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Abstract

We address the problem of image segmentation with statistical shape priors in the

context of the level set framework. Our paper makes two contributions:

Firstly, we propose to generate invariance of the shape prior to certain transforma-

tions by intrinsic registration of the evolving level set function. In contrast to existing

approaches to invariance in the level set framework, this closed-form solution removes

the need to iteratively optimize explicit pose parameters. Moreover, we will argue that

the resulting shape gradient is more accurate in that it takes into account the effect of

boundary variation on the object’s pose.

Secondly, we propose a novel statistical shape prior which allows to encode mul-

tiple fairly distinct training shapes. This prior is based on an extension of classical

kernel density estimators to the level set domain. We demonstrate the advantages of

this multi-modal shape prior applied to the segmentation and tracking of a partially

occluded walking person displayed at varying locations and scales.

1. Introduction

When interpreting a visual scene, human observers revert to higher-level knowledge about

expected objects in order to disambiguate the low-level intensity or color information of a

given image. Much research effort has been devoted to imitating the integration of prior

knowledge into machine-vision problems, in particular in the context of image segmentation.

In this work, we focus on prior knowledge about the shape of objects of interest.
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1.1. Statistical Shape Analysis

The study of shape has a long history, going back to works of Galilei [26] and Thompson

[53]. There exist various definitions of the term shape in the literature. Kendall [31] for

example defines shape as all the geometrical information that remains when location, scale

and rotational effects are filtered out from an object.

While Kendall suggests to consider invariance of the shape notion under Euclidean simi-

larity transformations, for recognition purposes there is no default invariance group. Depend-

ing on the context, different group transformations may be considered. Affine transforma-

tions can for example capture certain shape deformations induced by perspective projection

of a 3D object. In certain object recognition tasks, invariance under rotation is not desirable.

For example certain pairs of letters such as “p” and “d” are identical up to rotation, yet

they should not be identified by a character recognition system. In this work, we denote as

shape the contours given by the level set of some embedding function. Moreover, we will

introduce invariance of shape dissimilarity measures under certain transformation groups.

Based on the concept of landmarks (associated with a specific parameterization), a sta-

tistical analysis of shape deformations has been developed among others by Bookstein [2],

Cootes et al. [11] and Cremers et al. [13]. We refer to the book by Dryden and Mardia

[23] for an overview. A mathematical representation of shape which is independent of pa-

rameterization was pioneered in the analysis of random shapes by Fréchet [25] and in the

school of mathematical morphology founded by Matheron and Serra [36]. Osher and Sethian

introduced the level set method [41, 39, 40] as a means of propagating contours (indepen-

dent of parameterization) by evolving associated embedding functions via partial differential

equations. For a precursor containing some of the key ideas of the level set method we refer

to the work of Dervieux and Thomasset [21]. In this work, we introduce statistical shape

information into an image segmentation process based on the shape representation provided

by the level set framework.

The concept of considering shapes as points of an infinite dimensional manifold and

representing shape deformations as the action of Lie groups on this manifold was propagates

by Grenander and coworkers [28, 29] and more recently by Trouvé and Younes [54, 59] and

Klassen et al. [33]. These approaches are generally based on an explicit representation of

shape. In contrast to implicit representations, these allow to easily define correspondence

of parts and the notions of contour shrinking and stretching (cf. [1, 27]). Yet, factoring out

the reparameterization group and identifying an initial point correspondence are numerically

involved processes [33], especially when generalizing to higher dimensions (surface matching).

Moreover, recent work by Pons et al. [44] shows that one can enhance implicit representations
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with the notion of point-wise correspondence.

In this work, we therefore adopt the implicit representation of shape given by the level

set framework. We make two contributions: We propose an intrinsic alignment process

to provide invariance of a shape prior to certain transformations. And we introduce the

concept of non-parametric density estimation to the domain of statistical shape modeling

from example views.

1.2. Prior Shape Knowledge in Level Set Segmentation

Among variational approaches, the level set method [41] has become a popular framework

for image segmentation. It has been adapted to segment images based on numerous low-level

criteria such as edge consistency [35, 5, 32], intensity homogeneity [6, 56], texture information

[42, 47, 30, 4] and motion information [16].

More recently, it was proposed to integrate prior knowledge about the shape of expected

objects into the level set framework. Leventon et al. [34] suggested to represent a set of train-

ing shapes by their signed distance function sampled on a regular grid (of fixed dimension)

and to apply principal component analysis (PCA) to this set of training vectors. Subse-

quently they enhance a geodesic active contours segmentation process [5, 32] by adding a

term to the evolution equation which draws the level set function toward the function which

is most probable according to the learnt distribution. Tsai et al. [55] also performed PCA

to obtain a set of eigenmodes and subsequently reformulated the segmentation process to

directly optimize the parameters associated with the first few deformation modes. Chen et

al. [9] proposed to impose prior knowledge onto the segmenting contour extracted after each

iteration of the level set function. While this approach allows to introduce shape information

into the segmentation process, it is not entirely in the spirit of the level set scheme since the

shape prior acts on the contour and is therefore not capable of modeling topological changes.

Rousson et al. [48, 49] impose shape information into the the variational formulation of the

level set scheme, either by a model of local (spatially independent) Gaussian fluctuations

around a mean level set function or by global deformation modes along the lines of Tsai et al.

[55]. An excellent study regarding the equivalence of the topologies induced by three differ-

ent shape metrics and meaningful extensions of the concepts of sample mean and covariance

can be found in the work of Charpiat et al. [8]. More recently, level set formulations were

proposed which allow to apply shape information about a single object selectively (in certain

image regions) by dynamic labeling [17, 7] or to impose competing shape information so as

to simultaneously reconstruct multiple independent objects in a given image sequence [18].
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1.3. Some Open Problems

The above approaches allow to improve the level set based segmentation of corrupted images

of familiar objects. Yet, existing methods to impose statistical shape information on the

evolving embedding function suffer from three limitations:

• The existing statistical models are based on the assumption that the training shapes

are distributed according to a Gaussian distribution. As shown in [13], this assumption

is rather limiting when it comes to modeling more complex shape deformations such

as the various silhouettes of a 3D object. Moreover, as shown in [8], notions such as

the empirical mean shape of a set of shapes are not always uniquely defined.

• They commonly work under the assumption that shapes are represented by signed

distance functions (cf. [34, 49]). Yet, for a set of training shapes encoded by their

signed distance function, neither the mean level set function nor the linear combination

of eigenmodes will correspond to a signed distance function, since the space of signed

distance functions is not a linear space.1

• Invariance of the shape prior with respect to pose transformations is introduced by

adding a set of explicit pose parameters and numerically optimizing these by gradient

descent [9, 48, 58]. This iterative pose optimization not only requires a delicate tuning

of associated gradient descent time step sizes (in order to guarantee a stable evolution).

It is also not clear in what order and how frequently one is to alternate between the

various gradient descent evolutions. In particular, we found in experiments that the

order of updating the different pose parameters and the level set function strongly

affects the resulting segmentation process.

1.4. Contributions

In this paper, we are building up on the above developments and propose two contributions

in order to overcome the discussed limitations:

• We introduce invariance of the shape prior to certain transformations by an intrinsic

registration of the evolving level set function. The central idea is to evaluate the

evolving level set function not in global coordinates, but in coordinates of a local

intrinsic reference frame attached to the evolving surface. Such a closed-form solution

removes the need to iteratively update local estimates of explicit pose parameters.

1With respect to the mean shape, one can define a mean shape by back-projection onto the space of
signed distance functions [49].
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Moreover, we will argue that this approach is more accurate because the resulting

shape gradient contains an additional term which accounts for the effect of boundary

variation on the pose of the evolving shape.

• We propose a statistical shape prior by introducing the concept of kernel density esti-

mation [46, 43] to the domain of level set based shape representations. In contrast to

existing approaches of shape priors in level set segmentation (which are based on the

assumption of a Gaussian distribution), this prior allows to well approximate arbitrary

distributions of shapes. Moreover, our formulation does not require the embedding

function to be a signed distance function. Numerical results demonstrate our method

applied to the segmentation of a partially occluded walking person.

The organization of the paper is as follows: In Section 2, we briefly review the level set

scheme for the two-phase Mumford-Shah functional, as introduced by Chan and Vese [6].

In Section 3, we review and discuss dissimilarity measures for two shapes represented by

level set functions. In Section 4, we review existing approaches to model pose invariance

and introduce a solution to induce invariance by intrinsic alignment. In Section 5, we detail

the computation of the Euler-Lagrange equations associated with the proposed invariant

shape dissimilarity measures. We demonstrate the invariance properties and the effect of the

additionally emerging terms in the shape gradient on the segmentation of a human silhouette.

In Section 6, we introduce a novel (multi-modal) statistical shape prior by extending the

concept of non-parametric kernel density estimation to the domain of level set based shape

representations. In Section 7, we formulate level set segmentation as a problem of Bayesian

inference in order to integrate the proposed shape distribution as a prior on the level set

function. In Section 8, we demonstrate that the resulting segmentation scheme allows to

accurately segment a partially occluded walking person in a video sequence. Preliminary

results of this work were presented on a conference [14].

2. Level Set Segmentation

Originally introduced in the community of computational physics as a means of propagating

interfaces [41], the level set method has become a popular framework for image segmentation

[35, 5, 32]. The central idea is to implicitly represent a contour C in the image plane Ω ⊂ R2

as the zero-level of an embedding function φ : Ω → R:

C = {x ∈ Ω | φ(x) = 0} (1)

5



Rather than directly evolving the contour C, one evolves the level set function φ. The two

main advantages are that firstly one does not need to deal with control or marker points

(and respective regridding schemes to prevent overlapping). And secondly, the embedded

contour is free to undergo topological changes such as splitting and merging which makes it

well-suited for the segmentation of multiple or multiply-connected objects.

In the present paper, we use a level set formulation of the piecewise constant Mumford-

Shah functional, c.f. [38, 56, 6]. In particular, a two-phase segmentation of an image I : Ω →
R can be generated by minimizing the functional [6]:

Ecv(φ) =

∫
Ω

(I − u+)2Hφ(x)dx +

∫
Ω

(I − u−)2
(
1−Hφ(x)

)
dx + ν

∫
Ω

|∇Hφ|dx, (2)

with respect to the embedding function φ. Here Hφ ≡ H(φ) denotes the Heaviside step

function and u+ and u− represent the mean intensity in the two regions where φ is positive or

negative, respectively. For related computations based on the use of the Heaviside function,

we refer to [60]. While the first two terms in (2) aim at minimizing the gray value variance

in the separated phases, the last term enforces a minimal length of the separating boundary.

Gradient descent with respect to φ amounts to the evolution equation:

∂φ

∂t
= −∂Ecv

∂φ
= δε(φ)

[
ν div

(
∇φ

|∇φ|

)
− (I − u+)2 + (I − u−)2

]
. (3)

Chan and Vese [6] propose a smooth approximation δε of the delta function which allows the

detection of interior boundaries.

In the corresponding Bayesian interpretation, the length constraint given by the last term

in (2) corresponds to a prior probability which induces the segmentation scheme to favor

contours of minimal length. But what if we have more informative prior knowledge about the

shape of expected objects? Building up on recent advances [34, 55, 9, 48, 17, 15, 8, 18, 7] and

on classical methods of non-parametric density estimation [46, 43], we will in the following

construct a shape prior which statistically approximates an arbitrary distribution of training

shapes (without making the restrictive assumption of a Gaussian distribution).

3. Shape Distances for Level Sets

The first step in deriving a shape prior is to define a distance or dissimilarity measure for two

shapes encoded by the level set functions φ1 and φ2. We shall briefly review three solutions

to this question. In order to guarantee a unique correspondence between a given shape and

6



its embedding function φ, we will in the following assume that φ is a signed distance function,

i.e. φ > 0 inside the shape, φ < 0 outside and |∇φ| = 1 almost everywhere (cf. [34, 48]). A

method to project a given embedding function onto the space of signed distance functions

was introduced in [52].

Given two shapes encoded by their signed distance functions φ1 and φ2, a simple measure

of their dissimilarity is given by their L2-distance in Ω:

d2(φ1, φ2) =

∫
Ω

(φ1 − φ2)
2 dx. (4)

This measure has the drawback that it depends on the domain of integration Ω. The shape

dissimilarity will generally grow if the image domain is increased – even if the relative position

of the two shapes remains the same. Various remedies to this problem have been proposed.

3.1. Distance of embedding functions inside the shapes

One solution to the above problem, proposed in [48], is to constrain the integral to the

domain where φ1 is positive:

d2(φ1, φ2) =

∫
Ω

(φ1 − φ2)
2 Hφ1(x) dx, (5)

where Hφ again denotes the Heaviside step function. As shown in [15], this measure can

be further improved by normalizing with respect to the area where φ1 is positive and by

symmetrizing with respect to the exchange of φ1 and φ2. The resulting dissimilarity measure,

d2(φ1, φ2) =

∫
Ω

(φ1 − φ2)
2 hφ1 + hφ2

2
dx, with hφ ≡ Hφ∫

Ω
Hφdx

, (6)

constitutes a pseudo-distance on the space of signed distance functions. For an example

which violates the triangle inequality, we refer to [15].

Although the requirement of symmetry may appear to be a theoretical formality, it was

demonstrated in [15] that such symmetry considerations can have very relevant practical

implications. In particular, asymmetric measures of the form (5) do not allow to impose

prior shape information outside the evolving shape (i.e. in areas where φ1 < 0). Figure 1

shows an example of two circles which only differ by the fact that the second shape has a

spike. The measure (5) gives the same distance between the two shapes, no matter how long

the spike is, because it only takes into account shape discrepancy inside the first shape. In
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Shape 1 Shape 2

Figure 1: A shape comparison for which the asymmetric shape dissimilarity measures
(5) and (7) fail.

contrast, the symmetric variant (6) also takes into account shape discrepancies within the

second shape. It gives a more informative measure of the shape dissimilarity and therefore

allows for more powerful shape priors.

3.2. Pointwise distance between contours

Alternatively (cf. [3]), one can constrain the integration in (4) to the contour C1 represented

by φ1 (i.e. to the area where φ = 0):

d2(φ1, φ2) =

∮
C1

φ2
2 dC1 =

∫
Ω

φ2
2(x) δ(φ1)|∇φ1| dx. (7)

Due to the definition of the signed distance function, this measure corresponds to the distance

of the closest point on the contour C2 (given by |φ2|) integrated over the entire contour C1.

As with equation (5), this measure suffers from not being symmetric. The measure in (7)

for example will only take into account points of contour C2 which are sufficiently close to

contour C1, distant (and possibly disconnected) components of C2 will be ignored: For the

two shapes in Figure 1, the measure (7) will be invariant with respect to the length of the

spike (for spikes which protrude considerably more than their width). Similarly, separate

(disjoint) components of the second shape would be entirely ignored by the measure, as well.

A symmetric variant of (7) is given by:

d2(φ1, φ2) =

∮
C1

φ2
2 dC1 +

∮
C2

φ2
1 dC2 =

∫
Ω

φ2
2(x) |∇Hφ1|+ φ2

1(x) |∇Hφ2| dx. (8)

Further normalization with respect to the contour length is conceivable.
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3.3. Area of the set symmetric difference

A third variant to compute the dissimilarity of two shapes represented by their embedding

functions φ1 and φ2 is to compute the area of the set symmetric difference, as was proposed

in [7, 45, 8]:

d2(φ1, φ2) =

∫
Ω

(
Hφ1(x)−Hφ2(x)

)2

dx. (9)

In the present work, we will define the distance between two shapes based on the above

measure, because it has several favorable properties. Beyond being independent of the image

size Ω, measure (9) defines a distance: it is non-negative, symmetric and fulfills the triangle

inequality. Moreover, it is more consistent with the philosophy of the level set method in

that it only depends on the sign of the embedding function. In practice, this means that

one does not need to constrain the two level set functions to the space of signed distance

functions. It can be shown [8] that L∞ and W 1,2 norms on the signed distance functions

induce equivalent topologies as the metric (9).

4. Invariance by Intrinsic Alignment

One can make use of the shape distance (9) in a segmentation process by adding it as a

shape prior Eshape(φ) = d2(φ, φ0) in a weighted sum to the data term, which is in our case

the Chan-Vese functional (2). Minimizing the total energy

Etotal(φ) = Ecv(φ) + α Eshape(φ) = Ecv(φ) + α d2(φ, φ0) (10)

with a weight α > 0 induces an additional driving term which aims at maximizing the

similarity of the evolving shape with a given template shape encoded by the function φ0.

By construction this shape prior is not invariant with respect to certain transformations

such as translation, rotation and scaling of the shape represented by φ.

4.1. Iterative optimization of explicit pose parameters

A common approach to introduce invariance (c.f. [9, 48, 18]) is to enhance the prior by a

set of explicit pose parameters to account for translation by µ, rotation by an angle θ and

scaling by σ of the shape:

d2(φ, φ0, µ, θ, σ) =

∫
Ω

(
H
(
φ
(
σRθ(x− µ))

)
−Hφ0(x)

)2

dx. (11)
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Although this approach allows to determine the correct pose of an object of interest it has

several drawbacks:

• Optimization of the shape energy (11) is done by local gradient descent. In partic-

ular this implies that one needs to determine appropriate time step size parameters

associated with each pose parameter, chosen so as to guarantee stability of result-

ing evolution. In numerical experiments, we found that balancing these parameters

requires a careful tuning process.

• The optimization of pose parameters and embedding function φ is done simultaneously.

In practice, however, it is unclear how to alternate between the updates of the level

set function and the pose parameters. How often should one iterate one or the other

gradient descent equation? In experiments, we found that the final solution depends

on the selected scheme of optimization.

• The optimal values for the pose parameters will depend on the embedding function φ.

An accurate shape gradient should therefore take into account this dependency of the

pose parameters on φ. In other words, the gradient of (11) with respect to φ should

take into account how the optimal pose parameters µ(φ), σ(φ) and θ(φ) vary with φ.

In order to eliminate these difficulties associated with the local optimization of explicit

pose parameters, we will in the following present an alternative approach to integrate invari-

ance. We will show that invariance can be integrated analytically by an intrinsic registration

process. We will detail this for the cases of translation and scaling. Extensions to rotation

and other transformations are conceivable but will not be pursued here.

4.2. Translation invariance by intrinsic alignment

Assume that the template shape represented by φ0 is aligned with respect to its center of

gravity. Then we define a shape energy by:

Eshape(φ) = d2(φ, φ0) =

∫
Ω

(
Hφ(x− µφ)−Hφ0(x)

)2

dx, (12)

where the function φ is evaluated in coordinates relative to its center of gravity µφ given by:

µφ =

∫
x hφ dx, with hφ ≡ Hφ∫

Ω
Hφdx

. (13)
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This intrinsic alignment guarantees that the distance (12) is invariant to the location of the

shape φ. In contrast to the shape energy (11), we no longer need to iteratively update an

estimate of the location of the object of interest. Moreover, as we shall see in Section 5, this

approach is conceptually more accurate in that it induces an additional term in the shape

gradient which accounts for the effect of shape variation on the center of gravity µφ.

4.3. Translation and scale invariance by intrinsic alignment

Given a template shape (represented by {φ0}) which is normalized with respect to translation

and scaling, one can extend the above approach to scale invariance. Again, the idea is to

evaluate the current level set function in a canonical coordinate system given by its own

location and dimension:

Eshape(φ) = d2(φ, φ0) =

∫
Ω

(
Hφ

(
x− µφ

σφ

)
−Hφ0(x)

)2

dx, (14)

where the level set function φ is evaluated in coordinates relative to its center of gravity µφ

and in units given by its average extension σφ:

σφ =

(∫
(x− µ)2 hφ dx

) 1
2

. (15)

Proposition. Functional (14) is invariant with respect to translation and scaling of the

shape represented by φ.

Proof. Let φ be a level set function representing a shape which is centered and normalized

such that µφ = 0 and σφ = 1. Let φ̃ be an (arbitrary) level set function encoding the same

shape after scaling by σ ∈ R and shifting by µ ∈ R2:

Hφ̃(x) = Hφ

(
x− µ

σ

)
.

Indeed, center and intrinsic scale of the transformed shape are given by:

µφ̃ =

∫
xHφ̃dx∫
Hφ̃dx

=

∫
xHφ

(
x−µ

σ

)
dx∫

Hφ
(

x−µ
σ

)
dx

=

∫
(σx′ + µ)Hφ(x′) σdx′∫

Hφ(x′) σdx′
= µ,
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σφ̃ =

(∫
(x− µφ̃)

2Hφ̃dx∫
Hφ̃dx

) 1
2

=

(∫
(x− µ)2Hφ

(
x−µ

σ

)
dx∫

Hφ
(

x−µ
σ

)
dx

) 1
2

=

(∫
(σx′)2Hφ(x′)dx′∫

Hφ(x′)dx′

) 1
2

= σ.

The shape energy (14) evaluated for φ̃ is therefore given by:

Eshape(φ̃) =

∫
Ω

(
Hφ̃

(
x− µφ̃

σφ̃

)
−Hφ0(x)

)2

dx

=

∫
Ω

(
Hφ(x)−Hφ0(x)

)2

dx = Eshape(φ)

Therefore, the proposed shape dissimilarity measure is invariant with respect to translation

and scaling.

Extensions of this approach to a larger class of invariance are conceivable. For example,

one can generate invariance with respect to rotation by rotational alignment with respect

to the (oriented) principal axis of the shape encoded by φ. We will not pursue this in the

present work. For explicit contour representations, an analogous intrinsic alignment with

respect to similarity transformation was proposed in [19].

5. Euler-Lagrange Equations for Nested Functions

The two energies (12) and (14) derive their invariance from the fact that φ is evaluated

in coordinates relative to its own location and scale. In a knowledge-driven segmentation

process, one can maximize the similarity of the evolving shape encoded by φ and the template

shape φ0 by locally minimizing one of the two shape energies.

The associated shape gradient is particularly interesting since the energies (12) and (14)

exhibit a multiple (nested) dependence on φ via the moments µφ and σφ. In the following, we

will detail the computation of the corresponding Gâteaux derivatives for the two invariant

energies introduced above.
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5.1. Shape derivative for the translation invariant distance

The gradient of energy (12) with respect to φ in direction of an arbitrary deviation φ̃ is given

by the Gâteaux derivative:

∂E

∂φ

∣∣∣∣
φ̃

= lim
ε→0

1

ε

(
E(φ + εφ̃)− E(φ)

)
, (16)

where

E(φ + εφ̃) =

∫
Ω

(
H(φ + εφ̃)(x− µφ+εφ̃)−Hφ0(x)

)2

dx. (17)

With the short-hand notation δφ ≡ δ(φ), the effect of shape variation on the center of gravity

is given by:

µφ+εφ̃ =

∫
xh(φ + εφ̃)dx =

∫
x
(
Hφ + εφ̃ δφ

)
dx∫ (

Hφ + εφ̃ δφ
)

dx

= µφ +
ε∫

Hφdx

∫
(x−µφ)φ̃ δφ dx +O(ε2), (18)

Inserting (18) into (17) and further linearization in ε leads to a directional shape derivative

of the form:

∂E

∂φ

∣∣∣∣
φ̃

= 2

∫ (
Hφ(x̄)−Hφ0(x)

)
δφ(x̄)[

φ̃(x̄)−∇φ(x̄)
1∫

Hφdx′

∫
(x′ − µφ)φ̃(x′)δφ(x′) dx′

]
dx, (19)

where x̄ = x−µφ denotes the coordinates upon centering.

We can therefore deduce that the shape gradient for the translation-invariant energy (12)

is given by:

∂E

∂φ
= 2 δφ(x)

[(
Hφ(x)−Hφ0(x+µφ)

)
−(x−µφ)

t∫
Hφdx

∫(
Hφ(x′)−Hφ0(x

′+µφ)
)
∇Hφ(x′) dx′

]
. (20)

Let us make several remarks in order to illuminate this result:

• As for the image-driven flow in (3), the entire expression in (20) is weighted by the

δ-function which stems from the fact that the function E in (12) only depends on Hφ.
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Iteration 0 Iteration 40 Iteration 110 Iteration 140 Iteration 900

Shape-driven segmentation using only the first term in the gradient (20).

Iteration 0 Iteration 40 Iteration 110 Iteration 140 Iteration 270

Shape-driven segmentation using the full shape gradient (20).

Figure 2: Effect of the additional term in the shape gradient. Segmentation
of a human silhouette obtained by minimizing, (10), a weighted sum of the Chan-Vese
data term (2) and a translation-invariant shape prior of the form (12) encoding the given
silhouette. The top row is obtained by merely using the first term of the shape gradient
in (20): Clearly, the contour does not converge to the desired solution. In contrast, the
bottom row is obtained by using the full shape gradient, including the second term
which is due to the φ-dependence of the descriptor µφ in (12). For the specific choice of
parameters (kept constant for the two experiments), including the additional term both
speeds up the convergence (cf. the results after 110 iterations) and produces the desired
solution (bottom right).

• In a gradient descent evolution, the first of the two terms in (20) will draw Hφ to the

template Hφ0, transported to the local coordinate frame associated with φ.

• The second term in (20) results from the φ-dependency of µφ in (12). It compensates

for shape deformations which merely lead to a translation of the center of gravity µφ.

Not surprisingly, this second term contains an integral over the entire domain because

the center of gravity is an integral quantity. Figure 2 demonstrates that when applied

as a shape prior in a segmentation process, this additional term tends to facilitate

the translation of the evolving shape. While the boundary evolution represented in
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the top row was obtained using the first term of gradient (20) only, the contour flow

shown in the bottom row exploits the full shape gradient. The additional term not

only speeds up the convergence (cf. the respective segmentations obtained after 110

and 140 iterations). But it also generates the desired final segmentation: The last

images of each row show the contour upon convergence.

5.2. Shape derivative for the translation and scale

invariant shape distance

The above computation of a translation invariant shape gradient can be extended to the

functional (14). An infinitesimal variation of the level set function φ in direction φ̃ affects

the scale σφ defined in (15) as follows:

σφ+εφ̃ =

(∫
(x− µφ+εφ̃)

2h(φ + εφ̃)dx

) 1
2

= σφ +
ε

2 σφ

∫
Hφdx

∫ (
(x−µφ)

2 − σ2
φ

)
φ̃ δφ dx. (21)

This expression is inserted into the definition (16) of the shape gradient for the shape energy

(14). Further linearization in ε analogous to the computation presented in Section 5.1 results

in a translation and scale invariant shape gradient of the form:

∂E

∂φ
= 2 δφ(x)σφ

[
σφ

(
Hφ(x)−Hφ0(Tx)

)
−(x−µφ)

t∫
Hφdx

∫ (
Hφ(x′)−Hφ0(Tx′)

)
∇Hφ(x′) dx′ (22)

−
(x−µ)2−σ2

φ

2 σφ

∫
Hφdx

∫ (
Hφ(x′)−Hφ0(Tx′)

)
x′t∇Hφ(x′) dx′

]
,

where Tx ≡ σφx + µφ denotes the transformation into the local coordinate frame associated

with φ. The three terms in the shape gradient (22) can be interpreted as follows:

• The first term draws the evolving contour toward the boundary of the familiar shape

represented by φ0, transported to the intrinsic coordinate frame of the evolving function

φ.

• The second term results from the φ-dependency of µφ. It compensates for deformations

which merely result in a shift of the center of gravity.
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Shaped-driven segmentation with shape prior (14) at small scale.

Energy minimization for the same figure at medium scale.

Energy minimization for the same figure at a large scale.

Figure 3: Invariance with respect to scaling and translation. Segmentation of
a partially occluded human silhouette obtained by minimizing (10), a weighted sum of
the data term (2) and the shape energy (14) encoding the given silhouette. For the three
experiments, we kept all involved parameters constant. Due to the analytic invariance
of the shape energy to translation and scaling, there is no need to numerically optimize
explicit pose parameters in order to reconstruct the object of interest at arbitrary scale
and location. To further illuminate the intrinsic registration process, we also show
the evolving contour in the normalized coordinates obtained by centering and scale
normalization (left).

• The third term stems from the φ-dependency of σφ. Analogous to the second term, it

compensates for variations of φ which merely lead to changes in the scale σφ.

To demonstrate the scale-invariant property of the shape energy (14), we applied the

segmentation scheme to an image of a partially occluded human silhouette, observed at three

different scales. Figure 3 shows the contour evolutions generated by minimizing the total

energy (10) with the translation and scale invariant shape energy (14), where φ0 is the level

set function associated with a normalized (centered and rescaled) version of the silhouette of

interest. The results demonstrate that for the same (fixed) set of parameters, the shape prior

enables the reconstruction of the familiar silhouette at arbitrary location and scale. For a
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Figure 4: Sample training shapes (binarized and centered).

visualization of the intrinsic alignment process, we also plotted the evolving contour in the

normalized coordinate frame (left). In these normalized coordinates the contour converges

to essentially the same solution in all three cases.

6. Kernel Density Estimation in the Level Set Domain

In the previous sections, we have introduced a translation and scale invariant shape energy

and demonstrated its effect on the reconstruction of a corrupted version of a single familiar

silhouette the pose of which was unknown. In many practical problems, however, we do not

have the exact silhouette of the object of interest. There may be several reasons for this:

• The object of interest may be three dimensional. Rather than try to reconstruct the

three dimensional object (which generally requires multiple images and the estimation

of correspondence), one may learn the two dimensional appearance from a set of sample

views. A meaningful shape dissimilarity measure should then measure the dissimilarity

with respect to this set of projections. We refer to [13] for such an example.

• The object of interest may be one object out of a class of similar objects (the class of

cars or the class of tree leaves). Given a limited number of training shapes sampled

from the class, a useful shape energy should provide the dissimilarity of a particular

silhouette with respect to this class.

• Even a single object, observed from a single viewpoint, may exhibit strong shape

deformation – the deformation of a gesticulating hand or the deformation which a

human silhouette undergoes while walking. In many cases, possibly because the camera

frame rate is low compared to the speed of the moving hand or person, one is not able

to extract a model of the temporal succession of silhouettes. In this paper, we will

assume that one can merely generate a set of stills corresponding to various (randomly
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sampled) views of the object of interest for different deformations: Figure 4 shows such

sample views for the case of a walking person. In the following, we will demonstrate

that – without being able to construct a dynamical model of the walking process – one

can exploit this set of sample views in order to improve the segmentation of a walking

person.

In the above cases, the construction of appropriate shape dissimilarity measures amounts

to a problem of density estimation. In the case of explicitly represented boundaries, this has

been addressed by modeling the space of familiar shapes by linear subspaces (PCA) [11] and

the related Gaussian distribution [19], by mixture models [12] or nonlinear (multi-modal)

representations via simple models in appropriate feature spaces [13].

For level set based shape representations, it was suggested [34, 55, 49] to fit a linear sub-

space to the sampled signed distance functions. Alternatively, it was suggested to represent

familiar shapes by the level set function encoding the mean shape and a (spatially inde-

pendent) Gaussian fluctuation at each image location [48]. These approaches were shown

to capture some shape variability. Yet, they exhibit two limitations: Firstly, they rely on

the assumption of a Gaussian distribution which is not well suited to approximate shape

distributions encoding more complex shape variation. Secondly, they work under the as-

sumption that shapes are represented by signed distance functions. Yet, the space of signed

distance functions is not a linear space. Therefore, in general, neither the mean nor the

linear combination of a set of signed distance functions will correspond to a signed distance

function.

In the following, we will propose an alternative approach to generate a statistical shape

dissimilarity measure for level set based shape representations. It is based on classical meth-

ods of (so-called non-parametric) kernel density estimation and overcomes the above limita-

tions.

Given a set of training shapes {φi}i=1...N – such as those shown in Figure 4 – we define

a probability density on the space of signed distance functions by integrating the shape

distances (12) or (14) in a Parzen-Rosenblatt kernel density estimator [46, 43]:

P(φ) ∝ 1

N

N∑
i=1

exp

(
− 1

2σ2
d2(Hφ, Hφi)

)
. (23)

The kernel density estimator is among the theoretically most studied density estimation

methods. It was shown (under fairly mild assumptions) to converge to the true distribution

in the limit of infinite samples (and σ → 0), the asymptotic convergence rate was studied

for different choices of kernel functions.
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There exist extensive studies on how to optimally choose the kernel width σ, based on

asymptotic expansions such as the parametric method [20], heuristic estimates [57, 50] or

maximum likelihood optimization by cross validation [24, 10]. We refer to [22, 51] for a

detailed discussion. For this work, we simply fix σ2 to be the mean squared nearest-neighbor

distance:

σ2 =
1

N

N∑
i=1

min
j 6=i

d2(Hφi, Hφj). (24)

The intuition behind this choice is that the width of the Gaussians is chosen such that on

the average the next training shape is within one standard deviation.

Reverting to kernel density estimation resolves the drawbacks of existing approaches to

shape models for level set segmentation discussed above. In particular:

• Kernel density estimators were shown to converge to the true distribution in the limit

of infinite (independent and identically distributed) training samples [22, 51]. In the

context of shape representations, this implies that our approach is capable of accurately

representing arbitrarily complex shape deformations.

• By not imposing a linear subspace, we circumvent the problem that the space of shapes

(and signed distance functions) is not a linear space. In other words: Kernel density

estimation allows to estimate distributions on non-linear (curved) manifolds. Clearly, in

the limit of infinite samples and kernel width σ going to zero, the estimated distribution

is more and more constrained to the manifold defined by the shapes.

In the following, we will detail how the statistical distribution (23) can be used to enhance

level set based segmentation process. To this end, we formulate level set segmentation as a

problem of Bayesian inference.

7. Knowledge-driven Segmentation

In the Bayesian framework, the level set segmentation can be seen as maximizing the condi-

tional probability

P(φ | I) =
P(I |φ) P(φ)

P(I)
, (25)

with respect to the level set function φ, given the input image I. Since P(I) is a constant,

this is equivalent to minimizing the negative log-likelihood which is given by a sum of two
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energies2:

E(φ) =
1

α
Ecv(φ) + Eshape(φ), (26)

with a positive weighting factor α and the shape energy

Eshape(φ) = − logP(φ), (27)

where P(φ) is given in (23).

Minimizing the energy (26) generates a segmentation process which simultaneously aims

at maximizing intensity homogeneity in the separated phases and a similarity of the evolving

shape with respect to all the training shapes encoded through the statistical estimator (23).

Gradient descent with respect to the embedding function amounts to the evolution:

∂φ

∂t
= − 1

α

∂Ecv

∂φ
− ∂Eshape

∂φ
, (28)

with the image-driven component of the flow given in (3) and the knowledge-driven compo-

nent is given by:

∂Eshape

∂φ
=

∑
αi

∂
∂φ

d2(Hφ, Hφi)

2σ2
∑

αi

, (29)

which simply induces a force in direction of each training shape φ weighted by the factor:

αi = exp

(
− 1

2σ2
d2(Hφ, Hφi)

)
, (30)

which decays exponentially with the distance from the training shape φi. The invariant

shape gradient ∂
∂φ

d2(Hφ, Hφi) is given by the expression (20) or (22), respectively.

8. Tracking a Walking Person

In the following we apply the proposed shape prior to the segmentation of a partially occluded

walking person. To this end, a sequence of a dark figure walking in a (fairly bright) squash

court was recorded. We subsequently introduced a partial occlusion into the sequence and

ran an intensity segmentation by iterating the evolution (3) 100 times for each frame (using

the previous result as initialization). For a similar application of the Chan-Vese functional

(without statistical shape priors), we refer to [37]. The set of sample frames in Figure 5

2In the Bayesian terminology, the length constraint in the Chan-Vese functional (2) should be associated
with the shape energy as a (geometric) prior favoring shapes of minimal boundary. However, for notational
simplicity, we will only refer to the statistical component as a shape energy.
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Figure 5: Various frames showing the segmentation of a partially occluded walking
person generated with the Chan-Vese model (2). Based on a pure intensity criterion,
the walking person cannot be separated from the occlusion and darker areas of the
background such as the person’s shadow.

clearly demonstrates that this purely image-driven segmentation scheme is not capable of

separating the object of interest from the occluding bar and similarly shaded background

regions such as the object’s shadow on the floor.

In a second experiment, we manually binarized the images corresponding to the first half

of the original sequence (frames 1 through 42) and aligned them to their respective center

of gravity to obtain a set of training shape – see Figure 4. Then we ran the segmentation

process (28) with the shape prior (23). Apart from adding the shape prior we kept the other

parameters constant for comparability.

Figure 6 shows several frames from this knowledge-driven segmentation. A comparison

to the corresponding frames in Figure 5 demonstrates several properties of our contribution:

• The shape prior permits to accurately reconstruct an entire set of fairly different shapes.

Since the shape prior is defined on the level set function φ – rather than on the boundary

C (cf. [9]) – it can easily reproduce the topological changes present in the training set.

21



Figure 6: Segmentation generated by minimizing energy (26) combining intensity in-
formation with the statistical shape prior (23). For every frame in the sequence, the
gradient descent equation was iterated for a fixed parameter choice, using the previ-
ous segmentation as initialization. Comparison with the respective frames in Figure 5
shows that the multi-modal shape prior permits to separate the walking person from
the occlusion and darker areas of the background such as the shadow. The shapes in
the second half of the sequence were not part of the training set.

• The shape prior is invariant to translation such that the object silhouette can be

reconstructed in arbitrary locations of the image. All training shapes are centered at

the origin, and the shape energy depends merely on an intrinsically aligned version of

the evolving level set function.

• The statistical nature of the prior allows to also reconstruct silhouettes which were

not part of the training set – corresponding to the second half of the images shown

(beyond frame 42).

9. Conclusion

We proposed solutions to open problems regarding the integration of statistical shape infor-

mation into level set based segmentation schemes. In particular, we make two contributions:
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Firstly, we combined concepts of non-parametric density estimation with level set based

shape representations in order to create a statistical shape prior for level set segmentation

which can accurately represent arbitrary shape distributions. In contrast to existing ap-

proaches, we do not rely on the restrictive assumptions of a Gaussian distribution and can

therefore encode fairly distinct shapes. Moreover, by reverting to a non-parametric density

estimation technique, we are able to accurately estimate shape distributions on curved man-

ifolds, thereby circumventing the problem that the space of signed distance functions is not

a linear space.

Secondly, we proposed an analytic solution to generate invariance of the shape prior with

respect to translation and scaling of the object of interest. The key idea is to evaluate the

evolving level set function in local coordinates defined relative to its current center of gravity

and in units relative to its current scale. As a consequence, our method no longer requires the

numerical and iterative optimization of explicit pose parameters. In particular, this removes

the need to select appropriate time steps and to define a meaningful alternation process

for the various gradient descent equations (associated with each explicit pose parameters

and the level set function). Moreover, we argue that this intrinsic registration induces a

more accurate shape gradient: An additional term emerges in the Euler-Lagrange equations

which takes into account the dependency of the pose parameters on the level set function.

It compensates for boundary deformations which merely lead to a change of the pose of the

evolving shape.

In numerical experiments, we showed that the additional term in the shape gradient

both improves and speeds up the convergence of the contour to the desired solution. We

showed that the scale invariant prior allows to reconstruct a familiar silhouette at arbitrary

scales. Finally, we applied the statistical shape prior to the segmentation and tracking of a

partially occluded walking person. In particular, we demonstrate that the proposed multi-

modal shape prior permits to accurately reconstruct fairly distinct silhouettes in arbitrary

locations (even silhouettes which were not in the training set).
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[13] D. Cremers, T. Kohlberger, and C. Schnörr. Shape statistics in kernel space for variational

image segmentation. Pattern Recognition, 36(9):1929–1943, 2003.

24



[14] D. Cremers, S. J. Osher, and S. Soatto. Kernel density estimation and intrinsic alignment

for knowledge-driven segmentation: Teaching level sets to walk. In C. E. Rasmussen, editor,
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