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ABSTRACT
This paper presents several important enhancements to the
recently published multilevel placement package mPL [12].
The improvements include (i) unconstrained quadratic re-
laxation on small, noncontiguous subproblems at every level
of the hierarchy; (ii) improved interpolation (declustering)
based on techniques from algebraic multigrid (AMG), and
(iii) iterated V-cycles with additional geometric information
for aggregation in subsequent V-cycles. The enhanced ver-
sion of mPL, named mPL2, improves the total wirelength re-
sult by about 12% compared to the original version. The at-
tractive scalability properties of the mPL run time have been
largely retained, and the overall run time remains very com-
petitive. Compared to gordian-l-domino [25] on uniform-
cell-size IBM/ISPD98 benchmarks, a speed-up of well over
8× on large circuits (≥ 100, 000 cells or nets) is obtained
along with an average improvement in total wirelength of
about 2%. Compared to Dragon [32] on the same bench-
marks, a speed-up of about 5× is obtained at the cost of
about 4% increased wirelength. On the recently published
PEKO synthetic benchmarks, mPL2 generates surprisingly
high-quality placements — roughly 60% closer to the op-
timal than those produced by Capo 8.5 and Dragon — in
run time about twice as long as Capo’s and about 1/10th of
Dragon’s.
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1. INTRODUCTION
Placement is a very important problem in VLSICAD, as

it implicitly defines the interconnect, which has become the
bottleneck in deep submicron designs. With problem in-
stances approaching 10 million cells and nets, the complex-
ity and difficulty of placement has also increased, making
fast and scalable algorithms particularly important.
Traditionally, placement is separated into global and de-

tailed phases. In global placement, an approximately uni-
form distribution of cells is sought. In detailed placement,
nonoverlap constraints are strictly enforced. Both phases
typically incorporate wirelength, timing, and routability into
their objectives or constraints. Detailed placement is typi-
cally constructive: cells are explicitly arranged one by one
in an overlap-free fashion.
The focus in mPL1 is on global placement. The dominant

paradigms for global placement algorithms include (i) re-
cursive bisection or quadrisection, (ii) simulated annealing,
(iii) analytical techniques based on linear and quadratic pro-
gramming, and (iv) force-directed methods. Currently, most
leading methods combine two or more of these approaches
in a top-down framework [10, 32, 21, 31, 25, 19, 7].
mPL is based on multilevel optimization (Figure 1): re-

cursive aggregation followed by interleaved optimization and
disaggregation at every level [17]. Section 1.1 explains why
this more general terminology is preferred to the simpler and
more familiar “clustering” etc. mPL is designed for both
scalability and correct handling of complex constraints, but
the emphasis to date is wirelength minimization subject to
nonoverlap constraints. Future versions will consider timing
and routability.

1.1 The Multilevel Paradigm
The underlying ideas of multilevel methods originated in

the development of algorithms for scalar elliptic partial dif-
ferential equations (PDE) naturally discretized in space by
regular grids [8, 3, 4, 27]. Since their inception, the meth-
ods have been successfully applied to many diverse problems
in scientific computation, both discrete and continuous, in-
cluding some in VLSICAD [17].

1Throughout this paper, the name “mPL” refers collectively
to both mPL1 and mPL2.



In contrast to traditional top-down hierarchical approaches,
multilevel algorithms construct their hierarchies from the
bottom up by recursive aggregation [5, 6]. Aggregation
(a.k.a. weighted aggregation) may be viewed as a general
kind of clustering in which each finer-level element is as-
sociated by convex combination with several coarser-level
elements rather than with just one. Disaggregation is called
interpolation, as it transfers an approximate solution from
a coarser domain to a finer one. In the symmetric positive-
definite linear-system model problem Ax = b, aggregation
(R ∈ Rm×n with m ≈ n/2) and interpolation (RT ) are for-
mulated as linear operators, each the transpose of the other,
so that the coarse-level equations can be written RART x̂ =
Rb, where x̂ is the coarse-level solution, and x = RT x̂. In
the case of linear systems of equations arising from dis-
cretized scalar elliptic PDEs, the benefits of weighted ag-
gregation compared to simple clustering are mathematically
well understood [30]. Clustering corresponds to piecewise-
constant interpolation, weighted aggregation corresponds to
piecewise-linear interpolation, and the latter produces supe-
rior error reduction and convergence rates independent of
grid size. A key obstacle to the use of weighted aggrega-
tion in circuit placement, still unaddressed, is the problem
of defining hyperedges for the aggregates without the aver-
age hyperedge degree or the relative number of hyperedges
exploding at coarser levels.
Intralevel optimization is called relaxation. In a continu-

ous setting, relaxation has the key property that it smooths
the error, quickly eliminating high-frequency error compo-
nents and leaving only slowly varying low-frequency compo-
nents best reduced at coarser scales. Traditionally, relax-
ation is inexpensive and localized; the most common form
for an n×n linear system

∑

j
aijxj = bi is simply the Gauss-

Seidel iteration x
(k+1)
i = bi −

∑

j 6=i
aijx

(k)
j for i = 1, . . . , n.

In the specialized linear-system case, limited application of
localized relaxation at each level of an aggregation-based
hierarchy leads to accurate solutions in optimal-order run
time. The principles governing the convergence in this case
are well understood. In the nonlinear, discrete setting, more
diverse forms of relaxation exist and may be tailored to
the problem at hand; however, the goal is still to produce
local improvement appropriate to the given scale. Global
improvement comes from the combination of improvements
across the entire collection of levels.
Recent success in multilevel hypergraph partitioning [24,

23, 9, 1] has drawn attention to the multilevel framework
as a vehicle for placement. Recently published multilevel
placement algorithms ultra-fast VPR [28] and mPL [12, 11]
have demonstrated potential for dramatic improvement in
speed and scalability. The focus of our current research
is the use of multilevel optimization techniques to improve
overall solution quality as well. Our work is built on the
framework of mPL1, reviewed in the next subsection.
We use the following notation and terminology. Let H =

(V, E) denote the weighted hypergraph-netlist representa-
tion of the given circuit. Elements of V are rectangles of
fixed height and width called cells or modules or vertices.
Elements of E are subsets of V called nets or hyperedges.
To each e ∈ E may be associated a weight w(e) ≥ 0 cho-
sen to reflect the importance of net e with respect to timing
constraints or other criteria. Let N = |V |, the number of
modules in the circuit. The wirelength of net e is estimated
to be the half-perimeter of the smallest rectangle circum-

scribing its cells, its “bounding box.” The total wirelength
is the sum of these estimates over all nets e ∈ E.
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Figure 1: Multilevel Optimization V-Cycle

Representation H1 ≡ H is the finest level of the mul-
tilevel hierarchy. Initially, netlist connectivity is used to
aggregate cells into clusters (Section 2). Hyperedges are
then defined on the clusters in a natural way: if net e =
{vi1 , vi2 , . . . , vin

}, and the cells in net e are contained in
clusters vj1 , . . . , vjm

with m > 1, then e is represented in
the cluster hypergraph simply as e = {vj1 , . . . , vjm

}, where
1 ≤ m ≤ n. Ifm = 1, net e is not transferred to the clusters.
The resulting cluster hypergraph H2 ≡ (V , E) ≡ (V2, E2) is
called a coarsening of H1. Proceeding recursively, we obtain
a hierarchy of hypergraph approximations {H1, . . . , HL},
with L ≤ log2(N), and HL = (VL, EL) the coarsest, and
therefore the smallest, approximation to H. In our imple-
mentations, we select L so that |VL| < 500. As the rep-
resentation at every level resembles the finest level in its
structure, clusters are often also referred to simply as cells.

1.2 Review of mPL1
Aggregation in mPL1 [12, 11] is performed by edge-separ-

ability clustering [16]. At the coarsest level(s) only, a cus-
tomized interior-point method is applied to a nonlinear pro-
gramming formulation initialized by quadratic minimization
with a single center-of-mass constraint, cell area interpreted
as mass. The purpose is to obtain a solution of the highest
possible quality at this level with only an approximately uni-
form area distribution. Interpolation or disaggregation from
a coarser level to an adjacent finer level proceeds as follows:
(i) the child clusters of a common parent are placed concen-
trically at that parent cluster’s center; (ii) clusters are recur-
sively partitioned in cutsize-minimizing fashion into blocks
numbering 500 cells or fewer; (iii) a uniform slot grid is
defined on each block, and displacement-minimizing linear
assignment of cells to slots is performed under a typically
invalid assumption of uniform cell sizes. Following inter-
polation, sweeps of randomized discrete cell exchanges are
performed greedily on subsets whose union covers the entire
circuit [20, 12]. The first version of mPL requires a detailed
placement engine such as domino [18] be run separately af-
ter global placement.



1.3 Improvements in mPL2
The following enhancements to mPL1 have been imple-

mented in mPL2.

(i) First-Choice Clustering (FC) is used to aggregate cells
and clusters [22, 23, 13] by a variety of affinity metrics
(Section 2).

(ii) Unconstrained quadratic minimization is combined with
bin-based area balancing on sequences of small subsets
of clusters for scalable, continuous relaxation at every
level (Section 3).

(iii) Weighted-average disaggregation is used instead of strict,
concentric disaggregation to initially interpolate a coarse-
level solution to its adjacent finer level (Section 4).

(iv) Multiple iterations over the multilevel hierarchy itera-
tively improve the multilevel solution (Section 5).

Overall, these enhancements improve the total wirelength
obtained by mPL1 by about 12% at the cost of about 2.6×
increase in run time. This factor, though perhaps larger
than desired, does not appear to increase with circuit sizes,
and the mPL2 run time remains very competitive, when
compared with other well-known placers such as Gordian-L
[25], Capo [10], and Dragon [32].

2. FIRST-CHOICE AGGREGATION
In this scheme, each vertex (cell) is paired with a neigh-

boring vertex with which it shares the strongest “affinity,”
regardless of whether that adjacent vertex has already been
paired with some other vertex [22, 23, 13]. Connected com-
ponents defined by this association are used as clusters. In
mPL2, the affinity rij between vertices i and j has the initial
form

rij =
∑

{e∈E | i,j∈e}

w(e)

(|e| − 1)area(e)
,

where H = (V, E) is the underlying weighted hypergraph
representation; w(e) is the weight associated to hyperedge
e, area(e) denotes the sum of the areas of the cells (vertices)
in e, and |e| denotes the number of vertices in hyperedge
e. The purpose of weighted area in the denominator is to
give higher affinity to smaller cells joined by smaller nets.
By encouraging the merging of smaller cells, we encourage
a more even distribution of cluster areas.2 However, there
is still substantial area variation, and this variation tends
to increase with each level of aggregation, so that even for
initially uniform cell areas, cluster areas at the coarsest level
may vary by factors of 1000 or more.
In V-cycles subsequent to the first, affinity rij is divided

by the distance between vi and vj in order to preserve some
placement information from previous cycles (Section 5). Clus-
ters are placed at the weighted average of the components’
positions. For the purpose of defining the coarse-level hy-
peredges, however, the mPL2 aggregation is still viewed as
a simple clustering.

2This use of area distinguishes the mPL affinity from the
mPG affinity [13].

3. QUADRATIC RELAXATION ON
NONCONTIGUOUS SUBSETS (QRS)

At each level of the interpolation phase, sweeps of uncon-
strained quadratic relaxations on small, noncontiguous mov-
able subsets of cells are applied. Let M denote a designated
set of movable cells. We denote the set of nets containing at
least one movable cell by EM and the set of fixed cells in EM

by F . That is, F =
⋃

e∈EM
e \M . For each movable set M ,

we minimize the total weighted quadratic-star wirelength of
EM .
For each net e ∈ E , let |e| denote the number of cells in

net e, (x(v), y(v)) the center of cell v, and let

(xe, ye) =





1

|e|

∑

cells v∈e

x(v),
1

|e|

∑

cells v∈e

y(v)



 .

By weighted quadratic-star wirelength, we mean

`∗2 =
1

2

∑

e∈EM

∑

v∈e

(x(v)− xe)
2

|x(k)(v)− x
(k)
e |

+
(y(v)− ye)

2

|y(k)(v)− y
(k)
e |

where the fixed-constant displacement weights

1/|x(k)(v)− x
(k)
e | and 1/|y(k)(v)− y

(k)
e | are used at each it-

eration after the first, as in Gordian-L [29], in order to help
the objective gradually approximate a linear-star wirelength
as closely as possible in a smooth way. In the very first iter-
ation, the weights are not used, and the objective is simply
quadratic star wirelength. Currently we employ just five
such iterations for each movable subset.
The movable subsets are obtained as segments of length 3

along a DFS vertex traversal of the netlist. The traversal be-
gins with a vertex v such that the sum of the wirelengths of
the nets containing v is maximal. Although larger movable
subsets may produce lower wirelengths at the given level,
they do not appear to be cost-effective within the multilevel
framework.
Because there are typically many fixed cells in EM , the

movable cells tend to remain separated and not move un-
reasonably far. However, some increase in overlap may be
incurred, as there is currently no area-congestion modeling
included in the subproblem objective. Following Mongrel
[21], the movable cells are, therefore, not all moved to their
relaxed locations right away. Instead, they are moved one
at a time, and after each such move, the bin-based area den-
sity constraint(s) for the destination bin(s) are examined (a
cell may be too large to fit in a single destination bin). If
any such bin-density constraint is violated, its bin’s area
is reduced by cell-by-cell “ripple-move” propagation along
monotone paths from overfull bins to underfull bins until
feasibility is restored (Figure 2).
Currently, quadratic relaxation in mPL2 amounts sim-

ply to three cell displacements, each possibly followed by
ripple-move corrections to area-congestion. Following each
such subset relaxation, the net wirelength change is checked.
If the relaxation increases the wirelength, its steps are re-
versed, and relaxation on the next movable subset in the
DFS sequence of subsets proceeds. This monotone-non-
increasing-wirelength strategy was observed to produce bet-
ter results in our multilevel implementation than the alter-
native FM-like hill-climbing strategy used in Mongrel [21].
In that approach, all relaxations are initially accepted, but
at the end of the entire sweep, the configuration following
the one that produced the least wirelength is restored.



Figure 2: Ripple-move area-congestion control.

The impact of QRS + ripple-move overlap removal on
mPL2’s performance is illustrated in Table 1. Overall, wire-
length is reduced by about 5.9% at a cost of about 60% in-
creased overall run time. Further experiments (not shown)
show that almost all the run time increase is due to the
ripple-move overlap removal. To reduce ripple-move run-
time, the bin sizes were increased linearly with respect to
circuit size (number of cells), and searches for underfull bins
were limited to windows of 25 bins × 25 bins. About 95% of
searches within these windows are successful; other searches
are simply terminated, and the overfull bin is left alone.
However, we expect that further adjustments to the formula-
tion of the quadratic subproblem will improve performance.
In future work, we plan to incorporate overlap-area-based
force-directed terms into the quadratic as in Kraftwerk [19].

wirelength run time bin
circuit improved increased capacity

ibm04 9.08% 29.60% 2x2
ibm07 8.77% 45.61% 2x2
ibm09 7.38% 47.75% 3x3
ibm10 3.55% 57.05% 3x3
ibm14 4.15% 65.88% 3x3
ibm16 4.17% 65.29% 4x4
ibm17 4.40% 66.57% 4x4
ibm18 5.95% 86.77% 4x4
averages 5.93% 58.07%

Table 1: Impact of QRS relaxation + ripple-move
overlap removal.

4. AMG-BASED INTERPOLATION
Although mPL2 still uses simple clustering rather than

weighted aggregation to build its multilevel hierarchies, it
does use weighted disaggregation (a.k.a. weighted interpo-
lation) rather than simple declustering to take them apart
(Figure 3). In declustering, the center of each child cluster
is placed at the center of its parent. In mPL2, some compo-
nents of most clusters are placed at the weighted averages
of the positions of all clusters with which they share suffi-
cient connectivity (Figure 3). In this way, possible damage
caused by premature associations made during clustering
is reduced. Further motivation for weighted interpolation
comes from well established results for continuous problems,
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Figure 3: AMG-based Weighted Disaggregation

improvement by AMG

wirelength run time
circuit % improved % increased

ibm04 4.93% 63.60%
ibm07 5.08% 10.35%
ibm09 0.78% 23.74%
ibm10 1.42% 12.56%
ibm14 5.73% 12.31%
ibm16 2.55% 13.43%
ibm17 1.10% 5.82%
ibm18 0.52% 10.98%

average 2.76% 19.10%

Table 2: Impact of AMG Interpolation; 1 V-cycle
without QRS.

as mentioned in Section 1.1.
A graph model of connectivity is employed to define the

interpolation: the weight of edge eij is

w(eij) =
∑

{e∈E | i,j∈e}

w(e)

(|e| − 1)
. (1)

For efficiency, only weights above a certain threshold (cur-
rently 1/4) are used. Finer-level vertices vi with the highest
total connectivity

∑

j
w(eij) are designated as “C-points”

and are given the positions of their parent clusters. The re-
maining points are designated as “F -points” and are placed
at the weighted average of the positions of the C-points to
which they are connected. Once an F -point has been placed,
it can be treated like a C-point and used to influence the
positioning of other F -points to which it has connections.
Moreover, since the process depends on the vertex order,
iterations may be used to allow all interconnected nodes to
influence each others’ positions. For this purpose, the nodes
are ordered by decreasing connectivity w(vi) =

∑

j
w(eij),

following (1).
The net impact of AMG-based disaggregation on mPL’s

performance is illustrated in Table 2. Overall, wirelength is
reduced by about 3% at the very modest cost of about a 20%
increase in run time, this increase decreasing with problem
size.

5. MULTILEVEL FLOW
The final important enhancement to mPL2 is improved

iteration flow. After the first V-cycle, an additional V-cycle
is used to improve the result; the results are shown in Ta-
ble 3. During the reaggregation phase, spatial proximity is



Figure 4: Iterated Multilevel Flow Alternatives

circuit rel. time % improve
ibm04 1.10 2.32%
ibm07 1.40 3.57%
ibm09 1.46 4.69%
ibm10 1.49 1.44%
ibm14 1.28 1.64%
ibm16 1.31 2.27%
ibm17 1.30 7.43%
ibm18 1.26 5.36%
average 1.33 3.59%

Table 3: Impact of second vcycle.

used in the FC affinity along with netlist connectivity. Thus,
clusters are placed at the weighted average of their compo-
nents’ positions, the weights identical to those used in the
interpolation (1). Relaxation on this modified hierarchy is
then used to further reduce the wirelength. Experiments so
far conducted suggest that, in the current implementation,
a second V-cycle is more cost-effective than the more elabo-
rate “F-cycle” (known as full multigrid, or FMG), in which
every level of relaxation during the interpolation phase is
followed by a complete reaggregation to the coarsest level
(Figure 4). However, we continue to seek alternative and
more diverse forms of relaxation for which the F-cycle may
yet prove more effective. We also tried a compromise strat-
egy of limited “backtracking” reaggregation but did not find
it effective.

6. OTHER DIFFERENCES
There are a few other minor differences between mPL1

and mPL2.

1. mPL1 uses Domino [18] for detailed placement. For
comparisons on benchmarks in Bookshelf format, a
very simple detailed placement algorithm based on ran-
domized local cell swaps is used in mPL2 instead of
Domino.

2. Prior to Goto relaxation, mPL1 assumes all cells are
the same size in order to partition them into blocks
and then assign them to nearby slots. To lessen the im-
pact of the uniform-cell-size assumption, mPL2 chops
larger cells into uniformly sized pieces and allows the
pieces to be assigned separately. A weighted, artificial

net connecting the pieces is used to keep them from
drifting too far apart.

Neither of these modifications was observed to have more
than 1–2% total impact on either wirelength or run time.

7. RESULTS
The performance of mPL2 was compared to that of a few

leading academic placement tools on two different sets of
benchmarks:

(i) The IBM/ISPD98 suite [2] with all cells uniformly
sized, in either proud or Bookshelf format.

(ii) The PEKO suite [14]
(http://ballade.cs.ucla.edu/~pubbench/peko.htm).
These circuits are constructed to match the net-degree
distribution of the IBM/ISPD98 suite, but the cells are
placed in a way that guarantees each individual net has
minimal wirelength.

Table 4 compares the performance of mPL2 to that of
Capo [10] and Dragon [32] on the IBM/ISPD98 benchmarks
[2] with all cells of uniform size. On the IBM/ISPD98 bench-
marks, mPL2’s overall performance is roughly in between
those of Capo 8.5 and Dragon. Capo 8.5 demonstrates su-
perior speed, but at some cost in solution quality. Dragon
generates placements of superior quality, but at some cost in
speed and scalability. mPL2 obtains quality roughly compa-
rable to Dragon’s (about 4% longer wirelength) in about 1/5
the run time, with relatively less run time on larger designs.
Similarly, the mPL2 run time is about twice as long as the
Capo 8.5 run time, but mPL2 obtains superior solutions,
about 9% less wirelength than Capo 8.5 on average.
Figures 5, 6, and 7 compare the performance of mPL2

to that of mPL1, Capo, and Dragon on the PEKO bench-
marks. Because Dragon’s run time on these benchmarks is
very long, its graph is displayed separately from the others in
order that they remain visually distinguishable. The graphs
show that, on PEKO, mPL2’s total wirelength is roughly
60% closer to the optimal than that produced by Capo 8.5
or Dragon, and mPL2’s run time is about twice as long as
Capo’s and about 1/10th of Dragon’s.
We attribute mPL2’s superior performance on the PEKO

benchmarks to two factors.

1. The initial cluster hierarchy formed by aggregating
cells and clusters according to their hypergraph con-
nectivity. Because all connections in the PEKO bench-
marks are local, FC clustering (Section 2) is particu-
larly effective here at identifying good groupings. Al-
though Dragon and Capo both rely on multilevel parti-
tioning to form their hierarchies, they do not make de-
tailed use of the aggregation hierarchy from the multi-
level partitioning in their top-down optimization phases.

2. The use of a quadratic wirelength model in the nonlinear-
programming engine at the coarsest level. On the
IBM/ISPD98 benchmarks, the effect of skipping non-
linear programming at the coarsest level is only a mod-
est increase (0–4%) in the final, total wirelength. On
the PEKO benchmarks, however, skipping nonlinear
programming at the coarsest level results in 25–61%
increased total wirelength at the finest level. The data
from these experiments are not shown due to page lim-
its.



Comparing the PEKO results to the IBM/ISPD98 results,
we draw two tentative conclusions. First, recursive cluster-
ing is an extremely effective means of organizing optimiza-
tion for circuits that ultimately can be placed using only
short, local interconnects. For circuits requiring longer con-
nections, however, more general organizing strategies may
be needed. Second, optimal performance may require the
incorporation of both quadratic and linear wirelength mod-
els into the optimization. Although a quadratic model may
overpenalize long wires and thereby lead to inferior solutions
for “real” benchmarks, a linear wirelength model may not
be aggressive enough in positioning tightly connected cells
sufficiently close together.

Figure 5: mPL2 vs. mPL1 vs. Capo 8.5 vs.
Dragon on PEKO; wirelength-to-optimal-wirelength
ratio vs. #cells

Figure 6: mPL2 vs. mPL1 vs. Capo 8.5 on PEKO;
run time vs. #cells

8. FUTURE WORK
To incorporate a timing-driven focus in mPL, we plan to

adopt an iterative net-reweighting strategy capable of ac-

Figure 7: mPL2 vs. Dragon on PEKO: run time

curate critical-path estimation [26]. To improve routability,
we can incorporate pin counts into the edge weights used
for the ripple-move congestion-relief (Section 3). Prelimi-
nary experiments using the timing- and congestion-analysis
engines of mPG [15] at each level of the cluster hierarchy
are encouraging; our work in this direction is ongoing.
Currently, mPL2 performs significantly worse on circuits

with large variations in cell sizes than on circuits with nearly
uniform cell sizes. In order to simplify the transition from
continuous refinement to nearly overlap-free discrete refine-
ment, variations in cell sizes are only crudely approximated.
During slot assignment and ripple-move area-congestion re-
lief, mPL2 divides larger clusters into collections of intercon-
nected smaller ones (Section 6) and then assumes all clusters
have the same size. Moreover, all pin locations are placed
at cell centers during both global and detailed placement;
the cost of this simplification is also much higher in the
nonuniform case. We expect further work to bring mPL’s
performance in the general non-uniform cell-size case in line
with its performance in the uniform cell-size case.
Leading contemporary algorithms for hypergraph coarsen-

ing tend to produce very dense hypergraphs at coarser levels,
because (i) the average number of nodes in a hyperedge and
(ii) the ratio of the number of hyperedges to the number
of nodes both tend to increase during coarsening. These
higher interconnect densities may degrade the performance
of the standard optimizations so severely as to render them
ineffective at coarser levels. We expect that further work on
hypergraph coarsening will lead to improved algorithms for
circuit placement.

9. CONCLUSIONS
We believe that multilevel optimization is one of the most

promising techniques for large-scale circuit placement. In
principle, any of the standard techiques for circuit placement
might well be integrated into a multilevel approach, but, in
practice, considerable effort is required to adapt them in a
way that avoids premature optimization and supports the
multilevel flow. The work described here shows how QRS-
based relaxation, in combination with AMG-style weighted



wirelength (WL) runtime (s)

circuit #cells mPL2 mPL1 Capo8.5 Dragon Gord-L mPL2 mPL1 Capo8.5 Dragon Gord-L

ibm04 27220 1.00 1.18 1.12 0.97 1.05 1.00 0.31 0.53 3.03 1.90
ibm07 45639 1.00 1.14 1.12 0.95 1.05 1.00 0.34 0.60 3.33 3.77
ibm09 53110 1.00 1.14 1.12 1.01 1.04 1.00 0.33 0.67 5.40 4.90
ibm10 68685 1.00 1.11 1.10 0.99 0.99 1.00 0.31 0.55 4.70 6.54
ibm14 147088 1.00 1.16 1.08 0.95 1.04 1.00 0.41 0.57 3.02 8.28
ibm16 182980 1.00 1.07 1.06 0.90 1.00 1.00 0.46 0.54 6.83 11.76
ibm17 184752 1.00 1.18 1.10 0.98 0.98 1.00 0.44 0.43 6.82 10.41
ibm18 210341 1.00 1.11 1.10 0.96 1.03 1.00 0.42 0.43 6.10 13.43
averages 1.00 1.14 1.10 0.96 1.02 1.00 0.38 0.54 4.91 7.62

Table 4: mPL2 vs. mPL1+Domino, Capo 8.5, Dragon, and Gordian-L+Domino on uniform-cell-size
IBM/ISPD98 circuits. All values are normalized with respect to mPL2.

interpolation and multiple V-cycle iterations, can be used
to improve the solution produced by a multilevel placer.
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