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ABSTRACT. In this article, we study a class of numerical ODE schemes that use time
filtering strategy and operate in two time scales. The algorithms follow the framework
of the heterogeneous multiscale methods (HMM) [1]. We apply the methods to compute
the averaged path of the inverted pendulum under a highly oscillatory vertical forcing on
the pivot. The averaged equation for the related problems has been studied analytically in
[9]. We prove and show numerically that the proposed methods approximate the averaged
equation and thus compute the average path of the inverted pendulum.

1. INTRODUCTION

The central focus of this paper is the application of numerical methods for dynamical
systems whose solutions oscillate around a slow manifold. We assume that the oscillations
take place on a much faster time scale than the rate of change of the slow manifold with
respect to time. More precisely, we hypothesize that the wavelength of the fast oscillations
is proportional to a positive constagitand that in arO(g) time interval the slow manifold
changes by at mos?(g). This is the case in the inverted pendulum problem with highly
oscillatory forcing, and we will show that our methods yield consistent approximations to
the averaged equations.

We consider the inverted pendulum example, in which the pivot of a rigid pendulum with
lengthl is attached to a strong periodic forcing, vibrating vertically with wavelengih 2
and amplitudeCe . The system has one degree of freedom, and can be described by the
angle,B, between the pendulum arm and the upward vertical direction, as shown in Figure
1.1. The motion is determined by

(1.1) 16— (g+%sin(2r%))sin(6),

with initial conditionsB(0) = 8, 6(0) = wy. When Ve is sufficiently large, an@ anday

are sufficiently close to 0, the pendulum will oscillate slowly back and forth with displace-
mentB < Bnax. The period of the oscillation is “independent” of the forcing frequegicy
and in addition to this slow motion, the trajectory®flso exhibits fast oscillations with
amplitude and period proportional £0 The behavior of this system and other generaliza-
tions are analyzed analytically in [9]. In short, the governing second order equation for
these stiff problems take the general form

(12) K= 1a()1(x), X(0) =% X(0) = Yo

whereais a smooth, 1-periodic function,9¢ <« 1, andf is a bounded smooth function. It
will be convenient to consider Eq.(1.2) as a system of first-order equations dxyete=y
anddy/dt = e~ 1a(t /) f (x).

Typically, the computational difficulties in solving the above system stem from the eigen-
values of the Jacobian that have imaginary parts proportioret3 and from the short
wavelength in the periodic functica(t/¢). If explicit time stepping methods are employed
to solve such a system, the corresponding stability condition requires the stéy gzee
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FIGURE 1.1. The inverted pendulum. A mass is connected to an arm of
lengthl which makes an angkwith the vertical axes.

proportional toe}/2, and if the solution is needed in an interval with length independent
of &, the computation would requir@(s~%/2) operations, rendering the solution method
unusable ik is very small. On the other hand, implicit schemes with larger time steps typi-
cally damp out the oscillations or represent them inaccurately. There is also the problem of
inverting the corresponding nonlinear system.

In many situations, one is interested in a set of quantXigbat are derived from the
solution of the given stiff system. Typically, these quantities change slowly in time. A
pedagogical example, pointed out to the authors by G. Dahlquist, is the drift path of a
mechanical alarm clock due to its shaking and rattling when it is set off on a hard surface.
If the slowly changing quantitieX depend only locally in time on the fast oscillations,
it is then reasonable to devise a scheme that tracks the slow quantities by measuring the
effects of the fast solutions only locally in time. Herein lies the possibility of reducing
the computational complexity. Under this context, and recasting Eq.(1.2) as a first-order
system, it is natural to look for an explicit numerical method that appears in the general
form:

(1.3) Xi1 = Qu(F ()], X, Xn-1,---)  Xo=X(0),

whereH = t"1 —t" denotes the slow time scale step stzdenotes the fast time scale step
size,Xy(t) is the microscopic data, ar@ andF denote some suitable operators; we will
make precise all of these in the following. The functioRalelatesx, the solution to the
stiff problem, to the slowly changing quantiti¥s

In our specific problem with model (1.2)(t) is 6(t), andX(t) is the average over the

periodt —£/2,t4+¢/2], X(t) = (x) = 1 tJrs/zx(s/s)da and as shown in [9], it satisfies the

— edt—g/2
averaged effective equation
(1.4) X = (a) f(X) = (V) F(X)f'(X)+E, X(0)=Xo.
The “velocity”, vis a function of the “acceleratiord,
t/ s
(1.5) v = /So(a(a)—<a>) ds

ands is selected so thgv) = 0. The error in Eq(1.4) is smallE| ~ O (v/€)[9].

In fact, many existing methods can be cast into the above form (Egs.(1.3,1.4)X with
directly related to either the strong or weak limit of the original variabléor example,
in the methods proposed in [5] and [10] for oscillatory ODEKSs the envelope ok. The
given stiff system from current stad§, for some integer number of periods= Ce fully
resolving the oscillation with step size The method then estimates and returns the time
derivative of the envelop, and final@y corresponds to the discrete solution operator of the
macroscopic scheme.
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In [1], the general framework of Heterogeneous Multiscale Methods (HMM) was pro-
posed. Under this framework approximation schemes can be more conveniently constructed
and analyzed for general problems involving multiple separated temporal and spatial scales.
In [3], under the HMM framework, we proposed and analyzed a class of HMM ODE
schemes that operate in two time scales. There, the opdfautays the role of approx-
imating the average force by time filtering the microscopic evolution in the time interval
[th—n/2,tn+n/2], using convolution with a suitable kernel. If the forward Euler scheme
is adopted iy, then the schemes appear to be

Xop1 = (Xa+H -Fxa(t)))-
The equations considered [3] in are of the form

{ %X =A(g)x+T(xy)
@ty =9(xy)
Itis proved there that if does not depend on the phaseahe constructed approximations

converges to the solution of the averaged equation, and the averaged equation is of the
following form:

dx =1 [ZMe9f (%K y)de

&V =& ["eExy)de

The class of second order equations under consideration in this papequation (1.2),
written as first order systems, do not fall into the category considered in [3]. However, it
turns out that with some modifications to the schemes developed in [3], we can show that
the modified HMM schemes approximate the averaged equations analyzed in [9]. This is
the main purpose of our paper.

There has been much development of methods for special Hamiltonian sy$teneg =
%pTM—1p+W(q). These methods typically either assume an explicit separate grouping of
solution components that change rapidly (fast modes) from the slow modes, or they assume
that the potentialVV is the sum of a strong one and a weak one. Correspondingly, in the
first case, slow and fast modes are solved separately in the whole intgrigat H|, and
in the second case, a splitting approach is adopted to solve alternately the whole system
with only the strong potential or the weak potential. They are called multirate methods and
impulse method respectively. Please refer to [4], [6], [8], and more generally [7] for details.
Even though these types of methods also use time averaging and appear to share certain
resemblance to the HMM methods, it is important to point out that there is a fundamental
difference. In the multirate or the impulse methods, the stiff part of the system, being either
the fast modes or the split equations with strong potentials, is really solved globally in time,
thus the high computational cost that results from the stiffness still remains. Whereas in the
HMM methods, as we alluded earlier, the stiff system is solved only rarely for very short
period of time. The macroscopic step sktés independent of and the overall number of
operations is lower thagr L.

For a givene > 0, all well known methods will converge as the step-dike- 0, and
there is no difference between stiff and nonstiff problems. We define what we mean by
convergence such that it makes sense for very stiff probl@ms H) by the following
error:

(1.6) E=max(lim( sup [X(th)—Xi|)).

N H=0 gcgcgy(H)
Here,eo(H) is a positive function oH, serving as an upper bound for the range tifat we
consider. With this notion, it is clear that a sensible multiscale method has to utilize the slow
varying property ofX and generate accurate approximation with a complexity sublinear to
gL,



MULTIPLE TIME SCALE NUMERICAL METHODS FOR THE INVERTED PENDULUM PROBLEM 4

The structure of the paper is as follows. In Section 2, we describe the HMM strategies
of [1] in the context of building ODE schemes for problems with different time scales. In
Section 3, we apply these types of schemes to compute average trajectories of an inverted
pendulum. We then show in Section 4 the convergence of this scheme that is suggested by
our numerical study. Finally, we summarize our results in Section 5.

2. HMM STRATEGY

A generic HMM method is described by the scheme used to evolve a system, denoted
here byJ, at macroscopic level, its accompanying microscopic scheme for the evaluation of
the missing data, and the data transfer between the macro and micro systems. This missing
data is here the effective forde= (f;), see Eq.(2.1). A microscopic evolution of the system
is invokedonly wherthe effective force at certain timg, is needed by the macro-scheme.

At that time, the original equation

(2.1) %u: fe(u,t)

is solved accurately on the corresponding micro-grid, with the initial condition determined
by RU, for a duration of timen, to resolve the transient or the oscillations. The resulting
microscale data, including the time history of microscale variables and the force, is then
averaged by a suitable kern€lto evaluate the effective force and, in some cases, also a
modified macroscopic variablé, at the appropriate time. We will ug€P to denote the
kernel space discussed in this pager KP9(1) if K € CJ(R) with supgK) =1, and

/K(t)trdt:{l’ r=>0;
R 0, 1<r<p.

Furthermore, we will us&, (t) to denote the scaling d€: K (t) :=n—1K(t/n).
Hence we may present the above procedures algorithmically as follows:

(1) Force estimation:
(a) Reconstruction: at =t,, R(Uyp) — Up.
(b) Solve for the micro variablesi(t), fort € [ta— 3,tn+ 2], with un(tn) = un.
(c) Compressiond, = Q[up).
(d) Estimate forcef (t.) = F [un] = Kq * Un(t.).
(2) Evolve the macro variablegtU,} U{U,} — Uni1, T =tpi1.
(3) Repeat
The reconstruction operator and the compression operator should satisfy a compatibility
condition:
QRU)) =U.
An essential feature in this paper is the introduction of a reconstruction op&atothat
the average of the fast modestinis preserved in each microscopic evolution, and cor-
respondingly, the compression opera@that prepares the macroscopic variable in the
suitable form.

We also notice that the number of micro-time steps needed depends on the nature of
the problem. For example, for stiff problems with fast transients, we only need to evolve
the micro variables until the transients vanish; in molecular dynamics, e.g. [2], the micro
variables are evolved until equilibrium and then some further time to estimate the effective
flux. We shall see that it also depends on the method used to estimate the effective force.

Figure 2.1 depicts schematics of the HMM ODE solvers. In these images, the top axis
represents the macro grid used, and the bottom axis contains the microgrids established in
a neighborhood of each macrogrid for microscale simulations. The arrow pointing from
each macro grid point down to a micro grid denotes the action taken in step 1a, while the
arrows pointing from each micro grid up toward the macro axis represent steps 1c and 1d.
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The effective force is estimated either at some new tinvehich is laid down to be a new
macroscale grid point, or the original macroscale grid pgirdepending on the macroscale
scheme used (see Figure 2.1). The advantage of schemes depicted in Figure 2fldarthat
be evaluated on a uniform grid, and thus facilitate the implementation of linear multistep
methods on the macro-grid. In the upper image in Figure 2.1, a non-symmetric kernel is
needed to perform the force evaluation, and in the problems with transients, the macrogrid
variables are projected to the invariant manifolds. The lower scheme in Figure 2.1 can be
applied to reversible systems that have no transients. The advantage is the possibility of
using symmetric kernels in force estimation.

We will call a method HMMpg-X-y, if X-method is used in step 2, y-method is used
in Step 1b, and a kern& P9 is used in Step 1d. Most of the time, we will suppress the
parameters pq. Therefore, HMM-FE-rk4 is a method that uses forward Euler for macroscale
evolution, and a fourth order Runge-Kutta method for microscale integrator. In Section
3, we will present a few standard HMM schemes and their stability in more detail. We
only point out here that if X is a linear multistep method that requires uniform step size,
then depending on the nature of the solutions, the structure of the HMM-X-* schemes are
illustrated by Figure 2.1.

FIGURE 2.1. Schematic pictures of the interaction between the macro
(upper lines) and micro (lower lines) scale computational domains for use
with non-symmetric (top) and symmetric (bottom) kernels.

3. MAIN EXAMPLE

In this section, we propose three HMM ODE schemes to solve for the slow periodic
motion of the inverted pendulum. Recall the original equation of motion for the pendulum,

3.1) 16 = (g+%sin(2n£))sin9,

wheref is the angle between the pendulum and the upward vertical podii®the length
of the pendulum, and is the gravitational constant. We will compare our approximations
to the solution of the averaged equation,

- . 1
(3.2) |©@=gsin®@— &l Sin®coso,
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where® = (6).

In this case the inverted pendulum could reach a maximum &qgle= cos (gl/(v?)),
subject to the stability criteriogl < (v). In the examples belogy= 0.1 andl = 0.05 mak-
ing Bmax =~ 1.16, although under the initial conditiog = 0, 69 = —0.4, the pendulum
will sweep out a more conservative an@le~ 0.23.

We useu,(t) = (B,(t),wn(t)) to denote the solution of the first order system corre-
sponding to equation (3.1), fdt —t,| < n/2 with up(tn) = (Bn(tn),wn(ty)) given. The
function 6,(t) represents the angle, ang(t) = 6,(t) is the angular velocity. Similarly,

U(t) = (©(t),Q(t)) denotes the solution to the averaged equation Eq.(3.2)ad with
U(to) = (O(to), Q(to)) given, and(t) = O(t). Discretize the averaged equation with time-
step sizeH, th, =to+nH, n=123, ... andUy=U(t,).

Assume that the HMM strategy described in the previous section does discretize the
average equation (3.2) by solving (3.1) locally near evgryThis assumption imposes a
compatibility condition on the reconstruction step; that is, if weuget (6, wn) = R(Up),
then the force estimator should yield an approximation to the force of the averaged equation,

. E 1 [un(- Q,
(3.3) Flun(-)] = < FE;MH ) = < gsin®n — gy SINGr COSOy >

It is shown tha©(t) — 6(t)| ~ O(¢) fort € (to, T] in [9], so takingB, = O, insures that
On =~ (Bn(1)). Writing Q,, as the force acting 0® att, gives,

Qn = n+ </tt a(z)sin(e(s))ds>.

Hence, we can set,

t s
o = O </t a(e)f(en(s))ds>
cog(2m)
a1 B
(in the second step we note that($i(s)) varies slowly wheres € [t, —€/2,tn +€/2]) to
ensureQy ~ (wn(t)). Given a kerneK € KP4 as described in the previous section, let

) K% oon(-)
(3.4) Flun(-)] = ( K*(g+%sin(2n<')))5in(9(‘)) )7

e

with initial conditions,

On
=\ Q- sine, L2/ )

The convolutiorK «g(-) is defined as

th+3
KD = [ Knlt-9g(ds
nT2
whereKy (t) = %K(%). Using this estimated force, it will be possible to prove (in Section
4) thatF [un(-)] approximates (3.3).
We present three HMM schemes and related numerical results for the inverted pendu-

lum. The first order macroscopic Forward Euler schemes HMM-FE-* can be presented as
follows:

Algorithm 3.1. HMM-FE-*
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Given W = (09,Qp), forn=0,1,2, ...
Ony1 = Gn—i—H-'E(l)[(Dn(-)],

Qni1 = Qu+H-Fpl6a()],
whereF [uy(-)] is as defined by Eq(3.4).

Provided thaty, is sufficiently accurate, one may directly repld?@) [un(+)] with Q.
This is done in practice to reduce computation, and in this case there is no explicit need to
calculatew,.

Next, a semi-implicit first order HMM-IFE-* scheme is,

Algorithm 3.2. HMM-IFE-*
GivenUp = (@0, Qo), forn=0,1,2, ...

Qn+H - Fip)[Bn(-)]
On + H - Qn+1

Qnpr =

On+1 =

In this caseQ,, 1 is found using the explicit forward Euler step and then used to@ind .
The final algorithm is a second order HMM-Verlet-* scheme is,

Algorithm 3.3. HMM-Verlet-*
Given Y, = (6,,Qp), forn=0,1,2,...

H -~
0y = Qut 3 Flon()
@ﬂ+1 = @n+H 'Qn+%7
H -~
QI’H—l - Qn+% + E ' F[en-i-l(.)]v

whereb,, 1 = On, 1 is used to initialize the final force estimation.

This final method requires twice the computational effort per macroscale step as the
first order schemes, but the number of operations still much smaller than that of a direct
calculation /e < T /¢).

Several numerical simulations were completed using the parameters in Table 1.

TABLE 1. The parameters used for the numerical examples ineluithe

initial condition (®g, Qp), the time interval fronty to tg, H (intervals in-

dicate the range of values used for separate calculations to determine error
behavior) h andn (both fixed and scaled with respecttior, s, p, andgin

row three are the orders of the macroscale and microscale schemes, and the
number of vanishing moments and smoothness of the kernel respectively,
anday anday, are constants), the exponential kerketdlescribed in equa-

tion (3.5), the gravitational acceleratignand the length of the pendulum

arml.
€ | (90,90 [to, T] H n h Klg] |l
105 (0.0,—0.4) | [0.0,50.0] | 0.01 10e £/10 exp| 0.1 0.05
105 (0.0,—0.4) | [0.0,12.0] | [0.001 1.0] 50e £/50 exp| 0.1 0.05
10| (0.0,—0.4) | [0.0,120] | [0.001,1.0] | ayH5%T2/4 | oy HeT2/'n =/ | exp| 0.1 | 0.05
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In each calculation, either the standard Verlet method (v) or fourth order Runge-Kutta
(rk4) was used to solve the microscopic equations. In all cases, the exponential kernel

-1

2
42211 at-t)?

(3.5) K = Xp |5 2 ,

is used K € K).

Figure 3.1 shows the macroscale behavior of the system over the periodgfror@
to T = 50. The parameters used in the calculations are in the first row of Table 1. The
HMM schemes HMM-FE-v and HMM-IFE-v are compared to the solution of the averaged
equation (1.4). At the microscale, the resolution gives about 10 grid points per oscillation,
and the convolution witk is a domain containing about 10 cycles. This is relatively coarse
compared to later calculations. The computational savings, measured by the number of
times the force is evaluated and compared to a traditional first order method using the same
step-sizeh, is on the order of 12 More importantly, traditional methods cannot maintain
sufficient accuracy to carry the calculationTte= 50.

Evolution Under First Order HMM

0.6 T
average

0.4  HMM-fe-v -------- . -

HMM-ife-v ------- - I O i D H

0.2
® 0
-0.2 . . : / '

'06 1 1 1 1 1 1 1 1 1

0.8 |- averelnlge e . .
06 L HMM-fev ------- . I i
© T HMM-ife-v ------ . L S A S A TS S A S S
0.4 A i

0.2
Q 0

-0.2

0.4 ) B & S L VY L L ! ! :
06 A T A
-08 | R

FIGURE 3.1. The HMM solution to equation (1.1); the top graph plots
the angled(t) and the lower graph giveQ(t). In this case the first order
methods HMM-FE-v and HMM-IFE-v were used to approximate the av-
erage motion of the pendulum over a long time interval. The solution of
the averaged equation (1.4) is also shown for comparison. The parameters
used to produce the graph are those in the first row of Table 1. Six orders of
maghnitude separate the period of the slow oscillation apparent in the graphs
from the fast oscillation at the microscale.

The force estimation error for HMM i€mm = Emicro + Ex + Equadand the local error
of the HMM scheme is
En = Ex + Bamm-
Fy denotes the local truncation error of the macroscopic scheme, and in many&ases,
dominates and determines the orderfaf The convergence of various HMM schemes as
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H — 0 was confirmed using the error metric,

(3.6) E — mnax\/ (On— O(tn))2 + (Qn — Q(tn))?2

where®(t) andQ(t) are values of the solution of the averaged equation. Error calculations
were carried out over the time peri¢@ 12], corresponding to roughly three oscillations on
the macroscale. Figure 3.2 shows error as a function/bf for the first order methods
HMM-FE-* and HMM-IFE-*. The calculations correspond to row two of Table 1. In all
cases) andh are fixed with respect tH, andO(H) convergence is achieved. In the HMM-
IFE-v method however, approximation error associated with the microscale calculation and
convolution dominates the contribution froBy, for smallH.

10 ¢
| O(H)
- fixed fe-v-exp -+
1 Prrex fixed fe-rk4-exp - 1
—~ fixed ife-v-exp --x-- 7
X fixed ife-rkd-exp ---&--
0.1
0.01
0.001
0.0001 .

10 100 1000

FIGURE 3.2. The error as a function of/H for the first order schemes
HMM-X-y, where X is FE or IFE and y is v or rk4. The width of the
microscale domain and the step-sizare fixed with respect tél. The
parameters used are listed in row two of Table 1. The slopes of the solid
lines indicate decrease at first ordeHn

Figure 3.3 shows the analogous cases for the second order methods HMM-V-*. As previ-
ously, the HMM-X-v method levels off due to other contributions to the overall error, while
HMM-X-rk4 is able to maintain its performance for sméll

Notice that some of the curves in Figures 3.2 and 3.3 eventually flattens opliHas-1
creases. These are the situations in which the efrgyy finally dominates the global
error of the computations. It is possible to overcome the flattening of the HMM-X-v
cases by scaling the parametgrsand h with H. See [3] for more detail. By setting
N = ayH"%9%"Y9 andh = ayHY 2/ =17, wherer,s, p, andq are the orders of the
macroscale and microscale schemes, and the number of vanishing moments and smooth-
ness of the kernel respectively, anglanda,, are constants, the HMM-V-v scheme is able
to maintain second order behavior as shown in Figure 3.4. The drawback to scaling is that
the constants, anday, need to be chosen carefully to plagandh in reasonable ranges.

HMM-V-rk4 maintains its second order performancda-hdecreases in the case of fixed
n andh. This performance is matched whemndh are scaled as described above as shown
in Figure 3.5.



MULTIPLE TIME SCALE NUMERICAL METHODS FOR THE INVERTED PENDULUM PROBLEM 10

o
0.1 | ed v yexp ]
i p
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0.001 ¢
0.0001 ¢
1e-05
1e-06 ¢
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1 10 100 1000

FIGURE 3.3. The error as a function of H for the second order schemes
HMM-V-y, where y is v or rk4. The width of the microscale domain and
the step-sizd are fixed with respect tbl. The parameters used are listed
in row two of Table 1. The slope of the solid line indicates decrease at
second order if.

4. GENERALIZATIONS

It is clear from the HMM structure that the stability of an HMM scheme requires that
both the macroscopic and microscopic schemes to be stable. It remains to establish the
consistency of the estimated force in Eq.(3.4). The notion of consistency can be defined as
in (1.6). Consider the general case

(4.1) X=ae(_)f(x), x(0)=x0,X(0)=yo
and the associated averaged equation
(4.2) X = (a)f(X)— (V) F(X)f'(X)+CvE.

The functionag(t) is assumed to be smooth witle||» ~ O(e™1), periodic with period 1,
andf € CP is assumed to vary slowlyf ||, < Cofork=0,---, p. It will be important to
note that(ag) ~ O(1).

The basic assumption is that contains the fast periodic motion in the problem dnd
relatively slow. These assumptions hold in the case of the inverted pendulum. In this case
8e = 2c(t/£), |IX| < Xmax~ O(1), () ~ £(X), and||X|| < E, = /2(Eo — )/ ~ O(1). The
constantXmax andEg are determined by the given parameters and initial conditions. They
may be calculated by considering the effective potentigk) = gcog(x) + sir? x/ 167l
implied by Eq.(3.2), and the ener@y = ly3/2+V (xo).

In the discussion which follows we will make use of the velocity

Sy (%a(C) _he.n
V()= [ (al(§) - @)ds el gty
wheres, is chosen so thatv) = 0 and|s, —ty| < €. The velocity is related to/ and
likewise the scaling oke implies that||v||. ~ O(1). Another useful term will be\x =
X(s) = Xn, SE€ [th—n/2,th+n/2]. Provided that|X||. is bounded as shown above is
small.
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T oy
fixed v-v-exp -+
scaled v-v-exp -
scaled v-v-exp %=

0.1k ]

X’-‘.ﬂ*
0.01 ¢ x XX'.T%+..+___+ _______ e
; . x
! 10 100 1000

FIGURE 3.4. A comparison of the error, as a function ofHl, for the
second order schemes HMM-V-v for fixed and scaled microscale domains
and step-sizes. The parameters and scaling used are listed in rows two and
three of Table 1. The slope of the solid line indicates decrease at second
order inH. In the cases wheng andh are scaled with respect té, the
method is able to maintain second order performance, despite the leveling
off seen in the fixed case. The constamisanda,, were chosen such that

the scaled and fixed versions of the calculation would matdd at0.1

andH = 1. The constants were reset at these valué$ sb that the ratio

of n to hwould remain reasonable bksdecreases.

Lemma 4.1. (Ax is small)Ax = x(S) — Xn, for s€ [th—n/2,tn+n/2]
|AX‘ <Cie+Con
Proof. >From [9] we havex(t,) — Xn| < Ce.

X)Xl < X=X +] [ X0

IN

n
Ce+ — [|X]|oo-
e+ oI
O
A more explicit description ok (s) will also be needed in addition to its boundedness.

Lemma 4.2. (Expression for Xs))

(9 = FOWUE) +X(8)+ 10X0) @) (5=50) + [ 2e(3) ' (e
Proof. By definition

S

X(9) = X(s)+ [ al(2)f(x(0))do

S

= X(s)+ 10G) @) (s~ s + 1) [ (@)~ (@)do+ [ a()r(@do

= X(s)+ F(Xn)(8e) (5= ) + F (X)W
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T oH?
[ fixed v-rk4-exp - PR
0.1 r scaled v-rkd-exp —-x-- 7
- scaled v-rkd-exp —*— ]
0.01 |
0.001 |
0.0001 +
1e-05
1e-06 | | |
! 10 100 1000

FIGURE 3.5. A comparison of the error, as a functionjpffor the second

order schemes HMM-V-rk4 for fixed and scaled microscale domains and
step-sizes. The parameters and scaling used are listed in rows two and three
of Table 1. The slope of the solid line indicates decrease at second order in
H. In the case wherg andh are scaled with respect td, the method is

able to match the second order performance of the fixed method.

In the previous section, the problem is recast as a first order system of equations, and the
average force is estimated by using the microscale solution with suitable initial data. The

force
Foy \ _ [ Kxy
Fo2) KxX /)’

() = (o roaleacpen )

accurately estimates the average force of Eq.(4.2). The accuracy of the force esfﬁmator
may be quickly shown given the initial valyg above.

given the initial data

Theorem 4.3. (Consistency of 1)) GivenF;) = K xy, K € KP4,
Ky =Y(to)| <C 18X

Proof. By definition,

th+3

Kxy — / Kn(t—9)y(9ds
th—3

S

_ /ttn+2Kn(t—s)(yn+f(Xn)/tSag(:)dOJr ae(g)f(z)Axdc)ds

n—3 tn

Yo+ O(2 1|
U

We now prove our main result, that the force estimeﬁgg)r provides a good approxima-
tion of the averaged forc¥.
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Theorem 4.4. (Consistency olf(z)) Let Ke KPY, g(t) = ag(t/€) f(x(t)), then

|Ax]j et

[K+g—X(tn)| < O([|AX]|es, — el

P’ \/g)

Proof. Let G(t) = (a¢) f(X) — (v?) f(X)f'(X), we first show thaK g ~ G.

keg = [ Knlt- a3 f(x9)ds

-1
n—2

tn+% S , t”+% S
= 104 [ Ka(t=9)a)dst /(%) [ 7 Kn(t—sjacS)ands
n—7 n—7
tnt3 S, .y, DX
+ - Kn(t—s)ae(g)f (z)7ds
= lhi+la+l3

Considerls,

1 " 2 tn+%
sl = Sllaelle-[IT Hoo-HAXH.x,/t , [Kn(t—s)[ds
n—2

~ O(]Iax] 13 /e).

In many cases (including the numerical examples in the previous section) the kernel will be
n

a positive function, antj"tt”+n2 |Ky (t —s)]ds= 1. Using the results in [3] we may estimate

n—2

l1,

tn+3 s
I = <a€>f(Xn)+f(Xn)/t_7 K(t—9)(a() — (a))ds

n
2

q
< <as>f<xn>+\|f||w-|as\|w(§)

IN

(@) f(Xn)+ 0 <£:;l)

The estimate oF; is slightly more involved,

th+3 th+3

2 = (@) 06) [, Knlt—9ixdst /(%) [ " Ka(t—s)(al3) — (a))xds
- (a\g)f’(xn)/tti:g Kq(t—s)Axds+f’(Xn)/ttig Kr’](t—s)v(g)Axds
tn—~_%2 . 2
—f/(Xn) - Kn(t—s)v(g)x’(s)ds

wherev(s/¢g) = f;(as(c/s) —(a¢))do, and(v) = 0.
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Using the previous estimate fgl(s)

tnt-1 tnt+3 s
I, — f’(Xn)<a€>/t{ Kn(t—s)AdeJrf’(Xn)/t Ky(t—sv()axds

SO0 — (10 0 [ et 907(5) — 2))ds
X () [ " ke ~9v()ds

) / "kl =) <§>(s S)ds

n
2

, thr% 0'
(%) /t n / a:(2)f'(2)xclodsy

€
= P100)02) + 0l (£) )
Combining these results yields the complete estimate,

\K*g—X(tn)| = |Kxg—G+C¢|

HAXH2 et

ofax. 02 5 ARING

5. CONCLUSION

The inverted pendulum exhibits stable slow oscillation due to rapid microscale oscilla-
tory forcing. This macroscale behavior is captured very well by a set of HMM algorithms
for which the computational complexity is much lower than that of standard numerical
methods. The HMM approach requires ordyT /H - n/e) operations, which lead to a
computational savings ad(n/H) or about 16 for the parameters in our numerical experi-
ments compared to standard numerical methods. Notably, standard methods lack sufficient
accuracy to solve the model problem here veith 10-° for macroscopic time scales.
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