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Abstract. Dense regions discovery is an important knowledge discov-
ery process for finding distinct and meaningful patterns from given data.
The challenge in dense regions discovery is how to find informative pat-
terns from various types of data stored in structured or unstructured
databases, such as mining user patterns from Web data. Therefore, novel
approaches are needed to integrate and manage these multi-type data
repositories to support new generation information management sys-
tems. In this paper, we first discuss and purpose several discretization
methods which are suitable for multidimensional Web data. Based on
it, we demonstrate some dense regions discovery applications by using
Web usage data from a real Website. The experiments show that the dis-
cretization methods are quite effective and efficient, especially for high-
dimensional data. It also suggests that the discretization methods can be
used in other practical Web applications, such as user patterns discovery.
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1 Introduction

With the fast growing of Internet in recent years, developing Web-based infor-
mation systems become an active research area of finding useful information
from Web data depending on state-of-art information technologies nowadays.
The rapid progress of our capabilities in data acquisition and storage technology
has led to the fast growing of tremendous amount of data generated and stored
in databases, data warehouses, or other kinds of data repositories such as the
World-Wide Web. As results, there are many types of usable Web data in real-
ity, such as Web content and structure data, Web log data and hypertext data.
Much of the Web data is relevant in nature, involving multiple objects. Hence,
novel approaches are needed to integrate and manage these multi-type Web data
repositories to support new generation information management systems.
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As a pre-processing step in knowledge discovery, discretization is defined as a
process that divides continuous numeric values into a set of intervals that can be
regarded as discrete categorical values [4]. In [2], Dougherty suggested three dif-
ferent axis to classify discretization methods: supervised vs. unsupervised, global
vs. local and static vs. dynamic. Supervised methods use the information of class
labels while unsupervised methods do not. Global methods are applied before
the learning process while local methods produce partitions that are applied
to localized regions of the instance space. The difference between static and dy-
namic methods is that in static methods, attributes are discretized independently
of each other, while dynamic methods take into account the interdependencies
among the attributes.

Many researchers have purposed various algorithms for data discretization
from different points of view. The well known and simplest discretization method
is Equal Interval Width, which divides the range of n ranking observations for
a variable into k equal sized bins. The main disvantage is that the performance
of this method may be affected by outliers. Another method, Equal Frequency
Intervals, divides n observations of a continuous variable into k bins where each
bin contains n/k adjacent values. An improved method called Maximal marginal
entropy was also suggested. It also starts with equal frequency intervals, but
adjusts the boundaries to decrease the entropy of each interval instead of keeping
equal frequency.

Statistical methodology is also adopted in some discretization methods. The
ChiMerge system [6] provided a statistical heuristic method for discretization.
It begins by placing each observed real value into its own interval and proceeds
by using the χ2 test to determine when adjacent intervals should be merged.
The StatDisc [7] method also uses statistical tests as a means of determining
discretization intervals. This method follows a bottom-up manner and creates a
hierarchy of discretization intervals using the φ measure as a criterion for merg-
ing intervals. The merging process continues until some φ threshold is achieved.
StatDisc can merge N adjacent intervals while ChiMerge can only merge two
adjacent intervals at a time. After that, a suitable final discretization is auto-
matically selected.

The 1R system, purposed by Holte [5], attempts to divide the domain of
every possible continuous variable into pure bins, each containing a strong ma-
jority of one particular class. This method works well, particularly when used in
conjunction with the 1R induction algorithm.

In [1], Catlett suggested the use of entropy based discretization in decision
tree algorithms. The experiments demonstrated an impressive increase in induc-
tion speed on very large datasets. Basd on this, Fayyad and Irani [3] employed a
recursive entropy minimization heuristic for discretization. To control the num-
ber of intervals produced over the continuous space, they used a Minimum De-
scription Length criterion. This method was applied locally at each node during
tree generation. Other authors also used the method in global discretization and
obtained satisfying results [2].
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Another discretization method ReliefF, suggested by Robnik-Sikonja and
Kononenko [8], applied the ReliefF algorithm in discretization. This method
estimates the probability that two near examples of the same class have the
same value for an attribute and that two near examples from different classes
have the same value for the attribute. The ReliefF is a heuristic measure to
decide which of two discretizations is better.

Although discretization is well studied in literature, effective and efficient
discretization on high-dimensional and fast-growing Web data is a new problem
because much of the data are distributed on different Web sources.

The remaining of this paper is organized as follows. In section 2, we introduce
concept and method in dense region discovery and then address the discretization
problems encountered in dense region discovery. Section 3 presents our suggested
solutions to discretization of high-dimensional complex Web data in detail. In
section 4, we perform an empirical evaluation of the method using different real
Web datasets. Finally, we give some conclusions and our future work.

2 Dense Regions Discovery

2.1 Definition of Dense Regions

We now fix some notations and give the definition of dense regions. Given an
n-by-p data matrix X where n is the number of entities and p is the number of
attributes of each entity. Let R and C be an index set of a subset of rows and
columns of X respectively. Since we do not distinguish between a matrix and its
permuted versions, we assume that R and C are sorted in the ascending manner.
A submatrix of X formed by its rows R and columns C is denoted by X(R, C).
We also identify X(R, C) by the index set D = R×C. For example, let R = {3}
and C = {1, 2}, then R× C = X(R, C) = (x31x32).

Definition 1 (Dense regions). A submatrix X(R, C) is called a maximal
dense region with respect to v, or simply a dense region with respect to v, if

– X(R, C) is a constant matrix whose entries are v (density), and,
– Any proper superset of X(R, C) is a non-constant matrix is non-constant

(maximality).

Example 1. Let X be a data matrix given by the first matrix below. Then,
the dense regions of X with respect to 1 are given by the four matrices in the
brace.









1 0 0 1
1 1 0 1
1 1 0 1
1 1 2 0
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Alternatively, we may denote the above dense regions by {1, 2, 3, 4} × {1},
{1, 2, 3}× {1, 4}, {2, 3}× {1, 2, 4} and {2, 3, 4}× {1, 2} respectively.
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We note that there exist some data matrices which possess exponentially
many dense regions with respect to a certain value. In the next sections, we
discuss how to identify only a subset of them which are of practical interest.

2.2 Algorithm for Mining Dense Regions

Yang et al [13] suggest an algorithm for finding error-tolerant frequent itemsets
from high-dimensional data. The investigating problem of the paper is similar but
not identical to dense regions discovery in which focuses on mining association
rules. These frequent itemsets found can be regarded as dense regions from a
sparse and large matrix(e.g., customer transaction databases).

In [15], we present the algorithm for mining dense regions in large data ma-
trices. The essence of the algorithm is that it searches the data matrix for dense
regions in both vertically and horizontal directions beginning from a given start-
ing point (s, t). It returns two dense regions containing (s, t), one is obtained
by searching in vertical direction first; the other is by searching in horizontal
direction. The advantage of this algorithm is that a lot of computations can be
saved by searching only the entries with possible qualifying dense regions and
thus reducing the searching space. Therefore, it is an effective and efficient al-
gorithm for dense regions discovery from high-dimensional data matrices. Due
to the limited length of the paper, we just employ the dense regions discovery
algorithm in experiment part and omit the detailed introduction of it.

2.3 Problem Statement and Motivation

In this section, we will discuss problems addressing on discretization. There are
four main concerns why discretization is important to dense regions discovery.
The first one is related to the dense regions discovery algorithm. From section 2,
we know that in the algorithm of finding dense regions, the heuristic is to find
sub-matrices with respect to value v. So, the original design of DRIFT algorithm
is for integer or categorical values. Hence, we need to perform discretization on
attributes of continuous values first before the dense regions discovery process.
This is the reason why we need to do discretization.

The other concern is about the effects of discretization to dense regions dis-
covery. Because the informative dense regions are not only subsets of entities
and attributes whose corresponding values are almost constant but also pat-
terns which are of practical use and are significant, so discretization is not a
trivial for dense regions discovery since the discretization can greatly determine
the dense regions found.

The third is that we may think about the computational complexity of per-
forming attribute discretization. What’s more, the quality of discretization will
also greatly effect the interpretation of dense regions found. In the design of our
discretization methods, we can consider the interdependence among attributes
and distribution of data for effective discretization for discretization.

The fourth consideration is how many intervals is proper and how to dis-
tribute an observed value to an interval. From the introduction part, we know
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that there are several approaches: Some methods fix the number of intervals
in advance and some methods permit automatically setting of intervals k. For
instance, k can be computed based on the number of distinct values observed on
the training set, such as k = max(1, 2 ∗ logl))[2]. The advantage of this method
is that given a dataset with several continuous features, the number of intervals
of each feature depends on the number of different values observed on the train-
ing set. Therefore, different features can be discretized with different number of
intervals.

3 Discretization Model for Dense Regions Discovery

In this section, we present several methods which are particullysuitable to dis-
cretize data matrices.

3.1 Equal Width Interval

Equal width interval method is to discretize data into k equally sized bins, where
k is a parameter provided by users. Given a variable v, the upper bound and
lower bound of v are vmax and vmin, respectively. Then, this method use formula
below to compute the size of bin:

λ =
vmax − vmin

k

Hence, for ith bin, the bin boundary is [bi−1, bi], where bi = b0+iλ, b0 = vmin, i =
1, ..., k − 1.

Equal width interval method can be applied to each feature indendently. Since
this method doesn’t class information, thus it is an unsupervised discretization
method.

In the problem of dense regions discovery, given a data matrix X , vij repre-
sents the value of entry xij , so we can also apply Equal width interval method
to discretize X . In such cases, we define k=max{1, dIn(mn)e} as the number of
intervals of m× n matrix X . If m = n, k=max{1, d2In(n)e}.

3.2 Supervised Adaptive Width Interval

As we have mentioned before, there are two main drawbacks of equal width in-
terval method. One is that it may be influenced by outliers, the second one is
that it does not use the class information. These two problems are correlated in
nature. Suppose the attributes for discretization are numerical variables, if there
exists several classes in the dataset, then it is very likely that the mean and vari-
ance of these classes are differnt. Therefore, using this information, we may get
more informative discretization results for interesting patterns discovery. This
is our motivation of using supervised equal width interval in our discretization
tasks.

Suppose there are r classes labled C1, ..., Cr in the dataset. As to variable
v, the means of v in each class of the dataset are v1, ..., vr, respectively. The
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maxmial value and minimal value in class Ci are vi
max and vi

min. Then, our idea
Supervised adaptive width interval method is to partition vi

max−vi and vi−vi
min

into k parts, individually. In the end, we can divide all the data into 2k bins.

λi
u =

vi
max − vi

k

λi
l =

vi − vi
min

k

bi
j







0 ≤ j < k, vi − λi
ljj

j = k, vi

k < j ≤ 2k, vi + λi
u(j−k)(j − k)

This method is different with Equal Width Interval method. For example,
given a dataset with continusous attribute v while vmax = 100, vmin = 0 and
v = 60, if we want to partition the data into 4 parts. Then, for Equal Width In-
terval method, the partition is {0, 25, 50, 75, 100}, while the partition of Adaptive
Width Interval is {0, 30, 60, 80, 100}.

A more general form of Supervised Adaptive Width Interval discretization is
as follow:

λi
uj = ρuj(v̂i

−v∗)

λi
lj = ρlj(v

∗ − v̌i)

where 0 < ρj < ρj+1 ≤ 1, v̌i < vi < v̂i, j = 1, ..., k − 1.

In the formula, v∗ is self-selecting value in the data value range between
vmax and vmin. For instance, besides v, user can also select median as v∗. As
to ρlj , it provides the flexibility for user to select suitable length of interval
for discretization. The setting of these parameters depends on the datasets and
mining tasks.

Generally, we can use this formula to do discretization of data in certain
value. We can also adopt this approach for iterated discretization. For example,
we can first partition the data into two parts and perform supervised adaptive
width interval discretizationby by a certain value v∗. Then, using v∗ as vmin in
the right part and v∗ as vmax as left part, we can also select other values as v∗

to do discretization on any subset of the data. This process proceed until certain
criteria satisfies, e.g., number of bins.

The merits of Supervised Adaptive Width Interval method is to overcome
the drawbacks of Equal Width Interval method. In some cases, the Supervised
Adaptive Width Interval is more useful to inditify potential patterns, we will
show this through our Web application and example.
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3.3 Mixed Equal Frequency Interval and K-means Discretization

Compare with Equal Width Interval, the main advantage of Equal Frequency
Interval is that the equal frequency discretization produces even amount of in-
stance into n/k bins based on the ranking values, so it can effectively avoid the
problems of outlier and the influence of data means or variance. In many ana-
lytical tasks, analysts prefer to user equal frequency because it seems easier to
use and interpret, e.g., analyse the user patterns of top 5% Web pages being
frequently visited. However, this method ignore the correlation in the data. As
results, using Equal Frequency Interval discretization may lose some useful data
information.

Recall a well known approach in clustering is k-means, the essence of the
method is to minimizes the intra-interval distance and maximizes the inter-
interval distance. It begins with an equal width distribution of the observed
values over the k intervals, followed by an iterative process where the values
near the boundaries change between intervals while this process improves certain
criterion until no more imprvement can be achieved. Motivated by k-means, we
combine it with equal frequency interval for discretization.

The idea is that we first use equal frequency interval to discretize the data
into k bins, then we use k-means to adjust the values in each bin. We refine the
objective function to minimizes intra-interval data variance and maxmize the
inter-interval data variance with some constrain on the difference of frequency
on each bin. Combining this two methods, the discretization results can better
represet the underlying data patterns. The algorithm of the purposed method is
summarized as follows:

Begin
1. Import dataset D with n instance in numerical variable v
2. Sort D into D′ = d1, ..., dn by v and set number of interval k
3. For each di, i=1...,n. Put di into bin bbi/kc

4. Put all n instance into k bins until each bin contains n/k instance
5. Calculate the mean and variance of each bin and the variance among bins
6. Set the number of movable values and maximal difference of instances in bins
7. For each value around the interval boundaries, move it to neighbour intervals
8. Recompute the mean and variance of each bin and the variance among bins
9. If the variance of means among bins is larger and the variance in bins is smaller
10. Save the new partition of intervals, otherwise, go to 7
11. Output the discretization with k adjusted bin-size intervals for D

End

3.4 Two-Way Discretization

In dense regions discovery, the most important issue is to find subsets from
data matrix in which have potentially useful patterns. However, matrices with
continuous values are hard to apply dense regions discovery algorithms since
most dense regions discovery algorithms assume the values of entries are discrete.
Therefore, we need to discretize matrices with continuous values into discrete or
categorical entries first. For an entry xij in matrix X , it belongs to ith row and
jth column. If X is a m × n matrix, then X is a two-dimensional matrix with
m and n attributes on each dimension. Specially, if each dimension represents
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one variable, then we can regard the value vij of xij as a data point in ith row
and jth column, individually. For example, in Table 4, vij denotes the frequency
of visiting from page i to page j. The characteristic of such matrix is that the
rows and columns represeting the same attribute,e.g., frequency. Thus, how to
discretize such matrix become an interesting research problem.

For efficient dense regions discovery, our idea is to discretize the continuous
value of xij into two discrete value by vertical and horizonal searching. It is
so called Two-Way discretization. The major steps for discretization of X as
follows:

Begin
1. Import m × n matrix X with continuous variable v
2. Sort each row Ri and column Cj by v respectively
3. Set the criteria to discretize every row Ri and column Cj , e.g., equal frequency interval
4. Determine number of intervals k and interval boundaries for Ri and Cj

5. For each xij , i = 1..., m, j = 1, ...n. Discretize xij by Ri and Cj , store in vrij and vcij

6. Output the two-way discretization matrix

End

3.5 Examples of Web Data Discretization

In this section, we first introduce several indexes for Web usage mining and then
adopt our purposed methods for Web Data discretization.

Table 1 is a dataset of user Access sessions. It contains browsing behavior
of three users(User 1, User and User 3) during time period T1, T2 and T3,
individually. The Web pages visited by users are A, B, C, D, E, F, G and H.
The left Website topology of Fig4 donotes the connection of these Web pages.
The corresponding connection matrix of the Website topology lists in Table 3.

User1 User2 User3

T1 EHCABF ACHECABFBG ABGBACH

T2 ADACHE GBACH ACHEHCABF

T3 DACHEH ADACHEHCABFBG ABGBACHC

Table 1. User Access Sessions

User1 User2 User3 SAE

T1 EF EF GH 34%

T2 DE GH EF 38%

T3 DE DEHFG GH 48%

UAE 33% 32% 25%

Table 2. Session Access Efficiency

Example 1. Table 4 is the access matrix (refer to Appendix 1) obtained from
Table 1. Based on the visiting frequency from one page to another page, we can
classify the data into several categories. In this case, we divided the accesses
into three classes by frequency: High(H), Median(M), and Low(L), excluding
no access entries which are labeled as None(N). The highest frequency is 9 and
the lowest is 1, using Equal Frequency Interval, we obtain three bins: L={1,
2, 3},M={4, 5, 6},H={7, 8, 9}. In this case, values are discrete, however, this
method is suitable for continuous values. Table 5 shows the result using Equal
Width Interval(EWI) for discretization.

Example 2. Considering the difference in the connection of pages, we may get
more potential information of page access. In Table 3, for entry xij , if xij = 1,
it means that there is a hyperlink from page i to page j. Otherwise, xij = 0. So,
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we can classify the page relationship into two kinds: one is direct access and the
other is indirect access. Using this class information, we can employ supervised
discretization method in this case. In this case, we divided all xij into three
classes by frequency: High(H), Median(M), and Low(L) by using supervised
adaptive width interval (SAWI) method. Here, k = 2, we merge two bins near
the mean, so we get 3 classes of page frequency by different page access. The
result shows in Table 6.

Page A B C D E F G H

A 0 1 1 1 0 0 0 0

B 1 0 0 0 0 1 1 0

C 1 0 0 0 0 0 0 1

D 1 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0 1

F 0 1 0 0 0 0 0 0

G 0 1 0 0 0 0 0 0

H 0 0 1 0 1 0 0 0

Table 3. Original Connection

Page A B C D E F G H

A 0 7 9 2 5 4 4 8

B 3 0 3 0 0 4 5 3

C 4 4 0 0 5 4 2 8

D 3 1 3 0 3 1 1 3

E 4 5 4 0 0 4 2 4

F 0 2 0 0 0 0 2 0

G 3 3 3 0 0 0 0 3

H 4 4 6 0 5 4 1 0

Table 4. Access Matrix

Page A B C D E F G H

A N H H L M M M H

B L N L N N M M L

C M M N N M L L H

D L N L N L L L L

E M M M N N M L M

F N L N N N N L N

G L L L N N N N L

H M M M N M M L N

Table 5. EIW Discretization

Page A B C D E F G H

A L H H L H H H H

B L L M L L M M M

C M H L L H H M H

D L L M L M L L M

E H H H L L H M M

F L L L L L L M L

G M L M L L L L M

H H H M L M H L L

Table 6. SAWI Discretization

Page A B C D E F G H

A 0 1 1 1 1 0 1 0

B 1 0 0 0 0 1 0 0

C 1 0 0 0 0 1 0 0

D 1 0 0 0 0 0 0 0

E 1 0 0 0 0 1 1 0

F 0 0 0 0 1 0 0 0

G 1 0 0 0 0 0 0 1

H 0 0 0 0 0 1 1 0

Table 7. Optimal Connection

Page T1 T2 T3 Total(m)

A 6 8 5 19

B 3 5 3 11

C 7 5 5 17

D 0 12 11 23

E 27 18 15 60

F 171 123 56 350

G 35 9 46 90

H 55 120 145 320

Table 8. Staying Time

Fig 1 and Fig 2 show the comparison of discretization results by using EWI
method and SAWI method. We can see that the data distribution after discretiza-
tion is quite different. Hence, we can conclude that using different discretization
methods on the same data matrix, we can still get different results. As to the
problem how to choose proper discretization method for mining tasks, we will
discuss it in later chapter.
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Example 3. Access Distinctness (AD) (refer to Appendix 2) is a useful in-
dex of finding potential patterns with access efficiency (refer to Appendix 2)
problem from access matrix. Table 9 is the AD matrix. We can see that en-
tries in the matrix are continuous values. We attempt to use Mixed Equal Fre-
quency Interval and K-means method (MEK) to discretize the matrix. Here,
k=max{1, dk2In(8)e}=5. So, we discretize the AD value into 5 classes, ranging
from level 1 to level 5.

Discretization of AD matrix can help us to analyze user access patterns under
the Website structure. Website analyst should pay more attention to the access
patterns with higher level of AD value because these patterns are important for
users, however, they can be efficiently accessed in current Website topology.

Page A B C D E F G H

A 0 3.4 3.6 2.2 5.2 4.2 4.2 4.6

B 2.6 0.0 3.6 0 0 2.8 3.0 5.0

C 2.7 3.9 0 0 3.8 5.3 4.6 3.2

D 2.6 2.8 3.6 0 5.4 3.5 3.5 4.3

E 5.0 6.6 3.6 0 0 7.1 6.4 2.2

F 0 2.2 0 0 0 0 2.8 0

G 3.9 2.6 5.0 0 0 0 0 5.7

H 3.9 5.3 2.9 0 2.4 6.0 4.6 0

Table 9. AD Matrix

Page A B C D E F G H

A 0 2 3 1 5 4 4 4

B 1 0 3 0 0 2 2 4

C 1 3 0 0 3 5 4 2

D 1 2 3 0 5 2 2 4

E 4 5 3 0 0 5 5 1

F 0 1 0 0 0 0 2 0

G 3 1 4 0 0 0 0 5

H 3 5 2 0 1 5 4 0

Table 10. MEK Discretization

Class Range Frequency

5 5.2-7.1 9

4 4.2-5.0 9

3 3.6-3.9 8

2 2.8-3.5 9

1 2.2-2.7 8

0 0 21

Total 0-7.1 64

Table 11. Index Statistics

Example 4. Access Interest(AI) (refer to Appendix 2) is also a very useful
index of finding potential patterns with access efficiency (refer to Appendix 2)
problem. The advantage of AI is that it considers the time factor. Table 12 is the
AI matrix, which is calculated by AD matrix (see Table 9) and page staying time
(see Table 8). In this example, we use two-way discretization method, setting
k = 2. S denotes that this entry is significantly larger than other entries in the
row or column while N denotes it is not significant. Here, we define an entry is
significant if its AI value is larger 80% entries in the row or the column. Table 13
demonstrates the discretization. For example, SN of entry xAD , S denotes the
AI value of xAD is significant in column D but not significant in row A. Two-
way discretization is especially effective in our purposed dense regions discovery
algorithms. What’s more, it can meet the needs of different mining tasks.

Page A B C D E F G H

A 0 6.7 7.2 5.8 9.6 10.1 8.9 10.4

B 5.9 0 6.9 0 0 8.7 7.6 10.8

C 6.4 7.2 0 0 8.2 11.2 9.2 9.0

D 6.2 6.3 7.3 0 9.8 9.4 8.2 10.1

E 9.3 10.8 7.9 0 0 13.1 11.4 8.0

F 0 8.0 0 0 0 0 8.9 0

G 8.6 7.1 9.6 0 0 0 0 11.7

H 9.7 11.1 8.7 0 8.2 12.5 10.6 0

Table 12. AI Matrix

Page A B C D E F G H

A 0 NN NN SN SN NS NN NS

B NN 0 NN 0 0 NS NN SS

C NN NN 0 0 NN NS NS NN

D NN NN NN 0 SS NN NN NS

E SN SN NN 0 0 SS SS NN

F 0 NS 0 0 0 0 NS 0

G NN NN SS 0 0 0 0 SS

H SN SS SS 0 NN SS SN 0

Table 13. Two-way Discretization
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Fig. 1. Comparison of Original and Optimized Website Topology

4 Experiments

4.1 Web Datasets

ESPNSTAR Web Datasets
In this section, we use the Web-log data from ESPNSTAR.com.cn, a sports
website in China, to test and validate the performance and effectiveness of our
algorithm. Each dataset contains a set of access sessions during some period of
time. We use two months’ Web-log data to do the experiments. Table 1 lists
the datasets for experiments. ES1, ES2 and ES3 are the log datasets during
December, 2002 and ES4 and ES5 are the log datasets from April, 2003.

Dataset No.Accesses No.Sessions No.Visitors No.Pages
ES1 583,386 54,300 2,000 790
ES2 2,534,282 198,230 42,473 1,320
ES3 6,260,840 517,360 50,374 1,450
ES4 78,236 5,000 120 236
ES5 7,691,105 669,110 51,158 1,609

Table 1. Characteristics of real datasets

4.2 Perofrmance Analysis

In section 3, we introduce four discretization methods for Web data. They
are Equal Width Interval (EWI), Supervised Adaptive Width Interval(SAWI),
Mixed Equal Frequency and K-Means(MEK), and Two-way discretization. In
this section, we adopt these methods with real Web usage datasets to evaluate
the performance of these algorithms.
Experiment 1. In this experiment, we increase the size of dataset for dis-
cretization. The variable for discretization is the staying time on each page. After
preprocessing of ES1, we got a dataset with continuous values T = {t1, ..., tn}
with 39,500 instances. We classify Web pages into two categories: index pages
and content pages. The number of interval k is determine by In(n), where n is
number of values. We adopt EWI, SAWI and MEK for testing.

In Fig 3, we can see that the running time for three different discretization
methods is satisfying. Since EWI is the simplest method, so it needs less time
to finish the discretization task.
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Experiment 2. In [12], we suggest a multidimensional model to store informa-
tion from Web data, which focuses on Web page, user and time profiles. In this ex-
periment, we used ES4 to do the experiment. The dataset contains the access in-
formation of 120 members during April, 2003. We have also recorded the member
information for user profile. We increase the number of dimensions(attributes)
from the multidimensional model to test the scalability of different discretization
methods. Some attributes are generated by other attributes,e.g., AD value. We
also adopt EWI, SAWI and MEK for testing. In this experiment, we set the
number of instances as 500. Fig 4 shows the experiment results. We can see that
the running time of SAWI obviously longer than the others. It can be explained
that each attribute may have its own class label, a lot of computation spent on
discretizing data from different classes, individually.
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Experiment 3. In this experiment, we want to evaluate the affects of the
number of intervals k to the performane of different discretization methods.
We used ES2 dataset to generate AD matrix for testing the four discretization
methods suggested. From the experiment result in Fig 5, we notice that MEK
method spent longer time when increasing k. The reason is that when the number
of bins increase, the cost for performing k-means process will also increase a lot.
However, usually k is not a large number. Hence, the number of intervals won’t
affect the performance of discretization much.
Experiment 4. The last experiment is to test the scalability of these dis-
cretization methods for large matrices. Using ES5, we want to discretize AI
matrix for dense regions discovery. The experiment result demonstrate that due
the time complexity of high dimensional data, the running time will increase
significantly, especially the MEK and Two-way discretization. However, the size
of matrix is less than 1,000, the running time is still acceptable.
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5 Conclusion

In this paper, we suggest several methods for Web data discretization. These
methods can meet the needs of different data mining tasks, especially for mining
dense regions from large matrices. We also the effects of the discretization results
to patterns discovery. The discretization methods for Web data can be used in
real Web information management applications, such as detecting Web usage
patterns and analyzing user behavior. In the future, we purpose to implement
the discretization algorithms in a multidimensional Web usage mining system.
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Appendix 1: Counting of Accesses
Since we want to investigate the users navigational behaviors under certain Web-
site topology, the user access sessions reconstructed are the users traversal paths.
A user access session is equivalen to a traversal path in this paper. As we have
mentioned, if Web pages are cached in the Web browser, the Web server will not
record the backtrack accesses in the Web server logs. However, we can recover
backtrack accesses by checking the Website topology. Then, we present a data
structure of aggregating access sessions as follows: Given a Website topology
G=V,E, where V=V1, V2, ,Vn and E=E1,E2, , Em. Also, given a user acce
session dataset D=S1, S2,Sk, for each access session SD, S=P1, P2,, Pr, where
PiV, i=1,, r. We set Cij= Count(Pi, Pj) to indicate the number of accesses from
Pi to Pj in the acces session dataset D. We notice that the access session is
the traversal path that a user follows in a Website topology. Therefore, any two
adjacent pages in the session must be accessible by one click. Therefore, there
are two cases of such counting, one is that Pi and Pj are adjacent in the access
session S which also means the link of Pi Pj ∈ E. The other case is that Pi and
Pj are adjacent which means there exist at least a page between Pi and Pj. For
the first case, we will count it whenever it appears. As to the second case, we
will only count once in the access session.

For example, given access session S=A, B, C, B, in the first case, we will
count AB, BC, and CB once since they are adjacent in the session, respectively.
As to the second case, we count AC once. But we wont count AB again since it
has been counted once in the first case. So, Count(A, B)

Appendix 2: Access Efficiency
From the above analysis, we need to find new measurements to evaluate the
Website access situation under a Website topology. For a given Website topology,
visitors must follow certain traversal paths to access the Web pages that they
are interested in. For instance, if a visitor wants to sequentially visit Web page
A, F,E (See Fig 1), the shortest traversal path is A, B, F, B, A, C, H, E. The
corresponding access sequence is S = AB, BF, FB, BA, AC, CH, HE. Thus, the
visitor should click at least seven times to access the target pages A, F, E. A
access P1 P2 is defined as the access from page P1 to P2. If a visitor wants to
browse the same target pages in a different order A, E, F, another traversal path
A, C, H, E, H, C, A, B, F with eight clicks is needed, the corresponding accesses
are AC, CH,HE, EH, HC, CA, AB, BF. But if one want to access other 3 pages
A, B, G, just two accesses are enough. We observe that the access efficiency
of A, F, E is low due to the redundancy of accesses. In general, there are two
types of access redundancy. One is the jump-track access. For example, starting
from A, the target page is F, we must access B first before we access F. The
other type of redundancy access is the backtrack access, e.g., in order to access
C from B, a visitor must click the back button in the browser to go from B to
A and then to C, even though A has been accessed previously. The difference
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between the jump-track access and backtrack access is determined by looking
into whether the access has been performed in a visitor access session, e.g., in
accessing A,F, E, AB is a jump-track access while BA is backtrack access. In this
paper, we call both of them non-target accesses, comparing with target accesses
which acquire the target Web pages directly. In order to measure the access
efficiency of a visitor access session for a Website topology, we define the User
Access Efficiency (UAE) as follows:

Definition 2. Given a user access session S = s1, s2, , sm, A = a1, a2, , ai is the
ascend accessing session, B = b1, b2, , bj is the backtrack access session, where
A ⊂ S and B ⊂ S, A ∩ B = Φ. The User Access Efficiency (UAE) is given

UAE(S) = 1−
|A|+ |B|

|S|
(1)

where |S| is the length of session S.

If Web pages are cached in the Web browser, the Web server will not record
the backtrack accesses in the Web-log. For example, a visitor follows a traversal
path A, C, H, E, H, C, A, B, F, the Web-log will only contain A, C, H, E, B,
F, which is not a complete traversal path. Therefore, we propose a new measure
called Server Access Efficiency to evaluate the access efficiency from thee Web
server side of view.

Definition 3. Given a user access session S = s1, s2, , sm, A = a1, a2, , ai is the
ascend accessing session, B = b1, b2, , bj is the backtrack access session, where
A ⊂ S and B ⊂ S, A ∩ B = Φ. The Serve Access Efficiency (SAE) is given

SAE(S) = 1−
|A|

|S| − |B|
(2)

where |S| is the length of session S.

Appendix 3: Indexes for Access Patterns Discovery

In our precious work, we suggest a novel measure named Access Distinctness
(AD) as below: Definition 1 Given Aggregating Session Matrix C and Topology
Probability Matrix P, the Access Interest Matrix is given by:

AD(i, j) = In(
Cij

Pij
+ 1) (3)

where Cij is the number of accessing from Web page Vi to Vj , and Pij is the
probability from Vi to Vj .

If an access pattern is distinct, it means the pattern is frequent user access
pattern, i.e., people would like to visit. However, the access efficiency of the
pattern is relatively low, i.e., a visitor is hard to access related Web pages. A
pattern may raise our concerns if its AD value is higher than most other patterns.
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In practice, Website managers are eager to know which contents can attract
the visitors. It is natural that visitors will spend more time on the Web pages they
interested in. Hence, the temporal factor should also be taken into consideration.
Since the Web log also contains the access timestamps, so we can record the
time period spent on each page. Table 2 shows the staying time on each page
in the sample Website. Thus, we can use these information to identify really
interesting access patterns. For this purpose, we suggest another interestingness
measure named Access Interest (AI) as below:

Definition 2 Given Aggregating Session Matrix C and Topology Probability
Matrix P, page staying time T, the Access Interest Matrix is given by:

AI(i, j) = In(
CijTij

Pij
+ 1) (4)

where Cij is the number of accessing from Web page Vi to Vj , and Pij is the
probability from Vi to Vj , Tij is the average stay time of visiting Vi and Vj . Given
T = T1, T2, ..., Tn, Ti is the average staying time of Vi. We define Tij = Ti + Tj .


