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Abstract

In this paper we propose a numerical method for computing minimal
surfaces with fixed boundaries. The level set method is used to evolve
a codimension-1 surface with fixed codimension-2 boundary in

�
n under

mean curvature flow. For n = 3 the problem has been approached in
[3] using the level set method, but with a more complicated boundary
condition. The method we present can be generalized straightforward
to arbitrary dimension, and the framework in which it is presented is
dimension independent. Examples are shown for n = 2, 3, 4.

1 Introduction

Given a fixed codimension-2 boundary Γ in R
n, we would like to find a codimension-

1 surface S of minimal surface area that takes Γ as its boundary. If we let S
be the set {x|ϕ(x) = 0} for a function ϕ : R

n → R, then the surface area to be
minimized can be written as

A =

∫

Rn

|∇ϕ|δ(ϕ)dx. (1)

Applying the method of gradient descent to (1) we arrive at the evolution PDE

ϕt = δ(ϕ)∇ ·

(

∇ϕ

|∇ϕ|

)

. (2)

Within the level set framework it is advantageous to avoid the δ function and
so the related PDE:

ϕt = |∇ϕ|∇ ·

(

∇ϕ

|∇ϕ|

)

, (3)

that also evolves ϕ towards a minimizer of (1), is studied here. Evolution under
(3) is known as mean curvature flow. The basic idea behind our technique is
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to initialize a surface that passes through Γ and then evolve it to steady state
using (3), while forcing it at all times to span Γ.

The study and computation of minimal surfaces has a long history. Classical
theory can be found in [5], [13]. Some of the first numerical approximations can
be found in [6]. There has been much study in the dimension n = 3, and
there are many finite element approaches [11], [9]. In [16] minimal surfaces were
approximated by the level sets of functions of least gradient. Mean curvature
flow was used in [7] to compute stable minimal surfaces using finite elements
on surfaces. A network of marker particles is used in the works [1], [4], [18],
and non-parametric representations were used in [12], [10]. See [8] for a more
detailed listing.

A method proposed in [3] uses a similar level set framework for n = 3, but
requires complicated boundary conditions for ϕ near Γ. These boundary condi-
tions require the user to find the intersection of various lines and planes with Γ.
Thus, an analytic representation of gamma must be given or constructed to find
these intersections. Also, the boundary may be unable to avoid an inconsistent
construction. The generalization of that method to higher dimensions is also
not available.

Our method is similar to the method in [3] away from Γ, using finite differ-
ence methods for Hamilton-Jacobi equations [14], [15]. However, near Γ we use
a different technique. To form the spatial derivatives on the right side of (3) we
use a radial basis function (RBF) reconstruction of ϕ with stencil points that lie
exactly on Γ. Then this reconstruction is differentiated to find the needed spa-
tial derivatives. Therefore no analytic construction of Γ is needed, and the user
only needs to know data points on the minimal surface boundary Γ. Because the
RBF reconstruction is dimension independent, the method easily generalizes to
arbitrary dimension and we have obtained results in R

4.
The outline of the paper is as follows: we begin with the description of the

evolution procedure away from Γ. Secondly, we discuss the RBF reconstruc-
tion and the procedure for evolution near Γ. Finally, numerical examples in
R

n, n = 2, 3, 4 are shown.

2 Evolution procedure away from Γ

2.1 Grid construction

First, we describe the procedure for constructing the computational domain.
Given a fixed, compact, codimension-2 boundary in R

n we find an n-dimensional
cube, Ω ⊃ Γ, such that ‖Γ − ∂Ω‖ > ε, where ε is the size of a few (3 or 4) grid
cells. This buffering is to ensure that the stencils used in calculating the terms
in (3) do not cross ∂Ω. Given Ω we discretize it using a uniform grid with
distance between nodes = dx, and call this discretized set Ω̄.
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2.2 Evolution of mean curvature flow

We treat the evolution of (3) using the method of lines. The time derivatives
are calculated using TVD Runge-Kutta schemes [15].

The spatial derivatives are calculated using central finite differences. The
curvature term can be written as

k ≡

[ n
∑

i=1

ϕxixi

( n
∑

j=1

j 6=i

ϕ2
xj

)

−

n
∑

i=1

n
∑

j=1

j 6=i

ϕxixj
ϕxi

ϕxj

]

/|∇ϕ|3. (4)

Second order finite differencing applied to (4) at a point x0 results in a stencil
S0 of size 3n, which consists of all the points {y| ‖y − x0‖∞ ≤ dx}. Finite
differencing is also applied to the term |∇ϕ|.

When we say a point x0 is “away from Γ,” we mean:
1. There are no points y ∈ Γ that lie in the cube {y| ‖y − x0‖∞ < dx}, so

that the convex hull of the stencil used in advancing (3) does not cross Γ.
2. That all points of S0 are part of Ω̄. We say this here because in the

next section we will explain how certain points of Ω̄ are removed from the
computational domain if they are too close to Γ.

We use Neumann BCs ∂u/∂n = 0 on ∂Ω.

2.3 Reinitialization

Another procedure that must be applied at every timestep is reinitialization of
ϕ to a distance function. This is done by evolving the PDE

ϕt + s(ϕ)(|∇ϕ| − 1) = 0, (5)

where s is a smoothed version of the signum function. As this is done every
timestep we only compute a few iterations of (5). See [15] for details on this
computation on uniform grids.

3 Evolution procedure near Γ

In this section we describe the evolution of (3), (5) on the set of all points that
are not “away from Γ.”

3.1 Grid adjustment

Because of the possibility that a point x0 ∈ Ω̄ could be very close to Γ we
remove the set of points B ≡ {x| ‖x − Γ‖2 < d} from Ω̄, where d < dx. We
use d = 0.5 ∗ dx in practice. This is done so that CFL condition is not over
restrictive. Thus our final computational grid consists of (Ω̄ \ B) ∪ Γ.
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3.2 Evolution of mean curvature flow

Firstly, we note that as Γ is part of the minimal surface we set ϕ(x ∈ Γ, t) = 0 ∀t.
To evolve (3) at a point x0 we form a local RBF reconstruction of ϕ, which

we call Φ, and then differentiate Φ to find the spatial derivatives needed in (4)
(which include the partial derivatives needed in |∇ϕ|). This reconstruction is
done using a 3n point stencil, S0, found using the method of rays described in
[2], with the rays given by rk = x0 + vkτ, τ ≥ 0, where vk are taken to be all
points on the unit cubic lattice Z

n with ‖vk‖∞ = 1.
We will briefly describe the method again here.
Assume we have defined N = 3n rays, rk = x0 + vkτ, τ > 0, ‖vk‖2 = 1,

emanating from x0. We then find the neighbor xj of x0 that maximizes V ≡
f(x0, xj , vk, Ω̄, N).

The choice of the stencil preference function f has some flexibility. The
general properties it should have are that it should be a non-increasing function
of α = cos−1(

xj−x0

‖xj−x0‖2

· vk), and β = ‖xj − x0‖ (this norm can be chosen by the

user). Also, f will depend on the local density of points, ρ0, near x0.
For example, in 2 dimensions if we calculate ρ0 and we have chosen N , then

we can define f = g where

g ≡

{

cosα if ‖xj − x0‖2 <
√

N
πρ0

,

−∞ otherwise

Here we have derived the radius of the support of f, R =
√

N
πρ0

, by equating

ρ = N
πR2 . Thus we are assuming that the points in the ball ‖xj −x0‖2 < R have

approximate density ρ0. To calculate ρ0 we can use the number points in the
neighboring coarse grid cells of x0 divided by the total size of those cells. Other
examples choices of f are gp for p > 0, or f = −β, or combinations of these
functions such as g/β or g − β. In practice we use f = g − β/C, where C is a
scaling constant depending on the mesh size.

Some examples of choices of f are shown in figures 1, 2, and 3. For these
examples vk = (0, 1). The function is shown on the left and its contour plot
shown on the right in each figure for 0 ≤ α ≤ π/2. The scale for the x, y axes
has been multiplied by 50. Figure 4 shows an example in 2d of how a single
stencil node would be chosen. The contour lines of f are shown, along with v0,
x0 = (1, 1), and candidate stencil nodes xj , j = 1 : 4. In this example the node
that maximizes f is x1.

Once S0 is found we form our reconstruction Φ following the RBF parameter
optimization procedure outlined in [2]. Next, approximations to the partial
derivatives in (4) are constructed by taking second order central finite differences
of Φ on a uniform grid that has minimal distance between nodes = h. In practice
we use h = dx or h = 0.5 dx. This adds a small amount of numerical diffusion
to the derivatives that is not present if we were to differentiate Φ exactly.

After the spatial derivatives are calculated, TVD Runge-Kutta time advance-
ment is used to advance the solution.
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Figure 1: f = cosα.
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Figure 2: f = −
√

x2 + y2.
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Figure 3: f = cosα −
√

x2 + y2.
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Figure 4: Example of stencil choice, f = −
√

x2 + (y/2)2.
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Figure 5: Minimal surface evolution in 2d with 2 point boundary Γ denoted by
the * points. At t = 0, 0.16, 0.8.

3.3 Reinitialization

As is done on the points of Ω̄ away from Γ, we evolve (5) for a few iterations
after each timestep that (3) is advanced. We use the same technique as is done
in section 3.2 to construct the stencil S0, but then instead of using central
differencing to approximate derivatives of Φ we use one sided upwind finite
differencing where it is needed in the Godunov solver of (5). This means that
when the numerical Hamiltonian that is used to approximate |∇ϕ| calls for
D+

xi
ϕ, D−

xi
ϕ we will use (Φ(x0 + eih) − Φ(x0))/h, (Φ(x0) − Φ(x0 − eih))/h,

respectively.

4 Numerical Examples

In this section we show numerical results.
In 2d with Γ being a set of 2 points the minimal surface will be a line, as in

figure 5. We use a uniform cell width of dx = 0.04.
In 3d an example where we can compare our solution with an analytic result

is when Γ is given by two circles defined by x2 + y2 = 0.52, z = ±0.277259.
This example was also computed in [3]. The initial condition is a cylinder
x2 + y2 = 0.52. In this example we use the symmetry of the solution to reduce
the computational domain to the space x, y ∈ [0, 0.7], z ∈ [0, 0.35], where we
use a uniform cell width of dx = 0.035. The minimal surface boundary Γ is thus
a quarter circle which is discretized using 1000 equispaced points that lie in the
computational domain. However, after the stencils are chosen only 191 of these
points are used.

The exact solution is a catenoid with radius r(z) = 0.4 cosh(z/0.4), whose
radius at z = 0 is 0.4. We can measure the radius at y = 0, z = 0 to be
r = 0.3936 which gives an error of 0.0064 which is on the order of dx2.

Note that because of the symmetric nature of the Neumann BCs imposed
we are also computing the solution of a catenoid where Γ is given by 2 circles
defined by x2 + y2 = 0.52, z = 0.35 ± (0.35 − 0.277259).

Another 3d example is found by letting Γ lie on Enneper’s minimal surface.
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Figure 6: Minimal surface evolution in 3d with 2 circle boundary Γ denoted by
the dark line. At t = 0, 0.123, 0.367.

Figure 7: Minimal surface evolution in 3d with Enneper surface boundary Γ
denoted by the dark line. At t = 0, 0.063, 0.439.

For this example we use the parameterization of Enneper’s surface

{x, y, z} = {r cos θ −
1

3
r3 cos(3θ),−r sin θ −

1

3
r3 sin(3θ), r2 cos(2θ)}

is used. For Γ we take r = 1, θ ∈ [−π, π) for 2000 equispaced points in θ.
The resulting curve resembles the stitching pattern on a baseball. After the
stencils are chosen 1618 of these points are used. The computational domain
is [−1.4, 1.4]3 and the uniform space step size is 2.8/50. The initial surface has
the same topology as Enneper’s surface, and consists of piecewise planar and
cylindrical surfaces that have Gaussian curvature = 0 almost everywhere.

We show 2 different views of the evolution in figures 7, 8, and a comparison
with the exact solution in figure 9. Only the surface inside Γ should be compared
with the exact solution.

In 4d we compute a generalized catenoid solution where Γ is defined as 2
spheres given by x2 +y2+z2 = 0.52, w = ±0.2. The initial condition is a hyper-
cylinder x2+y2+z2 = 0.52. In this example we use the symmetry of the solution
to reduce the computational domain to the space x, y, z ∈ [0, 0.6], w ∈ [0, 0.3],
where we use a uniform cell width of dx = 1/30. The minimal surface boundary
Γ is thus an eighth of a sphere that is discretized using 41, 692 approximately
equispaced points that lie in the computational domain. However, after the
stencils are chosen only 8051 of these points are used.
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Figure 8: Minimal surface evolution in 3d with Enneper surface boundary Γ
denoted by the dark line. At t = 0, 0.063, 0.439.

Figure 9: Minimal surface evolution in 3d with Enneper surface boundary Γ
denoted by the dark line. Left: exact solution. Right: computed solution at
t = 0.439.
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Figure 10: Minimal surface evolution in 4d with 2 sphere boundary Γ denoted
by the dark line. Slices taken at x = 0, at t = 0, 0.034, 0.411.

Figure 11: Minimal surface evolution in 4d with 2 sphere boundary Γ denoted
by the dark line. Slices taken at x = 0.46̄, at t = 0, 0.034, 0.411.

Note that because of the symmetric nature of the Neumann BCs imposed
we are also computing the solution of a catenoid where Γ is given by 2 spheres
defined by x2 + y2 + z2 = 0.52, w = 0.3 ± 0.1.

We show 3d slices of the solution for fixed values of x at various times. Slices
taken for fixed y, z values look identical to those shown, and the slices for fixed
w values look like spheres.

Note how in the slice taken when x = 0.46̄ that the surface remains a catenoid
when |w| > 0.2, but has changed topology in the region |w| < 0.2.

5 Conclusion

In this paper we introduce a numerical method for computing minimal surfaces
in arbitrary dimension that have codimension-2 boundary, Γ, by evolving an
initial codimension-1 surface by mean curvature flow. The method uses existing
finite differences techniques away from Γ, and a new evolution procedure using
radial basis functions near Γ. The method used is dimension independent and
computed examples are shown in 2, 3 and 4 dimensions.

Future work can include the study of unstable minimal surfaces. Surfaces
with generalized triple points can also be studied, perhaps by the use of mul-
tiple level set functions [17]. As computer memory and speed increase higher
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dimensional problems will also be approached. The method presented can also
be applied to other non-linear evolutions with irregular fixed boundaries in ar-
bitrary codimension.
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