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ABSTRACT. In this article, we study a class of numerical ODE schemes that use time
filtering strategy and operate in two time scales. The algorithms follow the framework
of the heterogeneous multiscale methods (HMM) [1]. We apply the methods to compute
the averaged path of the inverted pendulum under a highly oscillatory vertical forcing on
the pivot. The averaged equation for the related problems has been studied analytically in
[9]. We prove and show numerically that the proposed methods approximate the averaged
equation and thus compute the average path of the inverted pendulum.

1. INTRODUCTION

The central focus of this paper is the application of numerical methods for dynamical
systems whose solutions oscillate around a slow manifold. We assume that the oscillations
take place on a much faster time scale than the rate of change of the slow manifold with
respect to time. More precisely, we hypothesize that the wavelength of the fast oscillations
is proportional to a positive constantε, and that in anO(ε) time interval the slow manifold
changes by at mostO(ε). This is the case in the inverted pendulum problem with highly
oscillatory forcing, and we will show that our methods yield consistent approximations to
the averaged equations.

We consider the inverted pendulum example, in which the pivot of a rigid pendulum with
length l is attached to a strong periodic forcing, vibrating vertically with wavelength 2πε
and amplitudeCε−1. The system has one degree of freedom, and can be described by the
angle,θ, between the pendulum arm and the upward vertical direction, as shown in Figure
1.1. The motion is determined by

(1.1) l θ̈ = (g+
1
ε

sin(2π
t
ε
))sin(θ),

with initial conditionsθ(0) = θ0, θ̇(0) = ω0. When 1/ε is sufficiently large, andθ0 andω0

are sufficiently close to 0, the pendulum will oscillate slowly back and forth with displace-
mentθ < θmax. The period of the oscillation is “independent” of the forcing frequencyε,
and in addition to this slow motion, the trajectory ofθ also exhibits fast oscillations with
amplitude and period proportional toε. The behavior of this system and other generaliza-
tions are analyzed analytically in [9]. In short, the governing second order equation for
these stiff problems take the general form

(1.2) ẍ = ε−1a(
t
ε
) f (x), x(0) = x0, ẋ(0) = y0;

wherea is a smooth, 1-periodic function, 0< ε� 1, andf is a bounded smooth function. It
will be convenient to consider Eq.(1.2) as a system of first-order equations wheredx/dt = y
anddy/dt = ε−1a(t/ε) f (x).

Typically, the computational difficulties in solving the above system stem from the eigen-
values of the Jacobian that have imaginary parts proportional toε−1/2 and from the short
wavelength in the periodic functiona(t/ε). If explicit time stepping methods are employed
to solve such a system, the corresponding stability condition requires the step size∆t to be
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FIGURE 1.1. The inverted pendulum. A mass is connected to an arm of
lengthl which makes an angleθ with the vertical axes.

proportional toε1/2, and if the solution is needed in an interval with length independent
of ε, the computation would requireO(ε−1/2) operations, rendering the solution method
unusable ifε is very small. On the other hand, implicit schemes with larger time steps typi-
cally damp out the oscillations or represent them inaccurately. There is also the problem of
inverting the corresponding nonlinear system.

In many situations, one is interested in a set of quantitiesX that are derived from the
solution of the given stiff system. Typically, these quantities change slowly in time. A
pedagogical example, pointed out to the authors by G. Dahlquist, is the drift path of a
mechanical alarm clock due to its shaking and rattling when it is set off on a hard surface.
If the slowly changing quantitiesX depend only locally in time on the fast oscillations,
it is then reasonable to devise a scheme that tracks the slow quantities by measuring the
effects of the fast solutions only locally in time. Herein lies the possibility of reducing
the computational complexity. Under this context, and recasting Eq.(1.2) as a first-order
system, it is natural to look for an explicit numerical method that appears in the general
form:

(1.3) Xn+1 = QH(F̃ [xn(t)],Xn,Xn−1, · · ·) X0 = X(0),

whereH = tn+1− tn denotes the slow time scale step size,h denotes the fast time scale step
size,xn(t) is the microscopic data, andQH andF̃ denote some suitable operators; we will
make precise all of these in the following. The functionalF̃ relatesx, the solution to the
stiff problem, to the slowly changing quantitiesX.

In our specific problem with model (1.2),x(t) is θ(t), andX(t) is the average over the

period[t− ε/2, t + ε/2], X(t) = 〈x〉= 1
ε

R t+ε/2
t−ε/2 x(s/ε)ds, and as shown in [9], it satisfies the

averaged effective equation

(1.4) Ẍ = 〈a〉 f (X)−
〈
v2〉 f (X) f ′(X)+E, X(0) = X0.

The “velocity”, v is a function of the “acceleration”a,

v =
Z t

s0

(
a(

s
ε
)−〈a〉

)
ds(1.5)

ands0 is selected so that〈v〉= 0. The error in Eq(1.4) is small,|E| ∼ O
(√

ε
)
[9].

In fact, many existing methods can be cast into the above form (Eqs.(1.3,1.4)), withX
directly related to either the strong or weak limit of the original variablex. For example,
in the methods proposed in [5] and [10] for oscillatory ODEs,X is the envelope ofx. The
given stiff system from current stateXn for some integer number of periodsη = Cε fully
resolving the oscillation with step sizeh. The method then estimates and returns the time
derivative of the envelop, and finallyQH corresponds to the discrete solution operator of the
macroscopic scheme.
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In [1], the general framework of Heterogeneous Multiscale Methods (HMM) was pro-
posed. Under this framework approximation schemes can be more conveniently constructed
and analyzed for general problems involving multiple separated temporal and spatial scales.
In [3], under the HMM framework, we proposed and analyzed a class of HMM ODE
schemes that operate in two time scales. There, the operatorF̃ plays the role of approx-
imating the average force by time filtering the microscopic evolution in the time interval
[tn−η/2, tn + η/2], using convolution with a suitable kernel. If the forward Euler scheme
is adopted inQH , then the schemes appear to be

Xn+1 = (Xn +H · F̃ [xn(t)]).

The equations considered [3] in are of the form{
d
dtx = A( t

ε)x+ f (x,y)
d
dty = g(x,y)

.

It is proved there that iff does not depend on the phase ofx, the constructed approximations
converges to the solution of the averaged equation, and the averaged equation is of the
following form: {

d
dt x̄ = 1

2π
R 2π

0 e−iφ f (eiθx̄, ȳ)dφ
d
dt ȳ = 1

2π
R 2π

0 g(eiφx̄, ȳ)dφ
.

The class of second order equations under consideration in this paper,i.e. Equation (1.2),
written as first order systems, do not fall into the category considered in [3]. However, it
turns out that with some modifications to the schemes developed in [3], we can show that
the modified HMM schemes approximate the averaged equations analyzed in [9]. This is
the main purpose of our paper.

There has been much development of methods for special Hamiltonian systemsH(p,q)=
1
2 pTM−1p+W(q). These methods typically either assume an explicit separate grouping of
solution components that change rapidly (fast modes) from the slow modes, or they assume
that the potentialW is the sum of a strong one and a weak one. Correspondingly, in the
first case, slow and fast modes are solved separately in the whole interval[tn, tn + H], and
in the second case, a splitting approach is adopted to solve alternately the whole system
with only the strong potential or the weak potential. They are called multirate methods and
impulse method respectively. Please refer to [4], [6], [8], and more generally [7] for details.
Even though these types of methods also use time averaging and appear to share certain
resemblance to the HMM methods, it is important to point out that there is a fundamental
difference. In the multirate or the impulse methods, the stiff part of the system, being either
the fast modes or the split equations with strong potentials, is really solved globally in time,
thus the high computational cost that results from the stiffness still remains. Whereas in the
HMM methods, as we alluded earlier, the stiff system is solved only rarely for very short
period of time. The macroscopic step sizeH is independent ofε and the overall number of
operations is lower thanε−1.

For a givenε > 0, all well known methods will converge as the step-sizeH → 0, and
there is no difference between stiff and nonstiff problems. We define what we mean by
convergence such that it makes sense for very stiff problems(ε � H) by the following
error:

(1.6) E = max
n

( lim
H→0

( sup
0<ε<ε0(H)

|X(tn)−Xn|)).

Here,ε0(H) is a positive function ofH, serving as an upper bound for the range ofε that we
consider. With this notion, it is clear that a sensible multiscale method has to utilize the slow
varying property ofX and generate accurate approximation with a complexity sublinear to
ε−1.
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The structure of the paper is as follows. In Section 2, we describe the HMM strategies
of [1] in the context of building ODE schemes for problems with different time scales. In
Section 3, we apply these types of schemes to compute average trajectories of an inverted
pendulum. We then show in Section 4 the convergence of this scheme that is suggested by
our numerical study. Finally, we summarize our results in Section 5.

2. HMM STRATEGY

A generic HMM method is described by the scheme used to evolve a system, denoted
here byU , at macroscopic level, its accompanying microscopic scheme for the evaluation of
the missing data, and the data transfer between the macro and micro systems. This missing
data is here the effective forcēf = 〈 fε〉, see Eq.(2.1). A microscopic evolution of the system
is invokedonly whenthe effective force at certain time,tn, is needed by the macro-scheme.
At that time, the original equation

(2.1)
d
dt

u = fε(u, t)

is solved accurately on the corresponding micro-grid, with the initial condition determined
by RU, for a duration of time,η, to resolve the transient or the oscillations. The resulting
microscale data, including the time history of microscale variables and the force, is then
averaged by a suitable kernelK to evaluate the effective force and, in some cases, also a
modified macroscopic variableU , at the appropriate time. We will useKp,q to denote the
kernel space discussed in this paper.K ∈Kp,q(I) if K ∈Cq

c(R) with supp(K) = I , andZ
R

K(t)trdt =

{
1, r = 0;

0, 1≤ r ≤ p.

Furthermore, we will useKη(t) to denote the scaling ofK: Kη(t) := η−1K(t/η).
Hence we may present the above procedures algorithmically as follows:

(1) Force estimation:
(a) Reconstruction: atT = tn, R(Un) 7→ un.
(b) Solve for the micro variables:un(t), for t ∈ [tn− η

2 , tn + η
2 ], with un(tn) = un.

(c) Compression:U∗ = Q[un].
(d) Estimate force:f̄ (t∗) = F̃ [un] = Kη ∗un(t∗).

(2) Evolve the macro variables:{Un}
S
{U∗} −→Un+1, T = tn+1.

(3) Repeat

The reconstruction operator and the compression operator should satisfy a compatibility
condition:

Q(R(U)) = U.

An essential feature in this paper is the introduction of a reconstruction operatorR so that
the average of the fast modes inu is preserved in each microscopic evolution, and cor-
respondingly, the compression operatorQ that prepares the macroscopic variable in the
suitable form.

We also notice that the number of micro-time steps needed depends on the nature of
the problem. For example, for stiff problems with fast transients, we only need to evolve
the micro variables until the transients vanish; in molecular dynamics, e.g. [2], the micro
variables are evolved until equilibrium and then some further time to estimate the effective
flux. We shall see that it also depends on the method used to estimate the effective force.

Figure 2.1 depicts schematics of the HMM ODE solvers. In these images, the top axis
represents the macro grid used, and the bottom axis contains the microgrids established in
a neighborhood of each macrogrid for microscale simulations. The arrow pointing from
each macro grid point down to a micro grid denotes the action taken in step 1a, while the
arrows pointing from each micro grid up toward the macro axis represent steps 1c and 1d.
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The effective force is estimated either at some new timet∗ which is laid down to be a new
macroscale grid point, or the original macroscale grid pointtn, depending on the macroscale
scheme used (see Figure 2.1). The advantage of schemes depicted in Figure 2.1 is thatf̄ can
be evaluated on a uniform grid, and thus facilitate the implementation of linear multistep
methods on the macro-grid. In the upper image in Figure 2.1, a non-symmetric kernel is
needed to perform the force evaluation, and in the problems with transients, the macrogrid
variables are projected to the invariant manifolds. The lower scheme in Figure 2.1 can be
applied to reversible systems that have no transients. The advantage is the possibility of
using symmetric kernels in force estimation.

We will call a method HMMpq-X-y, if X-method is used in step 2, y-method is used
in Step 1b, and a kernelKp,q is used in Step 1d. Most of the time, we will suppress the
parameters pq. Therefore, HMM-FE-rk4 is a method that uses forward Euler for macroscale
evolution, and a fourth order Runge-Kutta method for microscale integrator. In Section
3, we will present a few standard HMM schemes and their stability in more detail. We
only point out here that if X is a linear multistep method that requires uniform step size,
then depending on the nature of the solutions, the structure of the HMM-X-* schemes are
illustrated by Figure 2.1.

FIGURE 2.1. Schematic pictures of the interaction between the macro
(upper lines) and micro (lower lines) scale computational domains for use
with non-symmetric (top) and symmetric (bottom) kernels.

3. MAIN EXAMPLE

In this section, we propose three HMM ODE schemes to solve for the slow periodic
motion of the inverted pendulum. Recall the original equation of motion for the pendulum,

(3.1) l θ̈ = (g+
1
ε

sin(2π
t
ε
))sinθ,

whereθ is the angle between the pendulum and the upward vertical position,l is the length
of the pendulum, andg is the gravitational constant. We will compare our approximations
to the solution of the averaged equation,

(3.2) lΘ̈ = gsinΘ− 1
8π2l

sinΘcosΘ,
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whereΘ = 〈θ〉.
In this case the inverted pendulum could reach a maximum angleθmax= cos−1(gl/〈v2〉),

subject to the stability criteriongl < 〈v2〉. In the examples belowg= 0.1 andl = 0.05 mak-
ing θmax≈ 1.16, although under the initial conditionsθ0 = 0, θ̇0 = −0.4, the pendulum
will sweep out a more conservative angleθδ ≈ 0.23.

We useun(t) = (θn(t),ωn(t)) to denote the solution of the first order system corre-
sponding to equation (3.1), for|t − tn| ≤ η/2 with un(tn) = (θn(tn),ωn(tn)) given. The
function θn(t) represents the angle, andωn(t) = θ̇n(t) is the angular velocity. Similarly,
U(t) = (Θ(t),Ω(t)) denotes the solution to the averaged equation Eq.(3.2) fort ≥ t0 with
U(t0) = (Θ(t0),Ω(t0)) given, andΩ(t) = Θ̇(t). Discretize the averaged equation with time-
step sizeH, tn = t0 +nH, n = 1,2,3, . . . andUn = U(tn).

Assume that the HMM strategy described in the previous section does discretize the
average equation (3.2) by solving (3.1) locally near everytn. This assumption imposes a
compatibility condition on the reconstruction step; that is, if we setun = (θn,ωn) = R(Un),
then the force estimator should yield an approximation to the force of the averaged equation,

(3.3) F̃ [un(·)] =
(

F̃(1)[un(·)]
F̃(2)[un(·)]

)
=
(

Ωn

gsinΘn− 1
(8π2)l sinΘncosΘn

)
.

It is shown that|Θ(t)− θ(t)| ∼ O(ε) for t ∈ (t0,T] in [9], so takingθn = Θn insures that
Θn ≈ 〈θn(t)〉. Writing Ωn as the force acting onΘ at tn gives,

Ωn = ωn +
〈Z t

tn
a(

s
ε
)sin(θ(s))ds

〉
.

Hence, we can set,

ωn = Ωn−
〈Z t

tn
a(

s
ε
) f (θn(s))ds

〉
≈ Ωn−sin(Θn)

cos(2π tn
ε )

2πl
,

(in the second step we note that sin(θ(s)) varies slowly wheres∈ [tn− ε/2, tn + ε/2]) to
ensureΩn ≈ 〈ωn(t)〉. Given a kernelK ∈Kp,q as described in the previous section, let

F̃ [un(·)] =
(

K ∗ωn(·)
K ∗ (g+ 1

ε sin(2π (·)
ε ))sin(θ(·))

)
,(3.4)

with initial conditions,

un =
(

Θn

Ωn−sinΘn
cos(2πtn/ε)

2πl

)
.

The convolutionK ∗g(·) is defined as

(K ∗ f )(t) =
Z tn+

η
2

tn− η
2

Kη(t−s)g(s)ds,

whereKη(t) = 1
ηK( t

η). Using this estimated force, it will be possible to prove (in Section

4) thatF̃ [un(·)] approximates (3.3).
We present three HMM schemes and related numerical results for the inverted pendu-

lum. The first order macroscopic Forward Euler schemes HMM-FE-* can be presented as
follows:

Algorithm 3.1. HMM-FE-*
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Given U0 = (Θ0,Ω0), for n = 0,1,2, ...

Θn+1 = Θn +H · F̃(1)[ωn(·)],
Ωn+1 = Ωn +H · F̃(2)[θn(·)],

whereF̃ [un(·)] is as defined by Eq(3.4).

Provided thatYn is sufficiently accurate, one may directly replaceF̃(1)[un(·)] with Ωn.
This is done in practice to reduce computation, and in this case there is no explicit need to
calculateωn.

Next, a semi-implicit first order HMM-IFE-* scheme is,

Algorithm 3.2. HMM-IFE-*

GivenU0 = (Θ0,Ω0), for n = 0,1,2, ...

Ωn+1 = Ωn +H · F̃(2)[θn(·)]
Θn+1 = Θn +H ·Ωn+1

In this caseΩn+1 is found using the explicit forward Euler step and then used to findΘn+1.
The final algorithm is a second order HMM-Verlet-* scheme is,

Algorithm 3.3. HMM-Verlet-*
Given Un = (Θn,Ωn), for n = 0,1,2, ...

Ωn+ 1
2

= Ωn +
H
2
· F̃ [θn(·)],

Θn+1 = Θn +H ·Ωn+ 1
2
,

Ωn+1 = Ωn+ 1
2
+

H
2
· F̃ [θn+1(·)],

whereθn+1 = Θn+1 is used to initialize the final force estimation.

This final method requires twice the computational effort per macroscale step as the
first order schemes, but the number of operations still much smaller than that of a direct
calculation (η/ε � T/ε).

Several numerical simulations were completed using the parameters in Table 1.

TABLE 1. The parameters used for the numerical examples includeε, the
initial condition (Θ0,Ω0), the time interval fromt0 to t f , H (intervals in-
dicate the range of values used for separate calculations to determine error
behavior),h andη (both fixed and scaled with respect toH; r,s, p, andq in
row three are the orders of the macroscale and microscale schemes, and the
number of vanishing moments and smoothness of the kernel respectively,
andαh andαη are constants), the exponential kernelK described in equa-
tion (3.5), the gravitational accelerationg, and the length of the pendulum
arm l .

ε (Θ0,Ω0) [t0,T] H η h K g l
10−6 (0.0,−0.4) [0.0,50.0] 0.01 10ε ε/10 exp 0.1 0.05
10−6 (0.0,−0.4) [0.0,12.0] [0.001,1.0] 50ε ε/50 exp 0.1 0.05
10−6 (0.0,−0.4) [0.0,12.0] [0.001,1.0] αηH−s/qε1−1/q αhHs/rε1+2/rη−1/r exp 0.1 0.05
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In each calculation, either the standard Verlet method (v) or fourth order Runge-Kutta
(rk4) was used to solve the microscopic equations. In all cases, the exponential kernel

K =
422.11

η
exp

5

(
4(t− tn)

2

η2 −1

)−1
 ,(3.5)

is used (K ∈K1,∞).
Figure 3.1 shows the macroscale behavior of the system over the period fromt0 = 0

to T = 50. The parameters used in the calculations are in the first row of Table 1. The
HMM schemes HMM-FE-v and HMM-IFE-v are compared to the solution of the averaged
equation (1.4). At the microscale, the resolution gives about 10 grid points per oscillation,
and the convolution withK is a domain containing about 10 cycles. This is relatively coarse
compared to later calculations. The computational savings, measured by the number of
times the force is evaluated and compared to a traditional first order method using the same
step-sizeh, is on the order of 109. More importantly, traditional methods cannot maintain
sufficient accuracy to carry the calculation toT = 50.
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Evolution Under First Order HMM
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FIGURE 3.1. The HMM solution to equation (1.1); the top graph plots
the angleΘ(t) and the lower graph givesΩ(t). In this case the first order
methods HMM-FE-v and HMM-IFE-v were used to approximate the av-
erage motion of the pendulum over a long time interval. The solution of
the averaged equation (1.4) is also shown for comparison. The parameters
used to produce the graph are those in the first row of Table 1. Six orders of
magnitude separate the period of the slow oscillation apparent in the graphs
from the fast oscillation at the microscale.

The force estimation error for HMM isEHMM = Emicro+EK +Equadand the local error
of the HMM scheme is

En = EH +EHMM.

EH denotes the local truncation error of the macroscopic scheme, and in many cases,EH

dominates and determines the order ofEn. The convergence of various HMM schemes as
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H → 0 was confirmed using the error metric,

E = max
n

√
(Θn−Θ(tn))2 +(Ωn−Ω(tn))2(3.6)

whereΘ(t) andΩ(t) are values of the solution of the averaged equation. Error calculations
were carried out over the time period[0,12], corresponding to roughly three oscillations on
the macroscale. Figure 3.2 shows error as a function of 1/H for the first order methods
HMM-FE-* and HMM-IFE-*. The calculations correspond to row two of Table 1. In all
casesη andh are fixed with respect toH, andO(H) convergence is achieved. In the HMM-
IFE-v method however, approximation error associated with the microscale calculation and
convolution dominates the contribution fromEH , for smallH.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10  100  1000

O(H)
fixed fe-v-exp

fixed fe-rk4-exp
fixed ife-v-exp

fixed ife-rk4-exp

FIGURE 3.2. The error as a function of 1/H for the first order schemes
HMM-X-y, where X is FE or IFE and y is v or rk4. The width of the
microscale domain and the step-sizeh are fixed with respect toH. The
parameters used are listed in row two of Table 1. The slopes of the solid
lines indicate decrease at first order inH.

Figure 3.3 shows the analogous cases for the second order methods HMM-V-*. As previ-
ously, the HMM-X-v method levels off due to other contributions to the overall error, while
HMM-X-rk4 is able to maintain its performance for smallH.

Notice that some of the curves in Figures 3.2 and 3.3 eventually flattens out as 1/H in-
creases. These are the situations in which the errorEHMM finally dominates the global
error of the computations. It is possible to overcome the flattening of the HMM-X-v
cases by scaling the parametersη and h with H. See [3] for more detail. By setting
η = αηH−s/qε1−1/q andh = αhHs/rε1+2/rη−1/r , wherer,s, p, andq are the orders of the
macroscale and microscale schemes, and the number of vanishing moments and smooth-
ness of the kernel respectively, andαh andαη are constants, the HMM-V-v scheme is able
to maintain second order behavior as shown in Figure 3.4. The drawback to scaling is that
the constantsαh andαη need to be chosen carefully to placeη andh in reasonable ranges.

HMM-V-rk4 maintains its second order performance asH decreases in the case of fixed
η andh. This performance is matched whenη andh are scaled as described above as shown
in Figure 3.5.
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FIGURE 3.3. The error as a function of 1/H for the second order schemes
HMM-V-y, where y is v or rk4. The width of the microscale domain and
the step-sizeh are fixed with respect toH. The parameters used are listed
in row two of Table 1. The slope of the solid line indicates decrease at
second order inH.

4. GENERALIZATIONS

It is clear from the HMM structure that the stability of an HMM scheme requires that
both the macroscopic and microscopic schemes to be stable. It remains to establish the
consistency of the estimated force in Eq.(3.4). The notion of consistency can be defined as
in (1.6). Consider the general case

(4.1) ẍ = aε(
t
ε
) f (x), x(0) = x0, ẋ(0) = y0

and the associated averaged equation

Ẍ = 〈aε〉 f (X)−〈v2〉 f (X) f ′(X)+C
√

ε.(4.2)

The functionaε(t) is assumed to be smooth with||aε||∞ ∼ O(ε−1), periodic with period 1,
and f ∈Cp is assumed to vary slowly|| f (k)||∞ < C0 for k = 0, · · · , p. It will be important to
note that〈aε〉 ∼ O(1).

The basic assumption is thataε contains the fast periodic motion in the problem andf is
relatively slow. These assumptions hold in the case of the inverted pendulum. In this case
aε = aε(t/ε), ||x|| ≤ xmax∼O(1), f (x)≈ f (X), and||x′|| ≤Ey =

√
2(E0−g)/l ∼O(1). The

constantsxmax andE0 are determined by the given parameters and initial conditions. They
may be calculated by considering the effective potential,V(x) = gcos(x) + sin2x/16π2l
implied by Eq.(3.2), and the energyE0 = ly2

0/2+V(x0).
In the discussion which follows we will make use of the velocity

v(
s
ε
) =

Z s

sn

(aε(
σ
ε
)−〈aε〉)ds, s∈ [tn−

η
2
, tn +

η
2
]

wheresn is chosen so that〈v〉 = 0 and |sn− tn| ≤ ε. The velocity is related tox′ and
likewise the scaling ofaε implies that||v||∞ ∼ O(1). Another useful term will be∆x =
x(s)−Xn, s∈ [tn−η/2, tn +η/2]. Provided that||x′||∞ is bounded as shown above,∆x is
small.
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FIGURE 3.4. A comparison of the error, as a function of 1/H, for the
second order schemes HMM-V-v for fixed and scaled microscale domains
and step-sizes. The parameters and scaling used are listed in rows two and
three of Table 1. The slope of the solid line indicates decrease at second
order inH. In the cases whereη andh are scaled with respect toH, the
method is able to maintain second order performance, despite the leveling
off seen in the fixed case. The constantsαh andαη were chosen such that
the scaled and fixed versions of the calculation would match atH = 0.1
andH = 1. The constants were reset at these values ofH so that the ratio
of η to h would remain reasonable asH decreases.

Lemma 4.1. (∆x is small)∆x = x(s)−Xn, for s∈ [tn−η/2, tn +η/2]

|∆x| ≤C1ε+C2η

Proof. >From [9] we have|x(tn)−Xn| ≤Cε.

|x(s)−Xn| ≤ |x(tn)−Xn|+ |
Z s

tn
x′(τ)dτ|

≤ Cε+
η
2
||x′||∞.

�

A more explicit description ofx′(s) will also be needed in addition to its boundedness.

Lemma 4.2. (Expression for x′(s))

x′(s) = f (Xn)v(
s
ε
)+x′(sn)+ f (Xn)〈a〉(s−sn)+

Z s

sn

aε(
σ
ε
) f ′(z)∆xdσ

Proof. By definition

x′(s) = x′(sn)+
Z s

sn

aε(
σ
ε
) f (x(σ))dσ

= x′(sn)+ f (Xn)〈aε〉(s−sn)+ f (Xn)
Z s

sn

(a(
σ
ε
)−〈a〉)dσ+

Z s

sn

a(
σ
ε
) f ′(z)∆xdσ

= x′(sn)+ f (Xn)〈aε〉(s−sn)+ f (Xn)v(
s
ε
)+

Z s

sn

a(
σ
ε
) f ′(z)∆xdσ

�
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FIGURE 3.5. A comparison of the error, as a function of1
H , for the second

order schemes HMM-V-rk4 for fixed and scaled microscale domains and
step-sizes. The parameters and scaling used are listed in rows two and three
of Table 1. The slope of the solid line indicates decrease at second order in
H. In the case whereη andh are scaled with respect toH, the method is
able to match the second order performance of the fixed method.

In the previous section, the problem is recast as a first order system of equations, and the
average force is estimated by using the microscale solution with suitable initial data. The
force (

F̃(1)
F̃(2)

)
=

(
K ∗y
K ∗ ẍ

)
,

given the initial data (
xn

yn

)
=

(
Xn

Yn− f (Xn)〈
R s

tn aε(σ
ε )dσ〉

)
,

accurately estimates the average force of Eq.(4.2). The accuracy of the force estimatorF̃(1)
may be quickly shown given the initial valueyn above.

Theorem 4.3. (Consistency of̃F(1)) GivenF̃(1) = K ∗y, K∈Kp,q,

|K ∗y−Y(tn)| ≤C
η
ε
||∆x||∞

Proof. By definition,

K ∗y =
Z tn+

η
2

tn− η
2

Kη(t−s)y(s)ds

=
Z tn+

η
2

tn− η
2

Kη(t−s)(yn + f (Xn)
Z s

tn
aε(

σ
ε
)dσ+

Z s

tn
aε(

σ
ε
) f (z)∆xdσ)ds

= Yn +O(
η
ε
||∆x||∞)

�

We now prove our main result, that the force estimatorF̃(2) provides a good approxima-
tion of the averaged forcëX.
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Theorem 4.4. (Consistency of̃F(2)) Let K∈Kp,q, g(t) = aε(t/ε) f (x(t)), then

|K ∗g− Ẍ(tn)| ≤ O(||∆x||∞,
||∆x||2∞

ε
,
εq−1

ηq ,ηp,
√

ε)

Proof. Let G(t) = 〈aε〉 f (X)−
〈
v2
〉

f (X) f ′(X), we first show thatK ∗g∼G.

K ∗g =
Z tn+

η
2

tn− η
2

Kη(t−s)aε(
s
ε
) f (x(s))ds

= f (Xn)
Z tn+

η
2

tn− η
2

Kη(t−s)aε(
s
ε
)ds+ f ′(Xn)

Z tn+
η
2

tn− η
2

Kη(t−s)aε(
s
ε
)∆xds

+
Z tn+

η
2

tn− η
2

Kη(t−s)aε(
s
ε
) f ′′(z)

∆x2

2
ds

= I1 + I2 + I3

ConsiderI3,

|I3| ≤ 1
2
||aε||∞ · || f ′′||∞ · ||∆x||2∞

Z tn+
η
2

tn− η
2

|Kη(t−s)|ds

∼ O(||∆x||2∞/ε).

In many cases (including the numerical examples in the previous section) the kernel will be

a positive function, and
R tn+

η
2

tn− η
2
|Kη(t− s)|ds= 1. Using the results in [3] we may estimate

I1,

I1 = 〈aε〉 f (Xn)+ f (Xn)
Z tn+

η
2

tn− η
2

K(t−s)(aε(
s
ε
)−〈aε〉)ds

≤ 〈aε〉 f (Xn)+ || f ||∞ · ||aε||∞
(

ε
η

)q

≤ 〈aε〉 f (Xn)+O
(

εq−1

ηq

)

The estimate ofI2 is slightly more involved,

I2 = 〈aε〉 f ′(Xn)
Z tn+

η
2

tn− η
2

Kη(t−s)∆xds+ f ′(Xn)
Z tn+

η
2

tn− η
2

Kη(t−s)(aε(
s
ε
)−〈aε〉)∆xds

= 〈aε〉 f ′(Xn)
Z tn+

η
2

tn− η
2

Kη(t−s)∆xds+ f ′(Xn)
Z tn+

η
2

tn− η
2

K′
η(t−s)v(

s
ε
)∆xds

− f ′(Xn)
Z tn+

η
2

tn− η
2

Kη(t−s)v(
s
ε
)x′(s)ds

wherev(s/ε) =
R s

s0
(aε(σ/ε)−〈aε〉)dσ, and〈v〉= 0.
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Using the previous estimate forx′(s)

I2 = f ′(Xn)〈aε〉
Z tn+

η
2

tn− η
2

Kη(t−s)∆xds+ f ′(Xn)
Z tn+

η
2

tn− η
2

K′
η(t−s)v(

s
ε
)∆xds

− f ′(Xn) f (Xn)〈v2〉− ( f ′(Xn) f (Xn)
Z tn+

η
2

tn− η
2

Kη(t−s)(v2(
s
ε
)−〈v2〉)ds

+ f ′(Xn)x′(s0)
Z tn+

η
2

tn− η
2

Kη(t−s)v(
s
ε
)ds

+ f ′(Xn) f (Xn)〈aε〉
Z tn+

η
2

tn− η
2

Kη(t−s)v(
s
ε
)(s−s0)ds

+ f ′(Xn)
Z tn+

η
2

tn− η
2

Kη(t−s)v(
s
ε
)

Z s

s0

aε(
σ
ε
) f ′(z)∆xdσds)

= − f ′(Xn) f (Xn)〈v2〉+O(||∆x||∞,

(
ε
η

)q

,ηp)

Combining these results yields the complete estimate,

|K ∗g− Ẍ(tn)| = |K ∗g−G+C
√

ε|

∼ O(||∆x||∞,
||∆x||2∞

ε
,
εq−1

ηq ,ηp,
√

ε).

�

5. CONCLUSION

The inverted pendulum exhibits stable slow oscillation due to rapid microscale oscilla-
tory forcing. This macroscale behavior is captured very well by a set of HMM algorithms
for which the computational complexity is much lower than that of standard numerical
methods. The HMM approach requires onlyO(T/H · η/ε) operations, which lead to a
computational savings ofO(η/H) or about 103 for the parameters in our numerical experi-
ments compared to standard numerical methods. Notably, standard methods lack sufficient
accuracy to solve the model problem here withε = 10−6 for macroscopic time scales.
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