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Abstract

In positron emission tomography (PET) a radioactive compound is injected into the body to promote

a tissue dependent emission rate. Expectation Maximization (EM) reconstruction algorithms are iterative

techniques which estimate the concentration coefficients that provides the best fitted solution, e.g. a

maximum likelihood estimate. For some applications of PET, the aim is to identify the shape of the

radioactive objects, and not only reveal the radioactive distribution. In this paper we propose a variant

of the EM algorithm that generates successive adjustments to the shape of these objects to find the best

fitted solution. This is an attractive approach for those applications of PET where the shape of special

objects (e.g. tumors) should be identified. We utilize a multiple level set formulation to represent the

geometry of the objects in the scene. The proposed algorithm can be applied to any PET configuration,

without major modifications.
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I. Introduction

One of the most important quality of PET is its ability to model biological and physio-

logical functions in vivo to enhance our understanding of the biochemical basis of normal

and abnormal functions within the body. PET is also useful for the detection of cancer,

coronary artery disease and brain disease. During a PET acquisition a compound contain-

ing a radiative isotope is injected into the body to form an (unknown) emission density

λ(x, y) ≥ 0. The positron emitted finds a nearby electron and annihilates into two photons

of 511 keV according to the equation E = mc2. This energy is strong enough to escape

the body. Since the two photons travel at almost opposite directions, a detector ring

surrounds the patient and collects all the emissions. For an emission event to be counted,

both photons must be registered nearly simultaneously at two opposite detectors. In Fig.

1 emission paths from two different regions are shown, i.e. along the tube covered by

detector pair AD, and along the tube covered by detector pair BC. Regions with higher

concentration of radioactivity cause a higher emission rate. Given the total number of

measured counts for each detector pair, the challenge is to locate all the emission sources

inside the detector ring. Emissions measured between two detectors could have taken place

anywhere along the tube between these two detectors, but with a systematic inspection
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of all detector pairs, it is possible to reveal variance in the emission rate along the same

tube.
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D

Fig. 1. Gamma-rays escape the body and are observed by the detectors.

Detection of the radioactive concentration in different tissues gives useful information

both for research and clinical purposes. This information is often analyzed and visualized

as an image. Unfortunately, the measured events also include noise such as accidental

coincidences that complicate the image construction. The Fourier-based filtered back-

projection [1] algorithm is a well established construction technique. This algorithm is

computationally efficient but the drawbacks are constructions with low signal-to-noise-

ratio and low resolution. Iterative methods to construct PET images have been an attrac-

tive approach during the last two decades. Most of these methods are based on maximum

likelihood estimates. Due to the inherent ill-posedness of this inverse problem, the recon-

structed images will have noise and edge artifacts, see [2], [3] for related problems. It is

well known that the standard EM algorithm [4], [5], [6] converges toward a noisy image

and it is necessary to terminate the iteration before the noise becomes too dominant [7]. If

the iteration stops too early, important information could be lost. A general approach to

address these problems is to utilize a regularization term according to certain a priori as-

sumptions of the desired image [8], [9], [10]. Results with deviation from these assumptions

will be penalized. For example, information from surrounding pixels can reveal irregular-

ities and remove outsiders. The total variation (TV) minimization has successfully been

used in many image processing applications [11], [12] among others. In [13] the standard

EM algorithm for PET was modified to incorporate the TV regularization. The blurring



LEVEL SET REGULARIZATION IN POSITRON EMISSION TOMOGRAPHY 4

effect was subdued using this approach, but improvements are still needed.

Common for the iterative methods mention above is that they estimate the concen-

tration coefficients that provides the best fitted solution based on a maximum likelihood

estimate. For some applications of PET the aim is to identify the shape of the radioactive

objects, and not only reveal the radioactive distribution. The novelty in this paper is to

propose a variant of the EM algorithm that generates successive adjustments to the shape

of these objects to find the best fitted solution. This is an attractive approach for those

applications of PET where the shape of special objects (e.g. tumors) should be identified.

In order to reconstruct better images, we reduce the set of possible solution by estimat-

ing the emission rate as a piecewise constant function. We assume the constant values

are approximately known and try to locate the discontinuities of the piecewise constant

function. A multiple level set formulation is used to represent the geometry of the objects

in the scene. Level set method is a technique developed to handle topological changes in

a moving front (i.e. region boundaries) [14], [15], [16], [17]. By incorporating the level

set method into the image construction, sharp boundaries between different tissues are di-

rectly given for PET images. This variant of the EM algorithm can be applied to any PET

configuration, without major modifications. In our work we may also derive advantages

from side information (MR or SPECT) to improve the image construction capacity.

Geometric curve-evolution techniques for tomograpic reconstruction problems have been

proposed before, see [18], [19], [20] and the references therein. Simmular to [18], we assume

the object intensity values to be piecewise constant, but as in [19] we allow for multiple

object regions. However, due to the piesewise constant intensity value restriction, our cost

functinal is simpler than the one they propose in [19].

The remaining of this paper is organized in the following way. In Section II we summarize

the theory behind the EM approach and introduce specific notations used throughout this

paper. Partial differential equation techniques have successfully been used in many image

processing applications, and a predecessor for our approach is given in Section III. In

Section IV we explain the main idea behind the level set method and demonstrate that level

set functions can be used to represent general piecewise constant functions [21]. Motivated

by this we utilize a level set formulation to represent PET images with piecewise constant
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emission densities in Section V. In this section we also give implementation details. Finally,

in Section VI we report some numerical results.

II. Maximum likelihood expectation maximization

From the measured emission an image can be constructed by the EM algorithm [5],

[6]. This algorithm provides an iterative formula to construct an image which makes the

measured data most likely to occur. Given an image, the aim to maximize the conditional

probability of the data by using a likelihood function (and later we will also use a log-

likelihood function):

l(λ) = f(data|λ) or llog(λ) = log(l(λ)). (1)

Here, data is the measured counts in the detector ring and λ :Ω→IR is the unknown emis-

sion rate causing these counts, and Ω is the image domain. The region to be reconstructed

is usually covered by a uniform mesh where each square in the mesh corresponds to one

pixel in the PET image. The discrete representation of λ, and other essential notations

for describing the EM image reconstruction model are listed in Table I.

b pixel index (1, 2, . . . , B).

λb unknown source intensity at a pixel b, λb ≥ 0 ∀b.

t detector pair index (1, 2, . . . , T ).

nt total number of coincidences counted by detector pair t, nt ≥ 0 ∀t.

Ptb probability for an emission from b to be detected in t.

TABLE I

Notations used throughout this paper.

Each element Ptb in matrix P describes the probability for an annihilation event that

occurred in the area of the source covered by pixel b to be detected by detector pair t.

Several physical factors such as attenuation, scatter and accidental coincidence corrections,

time-of-flight, positron range and angulation information etc. can be incorporated in the

probability matrix P . To compute Ptb the angle-of-view method was chosen in this paper,

but other methods can also be used [22], [23]. By the angle-of-view method each element
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Ptb in the probability matrix P is approximated by the largest angle (in fraction of π)

completely contained within tube t as seen from the center of b. For details about the

angle-of-view see the paper of Sheep and Vardi [6]. The intensity value λb is the information

we search since it is related to the tracer concentration. During the acquisition process

a random number of emission is generated from a Poisson distribution. A non-negative,

integer-valued, random variable Z follows a Poisson distribution if

Poisson(Z = k) = e−σ σk

k!
(2)

where σ > 0 and Z has mean E(Z)=σ. The Poisson distribution is applicable to many

problems involving random events, such as particles leaving a fixed point at a random

angle. For a moment we focus on one of the tubes in Fig. 1 and assume this tube

corresponds to the region covered by detector pair t = 1. Given the mean (Pλ)1 we want

to maximize the probability for (Pλ)1 to fit the measured data n1:

Poisson(Z = n1) =e−(Pλ)1
(Pλ)n1

1

n1!

⇓

∂

∂(Pλ)1

Poisson(Z = n1) =
e−(Pλ)1(Pλ)n1−1

1

n1!
(n1 − (Pλ)1) = 0,

(3)

where a maximum is obtained for n1 = (Pλ)1, and similarly the maximum is achieved for

n2 = (Pλ)2 if we focus on region covered by detector pair t = 2. The measured coincidence

events also include scattered and accidental coincidences. Some events produced inside

the source pass undetected because of tissue attenuation or photon traveling path that

do not intersect the detector ring. This complicates the image construction. However,

each nt is distributed according to a Poisson distribution and since all measurements are

independent of each other, the likelihood over all projections reduces to the product of the

separate projections likelihood [5]. Therefore we want to maximize

l(λ) =
T∏

t=1

e−(Pλ)t
(Pλ)nt

t

nt!
. (4)

To simplify the calculation, the log-likelihood function is employed to convert (4) to the

form

llog(λ) =
T∑

t=1

[log e−(Pλ)t + log (Pλ)nt
t − log(nt!)] = −

B∑
b=1

λb +
T∑

t=1

nt log (Pλ)t + K. (5)
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In (5) we exploit the conversions

T∑
t=1

(Pλ)t =
B∑

b=1

λb and −
T∑

t=1

log(nt!) = K.

Since K is independent of λ this constant will be ignored. Maximizing llog(λ) with respect

to λ will provide us with the best estimate of λ in a statistical sense. The optimization

problem can be rewritten by max llog(λ) = min−llog(λ) and thereupon a mathematical

formulation of PET becomes

min
λ

F (λ) = min
λ

( B∑
b=1

λb −
T∑

t=1

nt log (Pλ)t + V (λ)
)
, (6)

where V (λ) is a regularization term introduced to improve image quality [7], [8], [9], [10],

[13], [24]. Several regularization methods tend to blur edges because both noise and edges

contribute to inhomogeneous behavior. To subdue the blurring effect, the total variation

norm of λ was introduced as a regularization term in [13]. In the next section we give a

short overview of the TV-based EM algorithm. This algorithm is related to our approach

and some of the calculations derived below are needed for our level set algorithm described

in Section V.

III. A total variation based EM algorithm

In [13], an algorithm was designed to find the pointwise values of λ. The authors covered

the domain Ω with a uniform mesh where each square in the mesh corresponds to one pixel

in the PET image. The emission density function λ is represented by a piecewise linear

function or piecewise constant function where λ takes value λb at pixel b, b = 1, 2, . . . , B. In

order to regularize the problem, they tried to find a minimizer for the following functional

L(λ) = α

∫
Ω

|∇λ|dx +
( B∑

b=1

λb −
T∑

t=1

nt log (Pλ)t

)
. (7)

Let ~λ = {λb}B
b=1 be the vector containing the values of λ at pixels 1, 2, . . . , B. With this

notation, it is easy to calculate for (7) that

∂L

∂~λ
= αC(~λ)~λ + ~e− P t(~n./P~λ). (8)
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In the above, C(~λ) is a matrix depending on ~λ, ~e is the vector with unit entries, P t is the

transpose of the matrix P and ~n./P~λ is the element wise division of vector ~n by vector P~λ.

If in (8) we assume a steady state solution and approximate ~e by ~λk+1./~λk, the One-Step-

Late (OSL) algorithm [13] is the following fixed point iteration for finding the minimizer

of (7)

~λk+1 =
[
αC(~λk) + diag(1./~λk)

]−1
P t(~n./P~λk). (9)

In (9) diag(1./~λk) is the matrix with 1./~λk on its diagonal and C(~λk) is a finite difference

approximation for −∇ · (∇~λk./|∇~λk|). This algorithm finds all the pixel values λb. In

practice, we know that λ can only take a few constant values in PET images. However,

this information is not used in the above algorithm. Below we demonstrate that such

information can be incorporated and handled in an efficient way by using the level set

framework. See also [25], [26] for other applications where level set based ideas are used

to identify piecewise constant functions.

IV. An introduction to the level set method

The level set method was proposed in Osher and Sethian [14] for tracing interfaces

between different phases of fluid flows. Later it has been used in many applications

involving movement of interfaces for different kind of physical problems [15], [16], [17]. In

the following we shall present a ”unified” framework, first presented in [21], [27], of using

multiple level sets to represent piecewise constant functions, and use this to identify the

function λ.

Let Γ be a closed curve in Ω ⊂ IR2. Associated with Γ, we define a φ as the signed

distance function:

φ(x) =

 distance(x, Γ), x ∈ interior of Γ

−distance(x, Γ), x ∈ exterior of Γ.

It is clear that Γ is the zero level set of the function φ. In the case where Γ is not closed,

but divide the domain into two parts, the level set function can be defined to be positive

on one side of the curve and negative on the other side of the curve.

Once the level set function is defined, we can use it to represent general piecewise

constant functions. For example, assuming that λ(x) equals c1 inside Γ and equals c2



LEVEL SET REGULARIZATION IN POSITRON EMISSION TOMOGRAPHY 9

outside Γ, we see that λ can be represented as

λ = c1H(φ) + c2 (1−H(φ)) , (10)

where the Heaviside function H(φ) is defined by

H(φ) =

 1, φ > 0

0, φ ≤ 0.

In order to identify the piecewise constant function λ, we need to identify the level set

function φ and the coefficients ci, i = 1, 2.

If the function λ(x) has many pieces, we need to use multiple level set functions. We

follow the ideas of Chan and Vese [21], [28]. Assume that we have two closed curves Γ1

and Γ2, and we associate the two level set functions φj, j = 1, 2 with these curves. The

domain Ω can now be divided into four parts:

Ω1 = {x ∈ Ω, φ1 > 0, φ2 > 0} ,

Ω2 = {x ∈ Ω, φ1 > 0, φ2 < 0} ,

Ω3 = {x ∈ Ω, φ1 < 0, φ2 > 0} , (11)

Ω4 = {x ∈ Ω, φ1 < 0, φ2 < 0} .

Using the Heaviside function again, we can express λ with possibly up to four pieces of

constant values:

λ = c1H(φ1)H(φ2) + c2H(φ1)(1−H(φ2))

+ c3(1−H(φ1))H(φ2) + c4(1−H(φ1))(1−H(φ2)).
(12)

By generalizing, we see that n level set functions give the possibility of 2n regions. For

i = 1, 2, . . . , 2n, let

bin(i− 1) = (bi
1, b

i
2, . . . , b

i
n)

be the binary representation of i− 1, where bi
j = 0 or 1. A piecewise constant function λ

with constant coefficients ci, i = 1, 2, . . . 2n can be represented as (c.f. [26], [27])

λ =
2n∑
i=1

ci

n∏
j=1

Ri(φj), (13)
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where

Ri(φj) =

 H(φj), if bi
j = 0;

1−H(φj), if bi
j = 1.

Even if the true λ needs less than 2n distinct regions, we can still use n level set functions

since some sub-domains are allowed to be empty. Using such a representation, we only

need to determine the maximum number of level set functions that should be utilized.

For some applications, the function value inside each region may not be a constant and

change slowly. Thus, we may try to use quadratic, cubic or some higher order polynomi-

als to approximate the function inside each region. However, in this paper we focus on

piecewise constant representations. Below we use this representation together with an EM

algorithm to approximate the emission density λ.

V. A level set EM algorithm (LSEM)

In this section we shall use the level set idea to represent λ as a function that only

takes a limited number of constant values. Moreover, we assume that the constant values

are approximately known. Using these assumptions, we need to find the location of the

discontinuities between the constant regions to identify λ. Assume that the domain Ω can

be divided into a union of subregions such that all λb, having the same constant intensity

value belong to the same subregion. For such a case, we can use level set functions to

express λ = λ(φ) as in (13). Concerning the optimization problem, we utilize the fact

that calculations from (8) can be carried forward by the chain rule for λ(φ). We let

α = 0 to neglect the TV-regularization in (8), and presently we will introduce another

regularization term that is better suited in the level set framework. As the λ function

is already discretized, we shall also use discretized level set functions φj, j = 1, 2 . . . , n.

From the chain rule we get
∂L

∂φj

=
∂L

∂λ

∂λ

∂φj

.

The calculation of ∂L
∂λ

is given in (8) with α = 0. We only need to have ∂λ
∂φj

in order to get

∂L
∂φj

. If λ only takes two constant values c1 and c2 as in (10), it is easy to see that

∂λ

∂φ
= (c1 − c2)δ(φ),
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where the Delta function δ(φ) = H ′(φ). In case that we need two level set functions φ1

and φ2, it follows from (12) that

∂λ

∂φ1

=
(
(c1 − c2 − c3 + c4)H(φ2) + c2 − c4

)
δ(φ1), and

∂λ

∂φ2

=
(
(c1 − c2 − c3 + c4)H(φ1) + c3 − c4

)
δ(φ2).

(14)

For the OSL algorithm given in Section III, the total variation of λ is used as the

regularization term. If we use the level set method and assume that the constant values

ci are (approximately) known, it is better to use the length of the zero level set curves as

the regularization term (c.f.[21], [26]). In fact, the length of the zero level set curve for φj

is

R(φj) =

∫
Ω

|∇H(φj)|dx =

∫
Ω

δ(φj)|∇φj|dx.

Moreover, its derivative with respect to φj is (c.f.[26, sec.3]).

∂R

∂φj

= −∇·
( ∇φj

|∇φj|

)
δ(φj).

In our simulations, we have used the length term as the regularization term.

Once the gradient ∂L
∂φj

is available, we can use the following gradient method (Algorithm

1 below) to find a minimizer for the optimization problem assuming that the constant

values ci are approximately known.

Algorithm 1: (Level Set EM algorithm)

• Choose initial values for φ0
j and the time step sizes ∆t0j .

• For all the level set functions φj, update the functions as

φn+1
j = φn

j −∆tnj
∂L

∂φj

(φn
j ).

• Reinitialize the level set functions φj if a ”sufficient” amount of pixel values of φj have

changed sign. Otherwise, go to the next iteration.

Some remarks about the implementation of the algorithm is given in the following:

• All intensity values are assumed to be approximately known.

• β weight the influence of the regularization term. An oscillatory curve may occur if β

is too small and β too large will deny a proper evolution of the curve. By trial and error

β ∈ (10−3, 10−4) was found to be a proper choice.
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• Approximate the Delta function with ε ∈ (0, 1) and use the exact Heaviside function

δε(φj) =
ε

π(φ2
j + ε2)

and H(φj) =

 1 if φj > 0

0 if φj ≤ 0.

• There are efficient numerical methods to reinitialize the level set functions. See [15],

[17], [29] for details about the reinitialization of the level set functions. The numerical

method we have used for the reinitialization is as in [27], [29], and we reinitialize the level

set functions each 100 iteration.

VI. Numerical results

In this section we report some numerical results. The One-Step-Late (OSL) algorithm

[9] is implemented and will act as a guide for results achieved by our LSEM algorithm.

Below we challenge both the OSL algorithm and our LSEM algorithm with observation

vectors that are corrupted with noise according to the formula: scnn(x) = scnt(x) +

η(x)
√

τ · scnt(x), where η(x) ∈ [0, 1] are random numbers, τ direct the noise level and

scnt(x) and scnn(x) are the true and noisy observation vector respectively. The relative

error between the true and the noisy observation vector is measured by

err =

( ∫
Ω
(scnt − scnn)2dx

) 1
2

( ∫
Ω

scn2
t dx

) 1
2
.

One drawback with the LSEM algorithm is that all coefficients ci in (13) have to be

approximately known a priori. For some of the tests below we perturbate all coefficients

ci up to ± 10 % of their true values to see how this influence the result. In practical

application such approximately information of the ci values (tissue and isotope dependent)

are normally available.

In our first example we try to reconstruct a 32× 32 image of two circles, one inside the

other, as seen in Fig. 5(c). Total 1536 (32 position and 48 angular views) observations

with err ≈ 0.08 was given to us. Already after a few iterations with the OSL algorithm it

is possible to see some distinctive mark in the PET image depicted in Fig. 2.
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(a) Initial image
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(c) 30 iterations

5 10 15 20 25 30

5

10

15

20

25

30

(d) 100 iterations

Fig. 2. Evolution of a two circles using the OSL algorithm.

Two major drawbacks with the OSL algorithm are lack of termination criteria and the

introduction of noise as the number of iterations increases. In Fig. 2(b) the intensity value

in the outer circle is almost constant (as it should be in this test), but it is difficult to decide

the exact boundary for the inner circle. After 30 iterations the edges are emphasized but

so is the noise, as seen in Fig. 2(c). We must terminate the algorithm after 100 iterations,

otherwise the noise will be too dominant. The same noisy observation vector was thereafter

used as observation data for the LSEM algorithm and the results are given in Fig. 3. For

the two level set functions, no special assumptions were made, but it is desirable to start

with oscillating functions, as indicated in Fig. 3(a) and Fig. 4(a).
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(a) Initial φ1
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(b) 50 iterations
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(c) 150 iterations
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(d) 650 iterations

Fig. 3. Interfaces given by the zero level set of the function φ1.
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(a) Initial φ2
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(b) 50 iterations
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(c) 150 iterations
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(d) 650 iterations

Fig. 4. Interfaces given by the zero level set of the function φ2.

In less than 200 iterations both level set functions have converged to a constant shape

and these level set functions together with (12) were used to get Fig. 5(b). In this specific

test we used intensity values: c4 (dark), c2 (gray) and c1 = c3 (light), all perturbated

by ± 10 % of their true values and kept fixed during the iterations. With two level set

functions we see from (11) that it is possible to identify up to 4 distinct regions. The true

PET image depicted in Fig. 5(c) consists of only 3 distinct regions: background, outer

circle and inner circle. To handle this, we put c1 = c3 such that 2 regions yield the same

contribution to the constructed PET image.
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(a) OSL algorithm
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(b) LSEM algorithm (c) True image

Fig. 5. PET image of two circles constructed with different algorithms. A perturbation ± 10% of the

true coefficients ci are used for LSEM.

Even if this is a simple test that involves a non-medical image, it illustrates the potential

in the LSEM algorithm. Sharp edges are implicit given for the PET image and different

regions do not suffer from inhomogeneities caused by noise. Moreover, the geometry of

the objects in Fig. 5(b) are given by the level set functions in Fig. 3(d) and Fig. 4(d).
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Notice the differences in the shape of the inner circle revealed by the two algorithms in

Fig. 5. Unfortunately the outer circle in Fig. 5(b) seems smaller than the outer circle in

Fig. 5(c) and is holding another gray scale value. Remember that each coefficient ci are

linked to a unique region Ωi ⊆ Ω. Since these coefficients are perturbated and kept fixed

in this test, the regions Ωi, i = 1, 2, 3, 4, must compensate to fit the observation vector.

The two circles where reconstructed perfectly when the true ci values were used.

In our next example the interior structure of the PET image is more complicated. We

try to reconstruct a 32 × 32 image of the brain from 1536 observations (32 position and

48 angular views). In Fig. 6 the results obtained with the OSL algorithm are given.

(a) Initial image

5 10 15 20 25 30

5

10

15

20

25

30

(b) 5 iterations

5 10 15 20 25 30

5

10

15

20

25

30

(c) 100 iterations

5 10 15 20 25 30

5

10

15

20

25

30

(d) 1000 iterations

Fig. 6. Evolution of a brain image with the OSL algorithm.

In this test, we use the true observation vector without adding noise to it. Even so, only

few pixels are approximated to the correct intensity value by the OSL algorithm. Due

to this, important anatomical or functional details may be lost. We also used the true

observation vector as observation data to the LSEM algorithm. An evolution of the two

functions φ1 and φ2 are given in Fig. 7 and Fig. 8 respectively.
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Fig. 7. Interfaces given by the zero level set of the function φ1.
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Fig. 8. Interfaces given by the zero level set of the function φ2.

In less than 2000 iterations the two level set functions have converged. Combining φ1

from Fig. 7(e) and φ2 from Fig. 8(e) together with (12) we get the PET image depicted
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in Fig. 9(b). In this test we used: c4 (background), c2 (gray matter) and c1 = c3 (white

matter).
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(a) OSL algorithm
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(c) True image

Fig. 9. Construction of a PET image with different algorithms. The true observation vector was given,

and for the LSEM algorithm a perturbation ±10% of the true intensity values was used.

In Fig. 9(a) we observe a specter of intensity values inside regions that should take

a constant value. Further, there are unsharp boundaries between the tissue classes. By

construction, only 3 intensity values occur in the PET image were found by the LSEM

algorithm. This is a strength compared with the PET image constructed by the OSL

algorithm. One can use some kind of threshold technique to separate the intensity values

in Fig. 9(a) into 3 classes, but we did not find this approach to produce any better result

than the LSEM algorithm. Neither the LSEM algorithm is able to recover all the fine

details in the PET image, particularly some part of the dark region are mixed up with

gray region inside the brain in Fig. 9(b).

In our final examples we challenge our algorithm with a 64× 64 segmented MRI slice of

the brain. We used the true intensity values: c4 (background), c2 (gray matter) and c1 = c3

(white matter) and 6144 (64 position and 96 angular views) observations. Compared with

Fig. 5(c) and Fig. 9(c) the inner structure to be recovered here are more complicated, as

seen in Fig. 12(c). An evaluation of the φ1 and φ2 functions are given Figs. 10-11.
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Fig. 10. Interfaces given by the zero level set of φ1 for a brain image with a finer resolution (64× 64).
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Fig. 11. Interfaces given by the zero level set of φ2 for a brain image with a finer resolution (64× 64).
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In less than 250 iterations we have a good approximation for the shape of the two level

set functions. At convergence, almost all important information for φ2 is recovered. The

interior structure for φ1 is not that nicely recovered. This will influence the appearance of

the PET image, as seen in Fig. 12(b).
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(c) True image

Fig. 12. 64× 64 segmented MRI slice of the brain.

Also in this test it seems that LSEM algorithm mixed up some part of the dark region

with the gray region inside the brain. The reason for this may be that 1
4
c2=c3=c1, meaning

that 4 misplaced pixels with intensity value c2 generate the same error as one misplaced

pixel with intensity value c1 or c3. Even so, due to the similarity between Fig. 12(b)

and Fig. 12(c), we see that the LSEM algorithm produce better result than what we can

achieve with the OSL algorithm in Fig. 12(a).

To obtain improved reconstructions one approach is to use priors that reflect the nature

of the underlying radio-nuclide distribution. Recently there has been considerable interest

in incorporating side information derived from highly correlated anatomical information

(such as MR) in the form of Bayesian priors [30], [31]. The main attraction of this approach

is that one can expect to obtain improved reconstructions to the extent that functions

follows anatomy.

Assume that MR or SPECT observations are used to generate information of the PET

image, partly or in the entire domain Ω. Below we will demonstrate that such information

will improve the image construction capacity noticeable. First, we assume both φ1 and φ2

to be known in the left quarter of Ω. The initial state for both phases and the PET image

are depicted in the first row of Fig. 13, and the final solutions are given in the second row.
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(f) Final image

Fig. 13. Reconstruction of a 64× 64 brain image assuming that the level set functions are known in the

left quarter of the domain.

Compared with the results in Fig. 12 we see that a priori information of the geometrical

objects improves the reconstruction. Next, we assume both φ1 and φ2 to be known in the

left half of Ω. The initial state for both phases and the PET image are depicted in the

first row of Fig. 14, and the final solutions are given in the second row.
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(f) Final image

Fig. 14. Reconstruction of a 64× 64 brain image assuming that the level set functions are known in the

left half of the domain.

We only visualize φ1 and φ2 at their steady state where a perfect construction of the

PET image is achieved.

Another situation is that one phase can be fixed to a constant shape due to external

measurements while the other phase evolves freely. Below we fix φ1 to its true shape as in

Fig. 10(f), and let φ2 evolve from its initial state as given in Fig. 15.
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Fig. 15. Evaluation of φ2 if φ1 known
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Again, a perfect result was achieved at steady state. The same occurs if we fix φ2 to

its true shape and let φ1 evolve. A perturbation of the ci values up to ±10% was used in

both tests.
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[20] H. Feng, W. C. Karl, and D. A. Castañon, “A Curve Evolution Approach to Object-Based Tomograpic

Reconstruction,” IEEE Trans. Image Proc, vol. 12, no. 1, pp. 44–57, 2003.

[21] L. A. Vese and T. F. Chan, “A new multiphase level set framework for image segmentation via the Mumford

and Shah model,” International Journal of Computer Vision, vol. 50, pp. 271–293, 2002.

[22] J. Llacer, S. Andreae, E. Veklerov, and E. J. Hoffman, “Towards a practical implementation of the MLE

algorithm for positron emission tomography,” IEEE Trans. Nucl. Sci., vol. 33, no. 1, pp. 468–477, 1986.

[23] E. Veklerov, J. Llacer, and E. J. Hoffman, “MLE Reconstructions of a Brain Phantom Using a Monte Carlo

Transition Matrix and a Statistical Stopping Rule,” IEEE Trans. Nucl. Sci., vol. 35, no. 1, pp. 603–607,

1988.

[24] D. L. Snyder and M. I. Miller, “The use of sieves to stabilize images produced with EM algorithm for emission

tomography,” IEEE Trans. Nucl. Sci., vol. NS-32, pp. 3864–3872, 1985.

[25] J. Lie, M. Lysaker, and X.-C. Tai, “A Variant of the Level Set Method and Applications to Image Segmen-

tation,” Tech. Rep., CAM Report 03-50, UCLA, Math. Depart., 2003.

[26] X.-C. Tai and T. F. Chan, “A Survey on Multiple Set Methods With Applications for Identifying Piecewise

Constant Function,” International J. Numer. Anal. Modelling, vol. 1, pp. 157–172, 2004, Available online at

http://www.mi.uib.no/%7Etai/.

[27] T. F. Chan and X.-C. Tai, “Level set and total variation regularization for elliptic inverse problems with

discontinuous coefficients,” Journal of Computational Physics, vol. 193, pp. 40–66, 2003.

[28] T. F. Chan and L. A. Vese, “Image segmentation using level sets and the piecewise constant Mumford-Shah

model,” Tech. Rep., CAM Report 00-14, UCLA, Math. Depart., April 2000, revised December 2000.

[29] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, “A PDE-based fast local level set method,” J.

Comput. Phys., vol. 155, no. 2, pp. 410–438, 1999.

[30] B. A. Ardakani, M. Braun, B. F. Hutton, I. Kanno, and H. Ida, “Minimum cross-entropy reconstruction of

PET images using prior anatomical information,” Phys. Med. Biol., vol. 41, no. 11, pp. 2497–2517, 1996.

[31] G. Gindi, M. Lee, A. Rangarajan, and I. G. Zubal, “Bayesian reconstruction of functional images using

anatomical as priors,” IEEE Trans. Med. Imaging, vol. 12, no. 4, pp. 673–680, 1993.


