated system of ordinary differential equations to a steady
state. In its simplest form, the solution of a system

~F (~y) = 0(0.1)

where ~F : Rn →Rn is obtained by solving the ordinary differential equation

d~y

dt
= ~F (~y)(0.2)

to steady state. Variants of this procedure include evolving a “preconditioned” system
to steady state; e.g. if ~P is a non-singular function, then one evolves

d~y

dt
= ~P (~F (~y))(0.3)

to steady state. Obtaining solutions to nonlinear equations via steady state calcula-
tions is particularly attractive if the resulting ODE’s can be successfully solved using
explicit schemes. For, in such cases, the solution is obtained without the need to
compute gradients of ~F (or in the case of the preconditioned system, gradients of
~P (~F (~y))) and the solution procedure is not difficult to implement.

One drawback of this approach is that the resulting ODE’s may be “stiff” and,
consequently, commonly used explicit methods require that a large number of timesteps
be taken to achieve the steady state solution. One can try to remedy this situation
by choosing appropriate preconditioners. For example, the ODE system (0.2) is stiff
when the eigenvalues of the Jacobian of ~F differ by several orders of magnitude —
thus one tries to pick the preconditioner ~P so that the eigenvalues of the Jacobian

∗Research supported by DARPA through the Quantum Information Science and Technology
(QuIST) program under Army Research Office contract number DAAD-19-01-C-0077.

†UCLA Mathematics Department Box 951555, Los Angeles, CA 90095-1555
(anderson@math.ucla.edu).

‡UCLA Mathematics Department Box 951555, Los Angeles, CA 90095-1555
(elion@math.ucla.edu).

1

2 C. ANDERSON AND C. ELION

of ~P (~F (~y)) are tightly clustered. However, even with preconditioning, the resulting
system is often mildly stiff and standard explicit methods can still require a large
number of timesteps to achieve a steady state solution.

A family of methods known as “stabilized Runge-Kutta methods” have proven
effective as a means of evolving mildly stiff differential equations [3][5][6]. (See [5]
for good review of these procedures and references to previous work.) The stabilized
methods differ from the standard Runge-Kutta methods in that they are of moderate
accuracy and have extra stages chosen so that they provide solutions without requiring
excessively small timesteps. These methods are thus excellent candidates as methods
to evolve systems of differential equations to steady state. The primary purpose of this
paper is to derive a family of stabilized Runge-Kutta methods that are particularly
suited to steady state calculations. One can use the methods developed in [4][8][9]
directly, however, by taking advantage of the fact that we are only interested in
obtaining steady state solutions, one can develop a family of methods that have large
stability regions, high damping properties, and have coefficients that are relatively
easy to construct.

Another technique for solving sets of nonlinear equations consists of transforming
the equations into an equivalent fixed point problem

φ = H(φ)(0.4)

and then using the standard fixed point iteration

φ m+1 = H(φ m)

to obtain a solution. When this simple iteration strategy does not converge, one often
introduces a relaxation factor γ and uses instead the iteration

φ ∗ = H(φ m)

φ m+1 = γ φ ∗ + (1− γ) φ m(0.5)

For many problems convergence can be obtained with a sufficiently small value of γ.
However, even though a convergent iteration is obtained, the iteration may require a
large number of iterations to achieve a solution. The starting point for a method to
accelerate slowly convergent iterations is to recognize that fixed point iteration with
a relaxation factor is equivalent to solving the ordinary differential equation

dφ

dt
= H(φ)− φ(0.6)

using Euler’s method. Specifically, eliminating φ ∗ from the iteration (0.5) we have

φ m+1 = γH(φ m) + (1− γ)φ m

⇒ φ m+1 − φ m = γH(φ m)− γφ m

⇒ φ m+1 − φ m

γ
= H(φ m)− φ m

ACCELERATED SOLUTIONS USING STABILIZED RUNGE-KUTTA SCHEMES 3

The last expression is just Euler’s method applied to (0.6) with a timestep dt = γ.
The need to use a small relaxation factor and a large number of iterations to obtain
a solution with the iteration (0.5) occurs when (0.6) is a relatively stiff differential
equation. Therefore, a means of accelerating the convergence of fixed point iterations
consists of simply applying a stabilized Runge-Kutta method to (0.6) directly.

In the first section we outline general properties that an explicit one-step ODE
method should possess if it is to be used for the computation of steady state solu-
tions and then derive a family of stabilized Runge-Kutta methods that satisfy these
properties. In the second section we discuss an adaptive time-step selection strategy
followed by computational examples demonstrating the effectiveness of using stabi-
lized Runge-Kutta methods to compute steady state solutions. Two of the examples
concern the solution of a set of reaction diffusion equations and the third concerns
the use of stabilized Runge-Kutta methods to accelerate a fixed point iteration that
computes solutions to a set of Schreodinger-Poisson equations occurring in quantum
device simulations.

1. Stabilized Runge-Kutta methods for steady state calculations. When
using an explicit one step method to evolve solutions of an ODE to steady state, three
desirable properties of the method are

(i) The method is convergent and at least first order accurate.

(ii) For large dt, the numerical solution locally (in time) exhibits qualitatively
correct behavior as the true solution.

(iii) (Numerical fixed point condition) The method has the form ~ym+1 = ~Gdt(~ym)
with ~Gdt having the property that if ~F (~y ∗) = 0 then ~y ∗ is a fixed point of
the numerical method, e.g. ~y ∗ = ~Gdt(~y ∗) for all dt.

The first condition ensures that in the limit as the timestep tends to zero, the be-
havior of the numerical solutions and the exact solutions of the ODE coincide. Hence,
if a true solution approaches a steady state solution then we have confidence that by
taking sufficiently small timesteps the numerical approximation to this solution will
also approach the steady state solution. Of course, when actually using the method to
compute the steady state solutions, we attempt to use as large a timestep as possible.
As one evolves to a steady state using such large timesteps, the numerical solution
may not be particularly accurate and the second condition is a reflection of the fact
that with such timesteps we at least desire that the numerical solution exhibit lo-
cally correct qualitative behavior. In particular, if locally the solution trajectories of
the differential equation are converging to a single trajectory then we would like for
the numerical trajectories to have the same behavior. The third condition is desired
because it implies that the steady state solution is a fixed point of the numerical
method for non-zero dt. Thus, if the numerical method is evolved to steady state,
~y ∗ = ~Gdt(~y ∗), then the accuracy with which ~y ∗ is calculated does not depend upon
dt.

There are many explicit one step methods that satisfy properties (i) and (iii)
above — for example, Euler’s method or the standard Runge-Kutta methods. It is
the creation of methods that satisfy condition (ii) that presents the most difficulty. To
determine methods that satisfy condition (ii) requires an understanding of the region
of absolute stability associated with an ODE method [1]. The region of absolute

4 C. ANDERSON AND C. ELION

stability of a method is that region, R, in the complex plane so that if dtλ ∈R, then
for any initial condition y0, the numerical solution to

dy

dt
= λ y(1.1)

obtained with the method has the property that ym → 0 as m → ∞. For a system
of ordinary differential equations, the behavior of solution trajectories near a steady
state is determined by the linearized system

d~z

dt
= JF ~z

where JF is the Jacobian of ~F (~y). If all of the eigenvalues, λi, of JF have negative
real parts, then solution trajectories of the linearized system decay to the steady
state solution as t →∞. The condition that the numerical solution also exhibits this
property requires that the timestep be chosen sufficiently small so that for all λi, dtλi

is contained within the region of absolute stability of the method. Thus, if we are
to have methods that exhibit locally correct behavior for large dt, we seek explicit
methods that have regions of absolute stability that contain a large portion of the
negative real axis.

A family of explicit methods that have very large regions of absolute stability are
the stabilized (or Chebyshev) Runge Kutta methods [3][5][6]. These methods differ
from the standard Runge-Kutta methods in that they are of moderate accuracy and
have extra stages chosen so that their regions of absolute stability contain a large
portion of the negative real axis. One can directly employ the methods presented in
[4][8][9], however, as we will discuss next, methods that are designed specifically for
evolution to steady state can be constructed. In particular, one can obtain methods
that have large stability regions, good damping properties, and satisfy the third (fixed
point) condition described above.

In our construction of a class of stabilized Runge-Kutta methods appropriate for
steady state problems, we follow the same general procedure as that used in [5]. When
an n-stage Runge-Kutta method is applied to the model problem (1.1) the method
can be expressed as ym+1 = pn(dtλ)ym where pn(s) is a polynomial of degree n. The
region of absolute stability of the method is the set {s ∈ C | |pn(s)| < 1}. We refer
to pn as the “absolute stability polynomial” associated with the method. The first
step in the construction of the stabilized methods is to identify polynomials of degree
n, pn(s), that satisfy constraints imposed by accuracy considerations and for which
the set {s ∈ C | |pn(s)| < 1} contains as large a portion of the negative real axis as
possible. The second step consists of creating explicit n stage Runge-Kutta type
methods that have as their absolute stability polynomials the identified polynomials
pn(s).

The first order accuracy condition imposes on pn(s) the constraints pn(0) = 1 and

p′n(0) = 1. The shifted Chebyshev polynomial, T*n(s) = Tn(−1 + 2
(s + M)

M
), with

Tn(x) being the nth Chebyshev polynomial, is a polynomial of degree n that satisfies
pn(0) = 1 and p′n(0) = 1. Moreover, |T*n(s)| ≤ 1 for s ∈ [−2n2, 0], so that a method
whose absolute stability polynomial is the nth shifted Chebyshev polynomial will have
a region of absolute stability that contains the interval [−2n2, 0] except at the n + 1
locations sj =n2(cos(jπ

n) − 1), j = 0 . . . n, where |T*n(sj)| = 1. To create methods

ACCELERATED SOLUTIONS USING STABILIZED RUNGE-KUTTA SCHEMES 5

that have the property that |pn(s)| < 1 over a large interval of the negative real axis,
we follow [5] and for a given value of γ < 2 consider the nth degree polynomial

T̄γ
n(s) =

Tn(−1 + 2
(s + γn2)

γn2-δ
)

Tn(−1 +
2γn2

γn2-δ
)

with δ chosen so that T̄γ ′
n (0) = 1. For a given γ, such a δ is readily found us-

ing standard root finding techniques. The resulting polynomial satisfies the condi-
tions that T̄γ

n(0) = 1, T̄γ ′
n (0) = 1 and over the interval [−γn2,−δ] has the maximal

value
1

Tn(−1 +
2γn2

γn2-δ
)

< 1. Since Tn(−1 + 2
(s + γn2)

γn2-δ
) grows extremely fast out-

side of the interval [−γn2,−δ] [7] one gets a rather dramatic reduction in the size
of max

s∈[−M,−δ]
|pn(s)| as a function of γ. In Table 1 we give the maximal value of the

stability polynomial for various stage orders and stability bound factors γ.

γ = 1.0 γ = 1.25 γ = 1.5 γ = 1.75 γ = 2.0
n = 2 0.236 0.415 0.605 0.801 1.00
n = 3 0.266 0.437 0.620 0.808 1.00
n = 4 0.276 0.445 0.625 0.810 1.00
n = 5 0.280 0.448 0.627 0.811 1.00

Table 1 : max |T̄ γ
n (s)| for s ∈ [− γn2,−δγ].

The target stability polynomial we use in the construction of our numerical meth-
ods is T̄γ

n(s) where T̄γ
n(s) has been constructed using a value of specified stability

bound factor γ ≤ 2. There are a variety of ways to formulate Runge-Kutta meth-
ods whose absolute stability polynomials match the polynomials T̄γ

n(s). After some
experimentation, the method that we settled on has the general form

g1 = dt ∗ f(ym)(1.2)
g2 = dt ∗ f(ym + α1

1 g1)
g3 = dt ∗ f(ym + α2

1 g1 + α2
2 g2)

...
gn = dt ∗ f(ym + αn−1

1 g1 + αn−1
2 g2 + + · · ·+ αn−1

n−1 gn−1)
ym+1 = ym + αn

1 g1 + αn
2 g2 + · · ·+ αn

n gn

This form was selected so that the coefficients of the intermediate stages could be
determined so that when s ∈ [−γk2, 0] (e.g. the stability interval for T̄γ

k(s)) then s is
also contained within the stability intervals associated with each intermediate stage
(the argument of f in the calculation of each gk). Of course, the use of r− 1 non-zero
stage coefficients in the rth stage requires the storage and accumulation of all r − 1
previous stages. When n is large this can be computational expensive; however, in

6 C. ANDERSON AND C. ELION

our experiments we found that modest order methods (n ≤ 10) were quite effective
and thus the extra cost of storing and accumulating the stages was not significant.
The method (1.2) also has the property that when f(ym) = 0 the mapping from ym

to ym+1 is the identity operator so that the fixed point condition of the numerical
method is satisfied. One can create a Runge-Kutta type method that directly utilizes
the recurrence property of the Chebyshev polynomial; however, this was not done
because when γ 6= 2 the resulting method does not satisfy the fixed point property
(iii).

If we let s = dtλ then the stability polynomial, pn(s), associated with an n stage
method of the form (1.2) can be constructed recursively;

z1(s) = s

p1(s) = 1 + α1
1 z1(s)

z2(s) = s p1(s)
p2(s) = 1 + α2

1 z1(s) + α2
2 z2(s)

...
pn(s) = 1 + αn

1 z1(s) + αn
2 z2(s) + · · ·+ αn

n zn(s)

The stage coefficients are determined by matching the monomial coefficients of
pk(s) with the coefficients of T̄γ

k

(
s
(

Mk

Mn

))
where Mk = γ k2 determines the bound

for the stability region associated with T̄γ
k(s). This choice of coefficients ensures that

for each stage we have |pk(s)| < 1 when s ∈ [−γn2, 0] and pn(s) = T̄γ
n (s). In the

determination of the stage coefficients, the polynomials T̄γ
k(s) have constant term 1

and so one need only match the coefficients of monomials of degree greater than 1.

To construct the stage coefficient equations it is useful to identify the relation
between the coefficients for the ith stage and those at the i+1st stage. Let Ai~αi

be the linear mapping from the ith stage coefficients, ~α i, to the coefficients of the
monomials s, s 2, s 3, . . . s i occurring in

pi(s) = 1 + αi
1 z1(s) + αi

2 z2(s) + · · ·+ αi
i zi(s)

Since

pi+1(s) = 1 + αi+1
1 z1(s) + αi+1

2 z2(s) + · · ·+ αi+1
i zi(s) + αi+1

i+1 zi+1(s)

the mapping from the values α i+1
1 ,α i+1

2 , . . . α i+1
i to the monomials of s, s 2, s 3, . . . s i

occurring in pi+1(s) is identical to that for ~α i. Also, since zi+1(s) = s pi(s), the
mapping from αi+1

i+1 to the monomials s, s2, s3, . . . si, si+1 occurring in pi+1(s) is just
αi+1

i+1 times the monomial coefficients Ai~αi shifted down in index. Thus, we have that
Ai+1 given by

Ai+1 ~α i+1 =




1
Ai

Ai~α i

0







~α i+1




ACCELERATED SOLUTIONS USING STABILIZED RUNGE-KUTTA SCHEMES 7

represents the mapping from the values α i+1
1 ,α i+1

2 , . . . α i+1
i+1 to the monomials of

s, s 2, s 3, . . . s i+1 occurring in pi+1(s).

Let c̃ k
1 , c̃ k

2 . . . c̃ k
k be the coefficients of s, s 2, s 3, . . . s k occurring in T̄γ

k (s). The
equations that determine the stage coefficients can be represented as

A1 ~α1 = ~c 1

A2 ~α2 = ~c 2

A3 ~α2 = ~c 3

...
An ~αn = ~c n

where

~c k =




c̃ k
1

(
Mk

Mn

)

c̃ k
2

(
Mk

Mn

)2

c̃ k
3

(
Mk

Mn

)3

...
c̃ k
k

(
Mk

Mn

)k




However, using the fact that A1 = 1 and, for each i, the last column of Ai+1 is just




1

A i~α i




=




1

~c i




The system of equations for the kth stage can be expressed as




1 1 1 1

c̃ 1
1

(
M1
Mn

)
c̃ 2
1

(
M2
Mn

) · · · c̃ k−1
1

(
Mk−1
Mn

)

c̃ 2
2

(
M2
Mn

)2 · · · c̃ k−1
2

(
Mk−1
Mn

)2

. . .

c̃ k−1
k−1

(
Mk−1
Mn

)k−1







α k
1

α k
2

α k
3

...

α k
k




=




c̃ k
1

(
Mk

Mn

)

c̃ k
2

(
Mk

Mn

)2

c̃ k
3

(
Mk

Mn

)k−1

...

c̃ k
k

(
Mk

Mn

)k




Or, using the fact that Mk = γ k2 and simplifying, we have that the coefficients for
the kth stage are given by

8 C. ANDERSON AND C. ELION




1 1 1 1

c̃ 1
1

(
1
k2

)
c̃ 2
1

(
22

k2

)
· · · c̃ k−1

1

(
(k−1)2

k2

)

c̃ 2
2

(
22

k2

)2

· · · c̃ k−1
2

(
(k−1)2

k2

)2

. . .

c̃ k−1
k−1

(
(k−1)2

k2

)k−1







α k
1

α k
2

α k
3

...

α k
k




=
(

k2

n2

)




c̃ k
1

c̃ k
2

c̃ k
3

...

c̃ k
k




where c̃ k
i is the coefficient of s i occurring in T̄γ

k(s). For any k, c̃ k
k is the coefficient of

the degree k monomial in T̄γ
k (s), and hence non-zero, thus the equations for the kth

stage coefficients are non-singular and the coefficients can be obtained quickly using
back-substitution.

2. Timestep Selection. The use of stabilized RK methods requires the spec-
ification of a timestep size, stability region bound factor, and stage order. In the
experiments described below we used a fixed stage order, a fixed stability region
bound factor, and a rather simple adaptive timestep selection strategy. For the prob-
lem that motivated this work, the solution of a set of Schroedinger-Poisson equations,
this simple strategy worked reasonably well. However, to create a code that can auto-
matically determine stage order, stability region bound and timestep size requires the
creation of procedures similar to those developed for the stabilized RK methods used
to compute time-accurate solutions [4][9]. Work on such procedures is in progress.

The central idea behind the adaptive timestep selection strategy is to choose as
large a timestep as possible that leads to a decrease in the size of the residual. The
process begins with the determining a first timestep so that there is an initial decrease
in the size of the residual. This stepsize is readily determined using a bisection process.
After the first timestep is determined, the solution is advanced and the size of the
residual monitored. If the residual of the solution computed with a given timestep is
smaller than the previous residual, then the solution and timestep are accepted. If the
residual increases with any given stepsize, then that step is rejected and the timestep
is reduced by a fixed factor β, (dt ← β dt). This reduction in timestep is repeated
until it leads to a solution with a decreased residual or some set number of reductions
have been preformed. Periodically (every few steps) the timestep is increased by a
fixed factor α, (dt ← α dt). If this new timestep leads to a reduced residual then
it is accepted and the solution advanced; otherwise the solution is rejected and the
timestep reduced.

3. Computational Examples. Our first two test problems consist of finding
solutions to the discretization of

ε
d2u

dx2
− (u− 1

2
)3 = 0 x ∈ [0, 1](3.1)

u(0) = 1 u(1) = 0

ACCELERATED SOLUTIONS USING STABILIZED RUNGE-KUTTA SCHEMES 9

These equations arise as the steady state solution of the reaction-diffusion equation.

du

dt
= ε

d2u

dx2
− (u− 1

2
)3(3.2)

The standard second order finite difference approximation
ui+1 − 2ui + ui−1

h2
was em-

ployed to approximate
d2u

dx2
in the discretization of (3.1). The mesh used was uniform

with 50 panels (h = 1
50) and, ε, the diffusion coefficient was taken to be .001. After

discretization the system of equations has the form

ε M ~u− (~u− 1
2
)3 + ~f = 0(3.3)

where M is a tridiagonal matrix arising from the discretization of
d2u

dx2
, (~u − 1

2)3

formally represents the vector whose ith component is (ui − 1
2)3 , and ~f contains the

specification of the boundary conditions u(0) = 1, u(1) = 0.

The first experiment consisted of using methods with γ = 1.75 and stage orders
from n = 1 to n = 10 to solve

d~u

dt
= ε M ~u− (~u− 1

2
)3 + ~f(3.4)

to steady state. The computation was stopped when the maximum value of all com-
ponents of the residual were less than 10−6. As a measure of the efficiency of the
methods, we monitored the total number of function evaluations required. (This to-
tal includes function evaluations used in the adaptive determination of the timestep.)
The results are listed in Table 2.

stage order # steps # function evaluations
n = 1 1709 2943
n = 2 413 1224
n = 4 129 728
n = 6 61 498
n = 8 39 416
n = 10 30 360

Table 2 : The total number of function evaluations required to obtain a steady state
solution of (3.4) using a stabilized RK method with γ = 1.75.

The ODE system is mildly stiff, and the benefit of using a stabilized Runge-Kutta
method on this problem clearly seen. It is also interesting to note that with orders
greater than 6, the reduction in computational cost obtainable with an increase in
stage order is not that significant.

10 C. ANDERSON AND C. ELION

The second experiment consisted of using the inverse of εM as a preconditioner.
Specifically, instead of directly seeking the solution (3.3) we seek the solution of

(ε M)−1

[
(~u− 1

2
)3 + ~f

]
− ~u = 0(3.5)

The solution of these equations was obtained by solving

d~u

dt
= (ε M)−1

[
(~u− 1

2
)3 + ~f

]
− ~u(3.6)

to steady state. A stability bound factor of γ = 1.75 was used, and the iteration was
stopped when the maximum value of all residual components was less than 10−6. The
results are listed in Table 3.

stage order # steps # function evaluations
n = 1 39 62
n = 2 20 58
n = 4 28 148
n = 6 21 144
n = 8 20 176
n = 10 18 200

Table 3 : The total number of function evaluations required to obtain a steady state
solution of (3.6) using a stabilized RK method with γ = 1.75.

The results of this latter example demonstrate that, for some problems, the use
of stabilized Runge-Kutta methods is not required (and in fact, using a method with
more than two stages should be avoided). The reason for this behavior is that the
preconditioned system is not particularly stiff and a standard one or two stage Runge-
Kutta method is an efficient method for obtaining steady state solutions.

The third computational problem, and that which motivated this work, consisted
of computing solutions to a set of Schroedinger-Poisson equations used in quantum
device modeling. For a one-dimensional simulation, these equations have the form

d

dz
(ε(z)

dφ

dz
) =

∑
s

δs +
∑

λk< 0

G(Ψk, λk)(3.7)

d

dz
(

h̄2

2m

dΨk

dz
) + (φ + U)Ψk = λkΨk(3.8)

Here φ is the potential, Ψk the single election wavefunctions and their associated
energies λk, ε(z) the dielectric constant, h̄ Plank’s constant, m the reduced mass,

ACCELERATED SOLUTIONS USING STABILIZED RUNGE-KUTTA SCHEMES 11

U the band offset, G the nonlinear density of states functional accounting for the
change in potential induced by occupied states and δs represents the sources due to
doping. The self-consistent solution of these equations consists of a potential φ and a
collection of wavefunctions Ψk and associated energies λk so that (3.7) and (3.8) are
simultaneously satisfied.

To find such a self-consistent solution we first formally eliminate Ψk and associated
energies λk and just consider (3.7) as a non-linear equation for φ

d

dz
(ε(z)

dφ

dz
) = δs +

∑

λk(φ) < 0

G(Ψk(φ), λk(φ))(3.9)

Or, letting L(φ) denote the linear Poisson operator and S(φ) the nonlinear contribu-
tion due to the occupied states, the equation takes the form

L(φ) = δs + S(φ)(3.10)

Since the evaluation of S(φ) requires a computationally expensive eigenvalue/eigenvector
calculation, it is critical that any solution process use as few evaluations of S(φ) as
possible. Also, because of the complexity of S(φ) and the fact that G(Ψk(φ), λk(φ))
is a non-smooth function of its arguments, methods that rely on derivatives (e.g.
Newton like methods) are difficult to implement and tend to have limited robustness.

Therefore, to solve (3.10) we convert it into an equivalent fixed point problem by
applying L−1 to both sides; this yields

φ = L−1 [δs + S(φ)](3.11)

One can use standard fixed point iteration with a suitably small relaxation factor to
(3.11) to successfully compute solutions. However, the size of the relaxation factor
can be very small and convergence slow. For example, in a typical semi-conductor
design problem the relaxation factor required was .011 and 821 iterations were needed
to reduce the size of the residual to a maximal value of less than 10−4.

When the stabilized RK methods described above were used to evolve

dφ

dt
= L−1 [δs + S(φ)]− φ(3.12)

to steady state the results were considerably better. The necessity of using a small
relaxation factor indicated that the system (3.12) was mildly stiff, so that using a
method more than two stages was effective. In Table 4 we show the results obtained
using various stages.

12 C. ANDERSON AND C. ELION

degree # steps # function evaluations
n = 1 263 402
n = 2 112 348
n = 4 46 284
n = 6 21 180
n = 8 17 184
n = 10 20 280

Table 4 : The total number of function evaluations required to obtain a steady state
solution of (3.12) using a stabilized RK method with γ = 1.5.

In all of these experiments the same initial guess for the timestep was used, and the
factor for the stability bound, γ, was chosen as 1.5.

As with the first computational experiment, the computational results indicate
the utility of using a stabilized Runge-Kutta method with a moderate number of
stages. When compared to the original fixed point iteration with an optimally chosen
relaxation factor, there was a factor of four improvement; with a more advanced
timestep/stage order selection procedure, this can be expected to be improved even
further.

4. Conclusions. For many nonlinear equations, especially those arising from
the discretization of partial differential equations, it is possible to associate with
them sets of ordinary differential equations whose solutions evolve to a steady state
solution that is also a solution of the original system. When the associated ordinary
differential equations are moderately stiff, the number of steps to converge to the
steady state can be quite large. As shown in the examples given above, one can
make good use of stabilized Runge-Kutta methods to reduce the number of required
steps. We have also shown that stabilized Runge-Kutta methods can also be used to
accelerate slowly convergent fixed point iterations. The stabilized methods we derived
here were developed explicitly for the solution of steady state problems — they were
chosen to have large stability regions, good damping factors, and coefficients that are
relatively easy to construct. Additionally, the methods were constructed so that the
accuracy of the solution of the nonlinear equations was not dependent upon the size
of the timestep. We have by no means exhausted the types of stabilized methods
that might be used for computing steady state solutions; in particular, other methods
could conceivably be constructed that do not require the accumulation of all previous
stages.

REFERENCES

[1] Stoer,J. and Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, New York,
pp. 490-491, (1993) .

[2] Atkinson, K., An Introduction to Numerical Analysis, John Wiley and Sons, New York, pg.
229.

[3] Abdulle, A.,Medovikiv, A, Second order Chebyshev methods based on orthogonal polynomials,
Numer. Math. 90: 1-18 (2001).

[4] Abdulle, A., Fourth order Chebyshev methods with Recurrence relation, SIAM J. Sci. Comput.
23, pp. 2042-2055, (2002).

[5] Verwer, J.W.,Explicit Runge-Kutta methods for parabolic partial differential equations, Runge-
Kutta centennial, special issue of Appl. Num. Math., 22 (1996), pp. 359-379.

[6] Lebedev, V.I., How to solve stiff systems of differential equaions by explicit methods, Numerical
Methods and Applications, CRC Press, Boca Raton, (1994), pp. 45-80.

ACCELERATED SOLUTIONS USING STABILIZED RUNGE-KUTTA SCHEMES 13

[7] Rivlin, J., An Introduction to the Approximation of Functions, Dover, New York, pp. 31-32,
(1981).

[8] Medovicof, A.A., High Order Explicit Methods for Parabolic Equations, BIT, 38, pp. 372-390,
(1998).

[9] Sommeijer, B.P., Shampine, L.F., Verwer, J.G., RKC: An explicit solver for parabolic PDE’s,
J. Comput. and Appl. Math., 88, pp 315-326, (1997).

