
A Level Set Method for Three-dimensional Paraxial

Geometrical Optics with Multiple Sources

Shingyu Leung∗ Jianliang Qian† Stanley Osher‡

July 7, 2004

Abstract

We apply the level set method to compute the three dimensional multivalued geo-
metrical optics term in the paraxial formulation. The paraxial formulation is obtained
from the 3-D stationary eikonal equation by using one of the spatial directions as the
artificial evolution direction. The advection velocity field used to move level sets is ob-
tained by the method of characteristics; therefore the motion of level sets is defined in a
phase space. The multivalued traveltime and amplitude-related quantity are obtained
from solving advection equations with source terms. We derive an amplitude formula in
the reduced phase space which is very convenient to use in the level set framework. By
using a semi-Lagrangian method in the paraxial formulation, the method has O(N 2)
rather than O(N 4) memory storage requirement in the five dimensional phase space,
whereN is the number of mesh points along one direction. Although the computational
complexity is still O(MN 4), where M is the number of steps in the ODE solver for the
semi-Lagrangian scheme, this disadvantage is largely overcome by the fact that up to
O(N2) multiple sources can be treated simultaneously. Three dimensional numerical
examples demonstrate the efficiency and accuracy of the method.

1 Introduction

Consider the geometrical optics (high frequency) approximation for 3-D acoustic wave
equations. According to the Debye procedure, the leading order term defining the
geometrical optics term consists of two functions, one being the eikonal satisfying the
eikonal equation,

|∇τ | =
1

c
, (1)
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and the other being the amplitude solving the transport equation,

∇ · (A2∇τ) = 0, (2)

where τ and A are the eikonal, a.k.a., traveltime in many applications, and the ampli-
tude function respectively; c is the given wave velocity in an acoustic medium. These
two equations appear in a variety of applications: high resolution seismic imaging
[15, 4, 24, 30], underwater acoustics, semi-classical limit for quantum mechanics [22],
and optical instruments, to name just a few.

As a first order scalar nonlinear PDE, equation (1) usually does not admit a global,
smooth solution in the physical space. By viewing the gradient components as indepen-
dent functions of some parameter, for a given non-characteristic boundary condition
the method of characteristics yields a smooth solution for equation (1) in the phase
space; but once projected to the physical space, the solution usually is multivalued.
The concept of viscosity solution singles out a unique, physically relevant weak solution
among these multivalued branches of solutions, so that a continuous, global solution is
well defined in this class. However, in many applications, the multivalued solution is
necessary and also physically relevant. In seismics, the later arrival traveltimes which
do not correspond to the viscosity solution of the eikonal equation may carry more
significant energy than the viscosity solution-based first arrivals do [12, 24].

Naturally, one may use the method of characteristics to derive a set of ODEs to
compute traveltimes and amplitudes in the phase space, which essentially yields ev-
erything. However, the major disadvantage of the approach is that it lacks control
of resolution of the solution in the physical space. Certainly, the shortcoming can be
overcome to some extent by extra bookkeeping of data structures [40]. On the other
hand, one may look for a PDE framework to compute these multivalued solutions in
the phase space; this results in the so-called Eulerian geometrical optics [3, 8]. In the
past decade, there are a lot of efforts in this direction: domain decomposition along
caustic curves [2], the slowness matching method [37, 38], methods based on kinetic
formulation [13, 16, 14], dynamical surface extension methods [31, 33], and Liouville
equation based methods, such as the the segment projection method [9], the vectorial
level set method [25, 27, 18, 5, 6, 29, 28, 17], the method based on escape parameters
[11].

Extend the traveltime function τ=τ(x, y, z) defined in a bounded spatial domain
Ω to T=T (x, y, z, θ, φ) defined in the reduced phase space via the slowness vector,
equation (12). Consider its t-wavefront in the reduced phase space:

T (x, y, z, θ, ψ) = t, (3)

which consists of all the wavefronts starting from all the sources on the boundary ∂Ω
and all the take-off directions pointing into the domain Ω and reaching the spatial
location (x, y, z) with arrival angles (θ, ψ).

Now differentiate this identity w.r.t. t and use the ray tracing system (13),

w · ∇x,y,z,θ,ψT = 1, (4)

where w denotes the right hand side of the system (13).
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As pointed out in [5], the main issue is to identify those (θ, ψ) such that the slowness
vector satisfies

p(θ, ψ) = ∇x,y,zT ; (5)

then the eikonal equation is satisfied locally.
In the slowness matching method developed in [37, 38], this condition is enforced by

solving many point source problems, equation (19), directly in the physical space, which
amounts to constructing many local fundamental solutions for the eikonal equation and
identifying those slownesses satisfying (5) by the slowness matching condition. This
method is highly efficient if traveltimes from multiple sources are desired as argued
carefully in [38]. In fact it is the only method so far that stays in the physical space
and at the same time resolves multivalued solutions.

To use the Liouville equation based phase space formulation more efficiently, we de-
veloped the level set method for the two-dimensional paraxial multivalued geometrical
optics in [29, 28]. In this work, we continue to develop efficient level set methods for
three dimensional multivalued geometrical optics in the paraxial formulation. In this
case, the full Liouville equation is five dimensional; by using the paraxial assumption,
we essentially reduce the problem by one dimension and equation (4) becomes

Tz + u · ∇x,y,θ,ψT =
1

c sin θ cosψ
; (6)

see Section 3.2 for further details. Our framework provides multivalued geometrical
optics terms for multiple sources simultaneously in that we are able to make use of
the information from not only the zero level set but also all the nonzero level sets. By
using a global semi-Lagrangian method to solve level set equations, the physical space
variables are directly linked to the phase variables so that the condition (5) can be
resolved efficiently and the computational memory requirement is reduced from O(N 4)
to O(N2), where N is the number of mesh points along one direction. In comparison
to the usual finite difference discretization of the level set equations which requires
O(N4) memory storage, this saving is very significant in the computational space of
five dimensions. Although the method proposed here has the computational complexity
O(MN4), where M is the number of steps in the ODE solver for the semi-Lagrangian
scheme, it can handle up to N 2 multiple sources simultaneously; therefore, overall it is
still very efficient if the geometrical optics terms for multiple sources are needed as in
seismics [38].

In the method based on escape parameters [11], to identify those (θ, ψ) such that
the condition (5) holds, the authors made use of the fact that the source locations and
takeoff angles are constant along the rays; therefore, five Liouville equations are used to
advect these constants as tags for the rays so that the traveltime T at (x, y, z, θ, ψ) can
be distinguished by checking the tags at (x, y, z, θ, ψ). Then postprocessing is used to
solve for (θ, ψ) satisfying (5) at (x, y, z) for specified source locations. This approach is
efficient if traveltimes from up to N 2 multiple sources are desired by using the similar
argument as in [38]. In terms of the paraxial formulation (6), the computational
complexity and memory requirement of this approach are both of O(N 5).

Our approach shares some similarities with [11], but their formulation is only for
static HJ equations, and ours can be viewed for “artificial time” dependent HJ equa-
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tions in terms of z-dependent paraxial formulation. In [11], the Liouville equations are
solved by combining a local semi-Lagrangian and Dijkstra-like fast marching method,
and the resulting computational memory requirement is O(N 5) in the five dimensional
reduced phase space. In this work, we explore a global semi-Lagrangian approach to
solve the paraxial Liouville equations so that high order ODE solvers can be used right
away, and the resulting method in our setup has the advantage that the computational
memory requirement is only of O(N 2).

In the five dimensional reduced phase space, the condition (5) defines an object of
co-dimension 2; therefore the object can be resolved by the intersection of zero level
sets of three functions defined in (x, y, z, θ, ψ) space. This is commonly used level set
method, first proposed to compute multivalued phases in the high frequency asymp-
totics for acoustic wave equations in [25], where the multivalued phases are implicitly
represented as self-intersecting wavefronts in the physical space. Later it was extended
to compute multivalued phases (traveltimes) in the high frequency asymptotics for
anisotropic elastic wave equations in [27, 6], where the multivalued solutions for a class
of steady Hamilton-Jacobi equations were computed and illustrated as self-intersecting
wavefronts as well. It was also extended to compute multivalued wavefronts and mul-
tivalued phases in the high frequency asymptotics for the Schrödinger equation in
[5], where multivalued solutions for time dependent Hamilton-Jacobi equations were
constructed in a general level set framework; it was also extended to compute the
multivalued gradient of the solution for time dependent and steady Hamilton-Jacobi
equations in [18], where a level set formulation for handling the gradient of the solution
was used to obtain the Liouville equation, but the formulation only yields the multival-
ued gradient of the solution and does not provide the multivalued solution itself. The
multivalued solution was provided by adding more Liouville equations and indepen-
dent variables without increasing the formal complexity in [5, 20]. In [17], the level set
method is applied to computing multivalued physical observables for the semi-classical
limit of the Schrödinger equation.

The advantage of following only zero level sets is that local level set methods can be
designed so that the memory requirement and computational complexity are optimal
to some extent [1, 26]. The PDE based local level set method, first proposed in [26]
for single level set motions and generalized in [25, 28] for vectorial level set motions, is
one of the possible approaches to reduce the computational complexity from O(N 5) to
O(N3LogN) in the paraxial formulation; but its memory requirement is still of O(N 4).
The tree-based local level set method also only follows the zero level set by putting
more nodes near the zero level set [34, 23]; this reduces the computational complexity
from O(N 5) to O(N 3LogN), and the memory requirement O(N 4) to O(N 2LogN) on
average. The semi-Lagrangian method proposed in [23], which in turn is an extension
of [34], is based on short time evolution of an Euler step, so that the zero level set
can be tracked locally using a dyadic tree structure. Since such local level set methods
follow only zero level sets, they can handle only wave propagation with a single source.

Given multiple sources, we can certainly initialize the level set function so that their
initial zero level sets represent those multiple sources. With this initialization, one can
still get all the multi-arrival rays from multiple sources. However, on the later times,
one cannot distinguish rays from different sources because all rays are represented by
the same intersection of zero level sets essentially. To treat multiple sources in the



A Level Set Method for 3D Paraxial Geometrical Optics 5

framework of using only zero level sets, it is possible to use the idea proposed in [5] by
augmenting the reduced phase space with one more dimension such that the solutions
for multiple sources are viewed as graphs in the augmented phase space. This idea is
worth exploring further.

If limited to a single source, then our approach can also be viewed in the framework
of [5]. Thus the work presented here serves as a link between the work in [25, 27, 5]
and that in [11].

The rest of the paper is organized as follows: Section 2 presents the paraxial for-
mulation for the 3-D eikonal equation; Section 3 presents the level set formulation for
multivalued wavefronts, traveltimes and amplitudes; Section 4 gives implementation
details for the level set method; Section 5 demonstrates the accuracy of the proposed
semi-Lagrangian level set method with extensive numerical examples; Section 6 con-
cludes the paper.

2 3D Paraxial Formulation for Eikonal Equa-

tion

Consider a point source condition for the 3-D eikonal equation defined in an open,
bounded domain Ω ⊂ R3. To emphasize the point source condition the eikonal equation
is rewritten as follows,

|∇xτ(x,xs)| =
1

c(x)
. (7)

limx→xs

τ(x,xs)

|x− xs|
=

1

c(xs)
, τ ≥ 0, (8)

where xs is the given source point.
To apply the method of characteristics, we first parameterize the 3-D unit vectors by

spherical coordinates. Points on a unit sphere, away from the x-axis, can be uniquely
represented by the following rotated spherical coordinates,

x = cos θ

y = sin θ sinψ

z = sin θ cosψ , (9)

where θ ∈ (0, π) is the angle between the point and the positive x-axis, and ψ ∈ [−π, π)
is the angle between the positive z-axis and the projection of the point onto the y-
z plane; Figure 1 shows the standard and rotated spherical coordinates. Then the
slowness vector ∇τ=p can be represented as

p1 =
cos θ

c
(10)

p2 =
sin θ sinψ

c
(11)

p3 =
sin θ cosψ

c
(12)
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Figure 1: Spherical coordinates and rotated Spherical coordinates

By using the above parameterization we have the following ray tracing system

dx

dt
= c cos θ

dy

dt
= c sin θ sinψ

dz

dt
= c sin θ cosψ

dθ

dt
= sin θ

∂c

∂x
− cos θ

(

cosψ
∂c

∂z
+ sinψ

∂c

∂y

)

dψ

dt
=

1

sin θ

(

sinψ
∂c

∂z
− cosψ

∂c

∂y

)

(13)

with initial conditions

x|t=0 = xs

y|t=0 = ys

z|t=0 = zs

θ|t=0 = θs

ψ|t=0 = ψs (14)

where xs = (xs, ys, zs) and θs and ψs vary from 0 to π and from −π to π respectively.
One can compare this formulation with the one from [19, 25]. We use this rotated
spherical coordinates rather than the standard spherical coordinates system because
points on the z-axis can now be uniquely represented. If the spherical coordinates
was used, for non-constant media (c 6= const), the ray tracing system would not be
well-posed even for the ray travels vertically upward. Although points on the x-axis
in this rotated coordinate system may still seem to cause problem, these points are
actually out of our computational domain according to the paraxial assumption which
will be discussed below.

Next we extend the arrival-time function τ(x, y, z) to the reduced phase space
{(x, y, z, θ, ψ)}, and denoted as T (x, y, z, θ, ψ), and consider the t-wavefront expanding
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from the source point:

T (x, y, z, θ, ψ) = t. (15)

Differentiating this identity with respect to t, we have

dx

dt
Tx +

dy

dt
Ty +

dz

dt
Tz +

dθ

dt
Tθ +

dψ

dt
Tψ = 1 (16)

with the boundary condition

T (xs, ys, zs, θs, ψs) = 0 , (17)

for 0 ≤ θs ≤ 2π and −π ≤ ψs ≤ π.
Since equation (16) is a linear advection equation, one may be tempted to solve it di-

rectly with the condition (17). However, for a given (x, y, z) 6= (xs, ys, zs), T (x, y, z, ·, ·)
is not necessarily well defined for every θ and ψ. In other words, equations (16) and
(17) are not well-posed. To obtain an well-posed problem, we will assume the paraxial
condition and use the level set formulation.

In some applications, for example wave propagation in reflection seismics [7], the
arrival-times of interest are carried by the so-called sub-horizontal rays [15, 36, 30],
where sub-horizontal means “oriented in the positive z-direction”. A convenient char-
acterization for sub-horizontal rays is that

dz

dt
≥ c sin θmax cosψmax > 0 (18)

for some θmax and ψmax with π/2 < θmax < π and 0 < ψmax < π/2. This inequality
holds for rays making angles θ and ψ satisfying |θ| ≤ θmax < π and |ψ| ≤ ψmax < π/2.

The traveltimes corresponding to these sub-horizontal rays satisfy the following
paraxial eikonal equation

∂τ

∂z
= =

√

√

√

√max

(

1

c2
−
(

∂τ

∂x

)2

−
(

∂τ

∂y

)2

,
sin2 θmax cos2 ψmax

c2

)

. (19)

To be specific, consider

Ω = {(x, y, z) : xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, 0 ≤ z ≤ zmax} (20)

and assume that the source is located on the surface: xmin ≤ xs ≤ xmax, ymin ≤ y ≤
ymax and zs = 0. By the sub-horizontal condition we can use depth z as the running
parameter so that we have the following reduced system

xz =
1

cosψ tan θ

yz = tanψ

θz =
cx

c cosψ
− cz + cy tanψ

c tan θ

ψz =
cz tanψ − cy

c sin2 θ
, (21)

with x ∈ [xmin, xmax], y ∈ [ymin, ymax], θ ∈ [εθ, π − εθ] and ψ ∈ [εψ − π/2, π/2 − εψ].
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3 Level Set Formulation

3.1 Representation of a Point Source

We first assume that a single source is located at the origin. Therefore, rays from this
source can now be represented as the intersection of zero level sets of two level set
functions, φ1(z;x, y, θ, ψ) and φ2(z;x, y, θ, ψ).

Differentiating the zero level set of these functions with respect to z, we get the
following level set equations which govern the motion of the corresponding zero level
sets,

φmz +
dx

dz
φmx +

dy

dz
φmy +

dθ

dz
φmθ +

dψ

dz
φmψ = 0 (22)

for m = 1, 2. Or, these equations can be rewritten as

φmz + u · ∇x,y,θ,ψφ
m = 0 (23)

for m = 1, 2 where the velocity field u = (u1, u2, u3, u4) is given by the ray tracing
system (21).

On z = 0, we initialize the level set functions by

φ1(0;x, y, θ, ψ) = x and φ2(0;x, y, θ, ψ) = y . (24)

3.2 Arrival-time

Arrival-time can be computed by inverting the third equation in (13) locally. This
gives

Tz + u · ∇x,y,θ,ψT =
1

c sin θ cosψ
, (25)

where T = T (z;x, y, θ, ψ).
To obtain the multivalued arrival-time on z = z∗, we first solve equations (23) and

(25) up to z = z∗. We then compute the intersection of the zero level sets, denoted by

Σ0 = {(x, y, θ, ψ) : φ1(z∗;x, y, θ, ψ) = φ2(z∗;x, y, θ, ψ) = 0} ⊂ R
4 . (26)

The arrival-times at (z∗;x, y) can be determined by projecting T (z∗; Σ0) onto the x-y
plane.

3.3 Representation of Multiple Sources

However, we have noticed that the level set functions contain much more information
than what we can have used in the above algorithm since not only the zero level set
but also the non-zero level sets are also useful. Rays emanating from a source in the
phase space are not necessarily represented by the intersection of two zero level sets
only. We can define rays from a source at a location (xs, ys) by the intersection of
{φ1 = xs} and {φ1 = ys}. Under the same velocity field, given by u, to find all rays
on z = z∗ from this source (xs, ys), one only needs to determine the set

Σxs
= {(x, y, θ, ψ) : φ1(z∗;x, y, θ, ψ) − xs = φ2(z∗;x, y, θ, ψ) − ys = 0} , (27)
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rather than the one defined by equation (26). In other words, using the initial condi-
tions (24), a point (xi, yj , θk, ψl) on z = z∗ can be connected to the point

(φ1(z∗;xi, yj, θk, ψl), φ
2(z∗;xi, yj , θk, ψl), θ0, ψ0)

on z = 0 through the characteristic curve of (23) for some initial conditions (θ0, ψ0).
More importantly, the initial conditions (24) can be reinterpreted as follows. All points,
not only (xi, yj), but also ∀x ∈ [xmin, xmax] and ∀y ∈ [ymin, ymax], can be treated
as locations of sources. Therefore, we are able to determine multi-arrival rays from
multiple sources.

The representation of point sources discussed above is of course not the only way
that we can represent rays from multiple sources. One can actually define Σ0 to
denote all rays from multiple sources. The only thing we need to modify is the initial
conditions. φ1(0;x, y, θ, ψ) and φ2(0;x, y, θ, ψ) need to be independent of the angles θ
and ψ, and {φ1(0;x, y) = 0}∩{φ2(0;x, y) = 0} at locations of those sources. With this
formulation, one can still get all the multi-arrival rays from multiple sources. But, on
the level z = z∗, one cannot distinguish rays from different sources because all rays are
represented by the same intersection of zero level sets essentially. However, using the
formulation proposed here, we can separate the rays from different sources by using
only one set of level set functions and making use of all the available level sets.

3.4 Amplitude

The amplitude of the ray can also be computed using the current formulation. Defining
Ã = Ã(z;x, y), we have

Ã(z;x, y) =
c

4π
√
c0

√

√

√

√sin Θ̃

∣

∣

∣

∣

∣

∂(T̃ , Θ̃, Ψ̃)

∂(x, y, z)

∣

∣

∣

∣

∣

(28)

where T̃ = T̃ (z;x, y), Θ̃ = Θ̃(z;x, y) and Ψ̃ = Ψ̃(z;x, y) are the arrival-time, take-
off angles of θ and ψ from the source located at x = xs, respectively. Following the
approach in [28], we first extend all these functions into the phase space, denoted as
T , Θ and Ψ, respectively. Using (23) and (25), we obtain

A(z;x, y, θ, ψ) =
1

4π

√

c sinΘ

c0 sin θ cosψ

√

∆1

∆2
, (29)

where Θ and θ are the takeoff angle and the arrival angle respectively, and ∆1 and ∆2

are the Jacobians of the transformation given by

∆1 =

∣

∣

∣

∣

∣

∣

∣

∣

φ1
x φ2

x Θx Ψx

φ1
y φ2

y Θy Ψy

φ1
θ φ2

θ Θθ Ψθ

φ1
ψ φ2

ψ Θψ Ψψ

∣

∣

∣

∣

∣

∣

∣

∣

(30)

and

∆2 =

∣

∣

∣

∣

φ1
θ φ2

θ

φ1
ψ φ2

ψ

∣

∣

∣

∣

. (31)

See the appendix for derivation of these formulae.
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Figure 2: Semi-Lagrangian method to solve the advection equations.

4 Numerical Method

4.1 Level Set Equations

One way to solve equations (23) and (25) is to use, for example, RK3 in the z-direction
and WENO5 upwind scheme in the x-y-θ-ψ space [21, 32]. This is a typical Eulerian
approach, where grid points are fixed in space. Computational complexity of this
method is therefore O(N 5LogN). This approach is not efficient in this high dimensional
space. One reason is that, if we want to compute the multivalued arrivals from multiple
sources, we probably do not want to use some localized level set methods, like the one
proposed in [26]. In this case, keep tracking of multiple layers of level set functions
with reinitializations and extensions will take a large portion of computational time.

Another potential difficulty is the limitation from the CFL condition by solving
these hyperbolic equations. For this Eulerian approach, the step, ∆z, for each z-
direction marching is of O(min(∆x,∆y,∆θ,∆ψ)). This is acceptable for lower dimen-
sional computations, like those in [29, 28] where the dimension involved is only 1+2
(time-like direction plus space directions). However, for the current problem, it is un-
reasonable to spend days of computations in solving these linear advection equations.

In this paper, we implement a semi-Lagrangian method [35, 10] to determine the
values of φm at z = z∗ for m = 1, 2. Solving the level set equations with the method
of characteristics, we have

φm = const (32)

for m = 1, 2 along the characteristics given by (21). Following the idea of semi-
Lagrangian methods, we trace back in the z-direction until z = z0, i.e. we solve

d(x̂, ŷ, θ̂, ψ̂)

dz
= u (33)

for (x̂, ŷ, θ̂, ψ̂)|z=z0 with “initial” conditions (x̂, ŷ, θ̂, ψ̂)|z=z∗ = (x, y, θ, ψ) at the current
point, as shown in Figure 2. Then the level set values are assigned as

φ1(z∗;x, y, θ, ψ) = x̂|z=z0
φ2(z∗;x, y, θ, ψ) = ŷ|z=z0 . (34)
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Numerically, the above ODE system is solved using RK3, and the step size is indepen-
dent of the number of grid points used in the computational domain. By using this
semi-Lagrangian approach, the computational complexity drops to O(MN 4), where M
is the number of iterations in the z-direction and N is the number of grid points in
each of x-y-θ-ψ direction. Different from the finite difference Eulerian approach, the
factor M is independent of N and is chosen mainly for the purpose of accuracy.

A simpler case is to consider only one source on z = z0. Then the order of complex-
ity of using the global level set method approach as in [29] can still be reduced by a
factor of N 2 to O(N3LogN) if a local level set method, for example the one from [26],
is applied. However, the memory requirement, which will be addressed later in Section
4.3, may still make the local level set method difficult to be implemented. Moreover,
to compute arrival solutions from N 2 sources individually, one may need to solve N 2

times localized level set equations which makes the overall computational complexity
back to O(N 5LogN).

4.2 Arrival-time Equation

For the arrival-time equation, we have

DT

Dz
=

1

c sin θ cosψ
, (35)

with D
Dz is the material derivative given by

D

Dz
=

∂

∂z
+ u · ∇ =

∂

∂z
+ xz

∂

∂x
+ yz

∂

∂y
+ θz

∂

∂θ
+ ψz

∂

∂ψ
. (36)

Therefore, we have

T =

∫

Γ

ds

c sin θ cosψ
(37)

where T (0;x, y, θ, ψ) = 0 by the reciprocity and Γ is the characteristic given by the
system (33). Again, RK3 is used to integrate the arrival-time of rays.

4.3 Multivalued Arrival-times

After we solve for φm (m=1,2) and T on the grid points at the time level z = z∗, we
need to compute the intersection of the level surface {φ1 = xs}∩{φ2 = ys}. To simplify
this computation, we discretize the θ − ψ space for each point (xi, yj) in the following
way. We first use rectangular grids in the θ − ψ space, giving (θk, ψl). One more grid
point, denoted by (θk+1/2, ψl+1/2), will then be added to the center of each cell, as seen
in Figure 3. Therefore, each grid cell, vertices at (θk, ψl), (θk+1, ψl), (θk, ψl+1) and
(θk+1, ψl+1), will be sub-divided into 4 triangles, denoted by TN , TE, TS and TW . φm

(m=1,2) and T will be computed at all points (xi, yj , θk, ψl) and (xi, yj, θk+1/2, ψl+1/2).
On each triangle T(.), φ

1 and φ2 are interpolated linearly. Intersection of the level curves
of φ1 and φ2 in each of the triangles T(.), {φ1 = xs}|T(.)

∩{φ2 = ys}|T(.)
, is computed, if

any. The arrival-time at this intersection point will be interpolated linearly using the
values of T at the vertices of the triangle T(.).
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Figure 3: Determining the intersection of level set functions.

We emphasize that we need to solve each of the level set equations (23) and the
arrival-time equation (25) only once, even if we care about more than one source on
z = z0. It is the intersection of the level surfaces that we need to repeat for each of
the sources.

Another advantage of using this semi-Lagrangian method concerns the memory
requirement. In the original level set method, where the level set equations are usually
solved using WENO5-LF method, values at grid points are coupled together through
the ENO-type reconstruction [29, 28]. Therefore, for the current 3D problem, one may
need to assign the memory in the following arrays:

REAL PHI1(MAXM,MAXM,MAXN,MAXN), PHI2(MAXM,MAXM,MAXN,MAXN)

where MAXM is the number of grids in the x and y directions, and MAXN is the number
of grids in the θ and ψ directions. The memory requirement would be O(N 4).

In the Lagrangian or semi-Lagrangian approach, on the other hand, grid points in
the x − y space are independent of each other throughout all processes above. Level
set function values at any two points (xi, yj , ·, ·) and (xi′ , yj′ , ·, ·), with i 6= i′ or j 6= j′,
are determined independently through solving a system of ODE with different initial
conditions. Although points in the θ-ψ space are dependent upon each other through
the processes in determining Σxs

and T (z∗; Σxs
), numerically, the memory allocation

can still be reduced to

REAL PHI1(MAXN,MAXN), PHI2(MAXN,MAXN)

for each fixed point (x, y), where MAXN is the number of grids in the θ and ψ directions,
therefore the memory requirement is O(N 2).

This reduction in the memory requirement may not be significant in the formulation
as in [29, 28]. However, it is important in the current calculations in the 1+4 dimensions
(time-like direction plus x−y−θ−ψ directions). Parallel computation is also possible,
although it is not implemented at this moment.
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4.4 Amplitude

We notice that the takeoff angles Θ and Ψ are the by-products in the above computa-
tions of φ1 and φ2. We can simply set

Θ(z∗;x, y, θ, ψ) = θ̂(z = z0)

Ψ(z∗;x, y, θ, ψ) = ψ̂(z = z0) . (38)

However, in computing ∆1, instead of numerically differentiating these four functions
with respect to x, y, θ and ψ respectively, we notice that this quantity satisfies the
equation

D∆1

Dz
= −(∇ · u)∆1 (39)

where ∆1(0;x, y, θ, ψ) = 1 by the reciprocity principle and

∇ · u =
(1 + cos2 ψ)cz + (tanψ cos2 ψ)cy

c sin2 θ cos2 ψ
. (40)

In turn we solve this equation by introducing ∆̃1 = log(∆1). Then, similar to the
computation of the arrival-time, we integrate

∆̃1 =

∫

Γ
−(∇ · u) ds (41)

with ∆̃1(0;x, y, θ, ψ) = 0 using RK3. Finally, we have

∆1 = exp(∆̃1) . (42)

For the quantity ∆2, we can simply use the linear interpolants of φ1 and φ2 in the
triangle T(.) when we determining Σxs

. Assuming that those linear interpolants are

φ1
T = a11θ + a12ψ + b1

φ2
T = a21θ + a22ψ + b2 , (43)

we have ∆2 = |a11a22 − a12a21| defined on the triangle T(.).
To compute A(z∗; Σxs

), we first determine the quantity

α =
∆1 sinΘ

cosψ sin θ
(44)

at each grid point. Then, we use linear interpolation to find its value at the intersection
{φ1 = xs}|T(.)

∩ {φ2 = ys}|T(.)
. Finally, we have

A(z∗; Σxs
) =

1

4π

√

c

cs

√

(α)Σxs

(∆2)T(.)

. (45)
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Figure 4: Location of sources on the level of z = 0.

5 Numerical Examples

In the following numerical examples, the computational domain is chosen to be

Ω = {(x, y, θ, ψ) : x ∈ [−1, 1], y ∈ [−1, 1], θ ∈ [π/20, 19π/20], ψ ∈ [−9π/20, 9π/20]} .
(46)

Multiple sources are located on z=0. Their coordinates (x, y)s (s=1, 2, · · ·, 8)
are given by (0, 0), (0.1, 0.2), (0.2, 0.3), (0.3, 0.4), (0, 0.5), (−0.1, 0.2), (−0.3,−0.4) and
(0.2,−0.3), as shown in Figure 4. It should be emphasized that the number of sources
can be up to O(N 2) and their locations can be arbitrary.

5.1 Example 1: Constant Velocity Model

The first example is the constant velocity model where the velocity field is given by
c ≡ 1. Exact solution of arrivaltimes is given by

T (z;x, y) =
√

z2 + x2 + y2 . (47)

The sub-figures on the first row of Figure 5 show the computed solution. Con-
vergence rate of the proposed method is also shown on the same row. We performed
computations using N=10n for n = 2 to 5, where N is the number of mesh points in
every one of the x, y, θ and ψ directions. The x-axis on the graph represents the loga-
rithm value of ∆x∆y, and the y-axis is the logarithm value of the error of the solution
measured in the L1-norm and the L∞-norm. The numerical rates of convergence, twice
of the slopes of the least-squares fitted lines, are 1.90 and 1.86 in terms of two different
norms.

The sub-figures in the second row shows some results for the amplitude. To have
accurate results, we use 4 times number of grids in the θ-ψ space as that in the x-y
space. We also plot the computed solution (in circles) together with the exact solution
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Figure 5: (Example 1) Computed arrivaltime using 1 ≤ i, j, k, l ≤ 50 grids in the phase space
at z = 0.5 and the corresponding convergence test result. Second row shows the amplitude
of the arrival rays at the same z using 1 ≤ i, j ≤ 40 and 1 ≤ k, l ≤ 200. Last figure shows
the cross section at y = 0 together with the exact solution.
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(in solid line), given by

A(z;x, y) =
1

4πR
(48)

where R is the distance from the source.

5.2 Example 2: Waveguide Model

This velocity model is the same as the one in [29, 28] where

c(x, y, z) = 1.1 − exp(−0.5x2) . (49)

Figure 6 shows the multivalued arrivaltimes at z=1.2 with sources located at (x, y)s
(s =1,2,· · ·,8), respectively. As the source varies, the traveltime varies for a ray to reach
a specific location. There are three sheets of traveltime surfaces at z=1.2 for those given
sources. When two sheets connect to each other in the phase space, they connect along
the caustic curves, which are shown in the figures; this can also be seen more clearly
in Figure 7.

In this case, cy=cz=0 and this implies

u3 =
cx

c cosψ
and u4 = 0 . (50)

Considering rays shooting out from the origin with ψ = 0 and using the paraxial ray
tracing system (21), we get ψ(z) ≡ 0. This means that all the rays with ψ(z = 0) = 0
from the origin will stay on the cross section y = 0 (one can compare our solution with
that in [29, 28]). We compare the solution of this cross section with the one from the
ray tracing method, as shown in the first sub-figure of Figure 7. The solution from the
ray tracing method is plotted in the solid line, while the circles represent the solution
from the current formulation. They match with each other very well. In all the sub-
figures, we can see that the caustics develop and the traveltime becomes triple valued
around caustics.

Figures 8 and 9 show the cross sections of the solution on y = ∓1, respectively.
To look at the solutions more closely, we concentrate on the solution for the source

located at (x, y)s = (0, 0). More cross sections of the multivalued arrivaltime are
plotted on Figure 10. The locations of the slides are y = yj for j = 6, 11, 16, 26, 31, 36.
This corresponds to y = (j − 1)/40. One can imagine that the leftmost slice is shifted
to the left to the right and scaled according to the distance to the origin, since the
velocity is a function of the x variable only.

Figure 11 shows the surface plots of the arrivaltime solutions according to the arrival
orders. If the eikonal equation is solved directly, one would get the viscosity solution,
which corresponds to the first arrivaltime, i.e. the solution on the first sub-figure.

Amplitudes of the arrival rays are also calculated. Figures 12 to 17 show the
amplitude solutions corresponding to Figures 6 to 9.

In the calculation of the amplitude, one needs to calculate the Jacobian ∆2. This
quantity can be zero which corresponds to the location of caustics. Near caustics, the
usual asymptotic expansion of the wave field is not valid anymore. This reflects in the
fact that the amplitude blows up, as seen clearly in these figures.

In Figure 17, we can see that the amplitude becomes infinity along the caustic lines
in the sub-figures of amplitudes corresponding to the second and third arrivals.
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Figure 6: (Example 2) Arrivaltimes at z = 1.2 using 1 ≤ i, j ≤ 41 and 1 ≤ k, l ≤ 201 in the
phase space with sources located at (x, y)s = (x, y)1,2,···,8 respectively.
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Figure 7: (Example 2) Arrivaltimes at z = 1.2 on the cross section y = 0 using 1 ≤ i, j ≤
41 and 1 ≤ k, l ≤ 201 in the phase space with sources located at (x, y)s = (x, y)1,2,···,8

respectively.
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Figure 8: (Example 2) Arrivaltimes at z = 1.2 on the cross section y = −1 using 1 ≤
i, j ≤ 41 and 1 ≤ k, l ≤ 201 in the phase space with sources located at (x, y)s = (x, y)1,2,···,8

respectively.
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Figure 9: (Example 2) Arrivaltimes at z = 1.2 on the cross section y = 1 using 1 ≤ i, j ≤
41 and 1 ≤ k, l ≤ 201 in the phase space with sources located at (x, y)s = (x, y)1,2,···,8

respectively.
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Figure 10: (Example 2) Arrivaltimes at z = 1.2 on different cross sections y = yj for
j = 6, 11, 16, 26, 31, 36 using 1 ≤ i, j ≤ 41 and 1 ≤ k, l ≤ 201 in the phase space with sources
located at (x, y)s = (0, 0).
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Figure 11: (Example 2) First, second and third arrivaltimes at z = 1.2 using 1 ≤ i, j ≤ 41
and 1 ≤ k, l ≤ 201 in the phase space with sources located at (x, y)s = (0, 0).
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Figure 12: (Example 2) Amplitudes at z = 1.2 using 1 ≤ i, j ≤ 41 and 1 ≤ k, l ≤ 201 in the
phase space with sources located at (x, y)s = (x, y)1,2,···,8 respectively .
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Figure 13: (Example 2) Amplitudes at z = 1.2 on the cross section y = 0 using 1 ≤ i, j ≤
41 and 1 ≤ k, l ≤ 201 in the phase space with sources located at (x, y)s = (x, y)1,2,···,8

respectively.
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Figure 14: (Example 2) Amplitudes at z = 1.2 on the cross section y = −1 using 1 ≤
i, j ≤ 41 and 1 ≤ k, l ≤ 201 in the phase space with sources located at (x, y)s = (x, y)1,2,···,8

respectively.
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Figure 15: (Example 2) Amplitudes at z = 1.2 on the cross section y = 1 using 1 ≤ i, j ≤
41 and 1 ≤ k, l ≤ 201 in the phase space with sources located at (x, y)s = (x, y)1,2,···,8

respectively.
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Figure 16: (Example 2) Amplitudes at z = 1.2 on different cross sections y = yj for j =
6, 11, 16, 26, , 31, 36 using 1 ≤ i, j ≤ 41 and 1 ≤ k, l ≤ 201 in the phase space with sources
located at (x, y)s = (0, 0).
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Figure 17: (Example 2) First, second and third arrival amplitudes at z = 1.2 using 1 ≤
i, j ≤ 41 and 1 ≤ k, l ≤ 200 in the phase space with sources located at (x, y)s = (0, 0).
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5.3 Example 3: Vinje’s Gaussian Model

This velocity model comes from [39] where

c(x, y, z) = 3 − 1.75 exp

(

−x
2 + y2 + (z − 0.75)2

0.52

)

. (51)

Figure 18 shows some cross section plots of this velocity model. As seen from the
figure, the velocity c is low in the region around (0,0,0.75).

Figure 19 shows the multivalued arrivaltimes at z=1.5 with sources located at
(x, y)s (s =1,2,· · ·,8), respectively. As the source varies, the traveltime varies for a ray
to reach a specific location. There are three sheets of traveltime surfaces at z=1.5 for
those given sources. When two sheets connect to each other in the phase space, they
connect along the caustic curves, which are shown in the figures; this can also be seen
more clearly in Figure 20.

In this case, although u4 cannot be simplified to 0, rays from the origin with initial
ψ = 0 are still staying on the cross section y = 0. From the last equation in equation
(21), if ψ(z = 0) = 0 and y = 0, which implies cy = 0, we can obtain ψ(z) ≡ 0.
Therefore, we can still compare our solution with the one obtained from ray tracing
method on the cross section y = 0, as shown in Figure 20. Again, the solid line
represents the solution using the ray tracing method. The solutions by the method
presented here are plotted using circles. Two solutions match with each other very
well. In all the sub-figures, we can see that the caustics develop and the traveltime
becomes triple valued around caustics.

Figures 21 and 22 show the cross sections of the solution on y = ∓1, respectively.
To look at the solutions more closely, we concentrate on the solution for the source

located at (x, y)s = (0, 0). More cross sections of the multivalued arrivaltime are
plotted on Figure 23. The locations of the slides are y = yj for j = 6, 11, 16, 26, 31, 36.
This corresponds to y = j/40. One can see the obvious symmetry since the velocity
has rotational invariance for z fixed.

Figure 24 shows the surface plots of the arrivaltime solutions according to the arrival
orders. If the eikonal equation is solved directly, one would get the viscosity solution,
which corresponds to the first arrivaltime, i.e. the solution on the first sub-figure.

Amplitudes of the arrival rays are also calculated. Figures 25 to 30 show the
amplitude solutions corresponding to Figures 19 to 22.

In Figure 30, we can see that the amplitude becomes infinity along the caustic lines
in the sub-figures of amplitudes corresponding to the second and third arrivals.
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Figure 18: (Example 3) Cross sections of the velocity model.
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Figure 19: (Example 3) Arrivaltimes at z = 1.5 using 1 ≤ i, j ≤ 51 and 1 ≤ k, l ≤ 401 in
the phase space with sources located at (x, y)s = (x, y)1,2,···,8 respectively.
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Figure 20: (Example 3) Arrivaltimes at z = 1.5 on the cross section y = 0 using 1 ≤ i, j ≤
51 and 1 ≤ k, l ≤ 401 in the phase space with sources located at (x, y)s = (x, y)1,2,···,8

respectively.
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Figure 21: (Example 3) Arrivaltimes at z = 1.5 on the cross section y = −1 using 1 ≤
i, j ≤ 51 and 1 ≤ k, l ≤ 401 in the phase space with sources located at (x, y)s = (x, y)1,2,···,8

respectively.
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Figure 22: (Example 3) Arrivaltimes at z = 1.5 on the cross section y = 1 using 1 ≤ i, j ≤
51 and 1 ≤ k, l ≤ 401 in the phase space with sources located at (x, y)s = (x, y)1,2,···,8

respectively.



A Level Set Method for 3D Paraxial Geometrical Optics 33

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

x

T

Figure 23: (Example 3) Arrivaltimes at z = 1.5 on different cross sections y = yj for
j = 11, 21, 31, 41 using 1 ≤ i, j ≤ 51 and 1 ≤ k, l ≤ 401 in the phase space with sources
located at (x, y)s = (0, 0).
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Figure 24: (Example 3) First, second and third arrivaltimes at z = 1.5 using 1 ≤ i, j ≤ 51
and 1 ≤ k, l ≤ 401 in the phase space with sources located at (x, y)s = (0, 0).
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Figure 25: (Example 3) Amplitudes at z = 1.5 using 1 ≤ i, j ≤ 51 and 1 ≤ k, l ≤ 401 in the
phase space with sources located at (x, y)s = (x, y)1,2,···,8, respectively.
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Figure 26: (Example 3) Amplitudes at z = 1.5 on the cross section y = 0 using 1 ≤ i, j ≤
51 and 1 ≤ k, l ≤ 401 in the phase space with sources located at (x, y)s = (x, y)1,2,···,8

respectively.
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Figure 27: (Example 3) Amplitudes at z = 1.5 on the cross section y = −1 using 1 ≤
i, j ≤ 51 and 1 ≤ k, l ≤ 401 in the phase space with sources located at (x, y)s = (x, y)1,2,···,8

respectively.
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Figure 28: (Example 3) Amplitudes at z = 1.5 on the cross section y = 1 using 1 ≤ i, j ≤
51 and 1 ≤ k, l ≤ 401 in the phase space with sources located at (x, y)s = (x, y)1,2,···,8

respectively.
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Figure 29: (Example 3) Amplitudes at z = 1.5 on different cross sections y = yj for j =
11, 21, 31, 41 using 1 ≤ i, j ≤ 51 and 1 ≤ k, l ≤ 401 in the phase space with sources located
at (x, y)s = (0, 0).
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Figure 30: (Example 3) First, second and third arrival amplitudes at z = 1.5 using 1 ≤
i, j ≤ 51 and 1 ≤ k, l ≤ 401 in the phase space with sources located at (x, y)s = (0, 0).
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6 Conclusion

We developed a level set method to compute the three dimensional multivalued geomet-
rical optics term in the paraxial formulation. This method has two new features: it does
not require reinitialization and it can handle multiple sources simultaneously. By using
a semi-Lagrangian method in the paraxial formulation, the method has O(N 2) rather
than O(N 4) memory storage requirement in the five dimensional phase space, where
N is the number of mesh points along one direction. Although the computational com-
plexity is still O(MN 4), this disadvantage is largely overcome by the fact that O(N 2)
multiple sources can be treated simultaneously. Numerical examples demonstrated the
efficiency and accuracy of the new method.

7 Acknowledgment

This research is supported by ONR Grant #N00014-02-1-0720.

8 Appendix

In this appendix, derivation of equations (28), (29) and (39) are given.

8.1 Equation (28)

The amplitude is transported by

∇ · (A2∇T̃ ) = 0 . (52)

Therefore, integrating along a ray tube and using the divergence theorem, we get

A

√

dσ

c
= A0

√

dσ0

c0
, (53)

where σ is the transverse section area of the ray tube. Furthermore,

A = A0

√

c dσ0

c0 dσ
. (54)

For a point source in an isotropic medium, we suppose that the source emits a
directional spherical wave having a normalized radiation function 1

4π with unit strength,

A0(Θ̃, Ψ̃) =
1

4πR0
, (55)

where Θ̃ and Ψ̃ are the spherical take-off angles, and R0 is the radius of the small
sphere centered at the source.

Then at small distances from the source,

dσ0 = R2
0 sin Θ̃dΘ̃dΨ̃ . (56)
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Now consider an elementary ray tube,

dV = dxdydz = dσds (57)

where ds is the differential element of arc length. Furthermore,

dV =
∂(x, y, z)

∂(T̃ , Θ̃, Ψ̃)
dT̃ dΘ̃dΨ̃, (58)

ds = c dT̃ , (59)

so

dσ =
1

c

∂(x, y, z)

∂(T̃ , Θ̃, Ψ̃)
dΘ̃dΨ̃. (60)

Thus,

Ã(z;x, y) =
c

4π
√
c0

√

√

√

√sin Θ̃

∣

∣

∣

∣

∣

∂(T̃ , Θ̃, Ψ̃)

∂(x, y, z)

∣

∣

∣

∣

∣

. (61)

8.2 Equation (29)

Now, consider the term
∣

∣

∣

∣

∣

∂(T̃ , Θ̃, Ψ̃)

∂(x, y, z)

∣

∣

∣

∣

∣

. (62)

First, we extend all T̃ , Θ̃ and Ψ̃ to the phase space. Then, the x, y, z-derivatives we
be replaced by

∂(̃.)

∂x
= (.)x + (.)θ

∂θ

∂x
+ (.)ψ

∂ψ

∂x

∂(̃.)

∂y
= (.)y + (.)θ

∂θ

∂y
+ (.)ψ

∂ψ

∂y

∂(̃.)

∂z
= (.)x + (.)θ

∂θ

∂z
+ (.)ψ

∂ψ

∂z
. (63)

Then, one can expand the determinant and, after some algebra, get

∣

∣

∣

∣

∣

∂(T̃ , Θ̃, Ψ̃)

∂(x, y, z)

∣

∣

∣

∣

∣

=
1

c sin θ cosψ

∆1

∆2
. (64)

These computations were carries out by Mathematica.

alpha1=a1*b2-a2*b1; alpha2=a1*b3-a3*b1; alpha3=a1*b4-a4*b1;

alpha4=a3*b2-a2*b3; alpha5=a4*b2-a2*b4; alpha6=a4*b3-a3*b4;

beta1=c3*d4-c4*d3; beta2=c2*d4-c4*d2; beta3=c3*d2-c2*d3;

beta4=c1*d4-c4*d1; beta5=c3*d1-c1*d3;
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dthetadx=-beta4/beta1; dthetady=-beta2/beta1;

dthetadz=(d4*(-u1*c1-u2*c2-u3*c3-u4*c4)-

c4*(-u1*d1-u2*d2-u3*d3-u4*d4))/-beta1;

dpsidx=-beta5/beta1; dpsidy=-beta3/beta1;

dpsidz=(-d3*(-u1*c1-u2*c2-u3*c3-u4*c4)+

c3*(-u1*d1-u2*d2-u3*d3-u4*d4))/-beta1;

tz=-u1*tx-u2*ty-u3*ttheta-u4*tpsi+f;

thetaz=-u1*a1-u2*a2-u3*a3-u4*a4;

psiz=-u1*b1-u2*b2-u3*b3-u4*b4;

delta={ { tx+ttheta*dthetadx+tpsi*dpsidx,

ty+ttheta*dthetady+tpsi*dpsidy, tz+ttheta*dthetadz+tpsi*dpsidz },

{ a1+a3*dthetadx+a4*dpsidx, a2+a3*dthetady+a4*dpsidy,

thetaz+a3*dthetadz+a4*dpsidz }, { b1+b3*dthetadx+b4*dpsidx,

b2+b3*dthetady+b4*dpsidy, psiz+b3*dthetadz+b4*dpsidz } };

delta1={{a1,a2,a3,a4},{b1,b2,b3,b4},{c1,c2,c3,c4},{d1,d2,d3,d4}};

jadelta=FullSimplify[Det[delta]];

jadelta1=Det[delta1];

jadelta2=c3*d4-c4*d3;

Simplify[jadelta*jadelta2/jadelta1]

where

a1,2,3,4 = Θx,y,θ,ψ , b1,2,3,4 = Ψx,y,θ,ψ , c1,2,3,4 = φ1
x,y,θ,ψ , d1,2,3,4 = φ2

x,y,θ,ψ . (65)

With everything, we have

A =

√
sinΘ

4π

c√
c0

√

1

c sin θ cosψ

∆1

∆2
, (66)

where Θ and θ are the takeoff angle and the arrival angle of the ray from the source
respectively.

And, therefore, equation (29).

8.3 Equation (39)

∆1 is given by

∆1 =

∣

∣

∣

∣

∣

∣

∣

∣

φ1
x φ2

x Θx Ψx

φ1
y φ2

y Θy Ψy

φ1
θ φ2

θ Θθ Ψθ

φ1
ψ φ2

ψ Θψ Ψψ

∣

∣

∣

∣

∣

∣

∣

∣

. (67)



A Level Set Method for 3D Paraxial Geometrical Optics 42

Now, we differentiate this with respect to z, we have

(∆1)z =

∣

∣

∣

∣

∣

∣

∣

∣

(φ1
z)x (φ2

z)x (Θz)x (Ψz)x
φ1
y φ2

y Θy Ψy

φ1
θ φ2

θ Θθ Ψθ

φ1
ψ φ2

ψ Θψ Ψψ

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

φ1
x φ2

x Θx Ψx

(φ1
z)y (φ2

z)y (Θz)y (Ψz)y
φ1
θ φ2

θ Θθ Ψθ

φ1
ψ φ2

ψ Θψ Ψψ

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

φ1
x φ2

x Θx Ψx

φ1
y φ2

y Θy Ψy

(φ1
z)θ (φ2

z)θ (Θz)θ (Ψz)θ
φ1
ψ φ2

ψ Θψ Ψψ

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

φ1
x φ2

x Θx Ψx

φ1
y φ2

y Θy Ψy

φ1
θ φ2

θ Θθ Ψθ

(φ1
z)ψ (φ2

z)ψ (Θz)ψ (Ψz)ψ

∣

∣

∣

∣

∣

∣

∣

∣

(68)

Next, using (23) and the fact that the take-off angels Θ and Ψ are constant along the
characteristics given by the system (33), i.e.

Θz + u · ∇Θ = 0

Ψz + u · ∇Ψ = 0 , (69)

we expand the right hand side of (68) and replace all z-derivative by x, y, θ, ψ-
derivatives. We can get equation (39) by some algebras.

These computations can be done using the following commands in Mathematica.

delta1={ {a11,a12,a13,a14}, {a21,a22,a23,a24}, {a31,a32,a33,a34},

{a41,a42,a43,a44} };

a={ {

-u11*a11-u21*a21-u31*a31-u41*a41-u1*a111-u2*a112-u3*a113-u4*a114,

-u11*a12-u21*a22-u31*a32-u41*a42-u1*a121-u2*a122-u3*a123-u4*a124,

-u11*a13-u21*a23-u31*a33-u41*a43-u1*a131-u2*a132-u3*a133-u4*a134,

-u11*a14-u21*a24-u31*a34-u41*a44-u1*a141-u2*a142-u3*a143-u4*a144

}, {a21,a22,a23,a24}, {a31,a32,a33,a34}, {a41,a42,a43,a44} };

b={ {a11,a12,a13,a14}, {

-u12*a11-u22*a21-u32*a31-u42*a41-u1*a211-u2*a212-u3*a213-u4*a214,

-u12*a12-u22*a22-u32*a32-u42*a42-u1*a221-u2*a222-u3*a223-u4*a224,

-u12*a13-u22*a23-u32*a33-u42*a43-u1*a231-u2*a232-u3*a233-u4*a234,

-u12*a14-u22*a24-u32*a34-u42*a44-u1*a241-u2*a242-u3*a243-u4*a244

}, {a31,a32,a33,a34}, {a41,a42,a43,a44} };

c={ {a11,a12,a13,a14}, {a21,a22,a23,a24}, {

-u13*a11-u23*a21-u33*a31-u43*a41-u1*a311-u2*a312-u3*a313-u4*a314,

-u13*a12-u23*a22-u33*a32-u43*a42-u1*a321-u2*a322-u3*a323-u4*a324,

-u13*a13-u23*a23-u33*a33-u43*a43-u1*a331-u2*a332-u3*a333-u4*a334,

-u13*a14-u23*a24-u33*a34-u43*a44-u1*a341-u2*a342-u3*a343-u4*a344

}, {a41,a42,a43,a44} };

d={ {a11,a12,a13,a14}, {a21,a22,a23,a24}, {a31,a32,a33,a34}, {

-u14*a11-u24*a21-u34*a31-u44*a41-u1*a411-u2*a412-u3*a413-u4*a414,



A Level Set Method for 3D Paraxial Geometrical Optics 43

-u14*a12-u24*a22-u34*a32-u44*a42-u1*a421-u2*a422-u3*a423-u4*a424,

-u14*a13-u24*a23-u34*a33-u44*a43-u1*a431-u2*a432-u3*a433-u4*a434,

-u14*a14-u24*a24-u34*a34-u44*a44-u1*a441-u2*a442-u3*a443-u4*a444 }

};

e=Det[a]+Det[b]+Det[c]+Det[d];

f=e+Det[delta1]*(u11+u22+u33+u44);

In[58]:= D[f,u11]

Out[58]= 0

In[59]:= D[f,u22]

Out[59]= 0

In[60]:= D[f,u33]

Out[60]= 0

In[61]:= D[f,u44]

Out[61]= 0

g1={ {a111,a121,a131,a141}, {a21,a22,a23,a24}, {a31,a32,a33,a34},

{a41,a42,a43,a44} };

g2={ {a11,a12,a13,a14}, {a211,a221,a231,a241}, {a31,a32,a33,a34},

{a41,a42,a43,a44} };

g3={ {a11,a12,a13,a14}, {a21,a22,a23,a24}, {a311,a321,a331,a341},

{a41,a42,a43,a44} };

g4={ {a11,a12,a13,a14}, {a21,a22,a23,a24}, {a31,a32,a33,a34},

{a411,a421,a431,a441} };

g=Det[g1]+Det[g2]+Det[g3]+Det[g4];

In[84]:= D[f,u1]+g

Out[84]= 0

h1={ {a112,a122,a132,a142}, {a21,a22,a23,a24}, {a31,a32,a33,a34},

{a41,a42,a43,a44} };
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h2={ {a11,a12,a13,a14}, {a212,a222,a232,a242}, {a31,a32,a33,a34},

{a41,a42,a43,a44} };

h3={ {a11,a12,a13,a14}, {a21,a22,a23,a24}, {a312,a322,a332,a342},

{a41,a42,a43,a44} };

h4={ {a11,a12,a13,a14}, {a21,a22,a23,a24}, {a31,a32,a33,a34},

{a412,a422,a432,a442} };

h=Det[h1]+Det[h2]+Det[h3]+Det[h4];

i1={ {a113,a123,a133,a143}, {a21,a22,a23,a24}, {a31,a32,a33,a34},

{a41,a42,a43,a44}};

i2={ {a11,a12,a13,a14}, {a213,a223,a233,a243}, {a31,a32,a33,a34},

{a41,a42,a43,a44}};

i3={ {a11,a12,a13,a14}, {a21,a22,a23,a24}, {a313,a323,a333,a343},

{a41,a42,a43,a44} };

i4={ {a11,a12,a13,a14}, {a21,a22,a23,a24}, {a31,a32,a33,a34},

{a413,a423,a433,a443} };

i=Det[i1]+Det[i2]+Det[i3]+Det[i4];

j1={ {a114,a124,a134,a144}, {a21,a22,a23,a24}, {a31,a32,a33,a34},

{a41,a42,a43,a44} };

j2={ {a11,a12,a13,a14}, {a214,a224,a234,a244}, {a31,a32,a33,a34},

{a41,a42,a43,a44} };

j3={ {a11,a12,a13,a14}, {a21,a22,a23,a24}, {a314,a324,a334,a344},

{a41,a42,a43,a44} };

j4={ {a11,a12,a13,a14}, {a21,a22,a23,a24}, {a31,a32,a33,a34},

{a414,a424,a434,a444} };

j=Det[j1]+Det[j2]+Det[j3]+Det[j4];

In[103]:= Simplify[f+g*u1+h*u2+i*u3+j*u4]

Out[103]= 0

In[105]:= Simplify[e+Det[delta1]*(u11+u22+u33+u44)+

g*u1+h*u2+i*u3+j*u4]
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Out[105]= 0
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