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Shock Dynamics in Particle-Laden Thin Films
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We present theory and experiments for thin film particle-laden flow on an incline. At higher parti-
cle concentration and inclination angle, a new phenomenon is observed in which a large particle-rich
ridge forms at the contact line. We derive a lubrication theory for this system which is qualitatively
compared to preliminary experimental data. The ridge formation arises from the creation of two
shocks due to the differential transport rates of fluid and particles. This parallels recent findings of
double shocks in thermal-gravity driven flow [A. L. Bertozzi et. al., PRL, 81, 5169 (1998), J. Sur
et. al., PRL 90, 126105 (2003), A. Münch, PRL 91, 016105 (2003)]. However, here the emergence
of the shocks arises from a new mechanism involving the settling rates of the species.

PACS numbers: 47.15.Pn, 68.15.+e, 68.03.-g

Thin films and coating flows have long been studied in
industrial, biological and environmental contexts includ-
ing microchip fabrication, the liquid lining in the lungs,
and the wetting of contact lenses [1]. While extensive
research has been conducted on clear fluids [2–6] and dry
granular flows [7, 8], far fewer studies have been dedi-
cated to particle-laden fluid films. In applications such
as erosion and debris flow [9, 10], slurry transport, and
mixing of pharmaceuticals, particles play a dominant role
in the dynamics and cannot be neglected [11].

New and unexpected behavior is observed in these par-
ticulate systems owing to the introduction of a new time
scale. In particle-laden, gravity-driven films [12], one
time scale is associated with the viscous fingering that
occurs at the contact line and a second is associated with
particle settling. At low inclination angles, if these two
time scales are widely disparate, the behavior of the sus-
pension closely reflects that of clear fluids. However, new
and interesting phenomena arise when the two time scales
are comparable, resulting in nonuniform particle distri-
butions.

In clear fluid experiments involving flow down or up
an inclined plane, the large scale dynamics is described
by convective theory in which the first order terms in the
equations of motion yield quantitative information about
the speed and shape of the front. Recent results [13–15]
show that temperature gradient driven flow balanced by
gravity can be described by a scalar conservation law
with a nonconvex flux. The effect of surface tension in
the shock layer is responsible for the emergence of ‘non-
classical’ shock patterns. In the present study we find
similar dynamics in particle-laden films. New phenom-
ena is observed experimentally in the limit of high parti-
cle concentration and inclination angle, and this data is
compared qualitatively to predictions arising from shock
theory.

The experimental apparatus consists of a 30cm×120cm
acrylic sheet with an adjustable inclination angle, β,
ranging from 0◦ to 60◦. A suspension of viscous fluid
and polydisperse glass beads (250-425 µm in diameter),
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FIG. 1: Schematic of the experimental apparatus.

flows from a reservoir with an adjustable gate (see figure
1). Profiles of the flowing layer at fixed y, as functions
of x and time, are measured using a laser light sheet and
a high resolution digital camera (see figure 2). Experi-
ments were conducted using both wetting (Dow Corning
200, 1000 cSt fluid) and partially-wetting (glycerol) flu-
ids. Initial particle concentration was varied from 0% to
55% by volume.

As with clear fluid films, the propagating front un-
dergoes a fingering instability (figure 2-Top). Unlike the
clear fluid case, three distinct regimes were observed (fig-
ure 2-Bottom). At low inclination angles and concentra-
tions, sedimentation perpendicular to the plate occurs
rapidly and the particles are deposited in a uniform par-
ticulate front behind the advancing free surface. Clear
fluid flows over the particulate matter and eventually
fingers; the dynamics is precisely that observed in nu-
merous clear fluid experiments ([e.g. 2, 16, 17]). At high
inclination angles and particle concentrations, the evo-
lution deviates strikingly from the clear fluid case and
a large particle-rich ridge appears at the advancing free
surface front. The ridge observed in these dense suspen-
sions is considerably larger than that observed in clear
fluids and may grow to several times the thickness of the
trailing film. Between these two regimes, a transition re-
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FIG. 2: (Top) Photographs of typical fingering instabilities
in each regime. (Bottom-L) Phase diagram for 250-425 µm
beads in glycerol showing three regimes. (Bottom-R) Pro-
files of an advancing silicon oil front illustrating the widening
ridge. Initial concentration φ0 = 45% and inclination angle
β = 42◦. Both axes are made dimensionless using H, the
thickness of the film at the gate. Profiles are plotted every 30
sec.

gion appears characterized by regular fingers containing
particles. Intuitively we expect the large ridge to arise
if the particle settling velocity along the plate is faster
than that of the propagating front. As the settling beads
overtake the moving contact line, they accumulate, dra-
matically increasing the local viscosity.

The governing equations of motion for the mixture are

∇ ·Π + ρ(φ)g = 0, ∇ · j = 0, (1)

where j is the volume averaged flux of the mixture, g is
the acceleration of gravity, and Π = −pI + µ(φ)(∇j +
(∇j)T ) is the stress tensor for the mixture. Here p is
pressure, ρ(φ) and µ(φ) are the effective density and vis-
cosity respectively, and I is the identity matrix. We con-
sider low Reynolds number flows and neglect inertia of
both the particulate and the fluid phase. The volume
flux is related to the velocity by jp = φvp, jf = (1−φ)vf

and j = jp + jf , where subscripts p and f refer to particle
and fluid phase respectively and φ is the local particle
concentration (by volume). Hence, jp can be expressed
in terms of the flux of particles relative to the fluid, jR,
by jp = jR + φj.

Particles move relative to the fluid phase via settling.
This relative velocity is given by the Stokes settling ve-
locity modified by two effects: (1) the presence of other
particles in the dense suspension which hinders settling
and (2) the presence of the no-slip boundary condition
at the wall. To model the first, we adopt the Richard-
son & Zaki correction [18], valid for high concentrations,
f̄(φ) = (1−φ)m, where m is empirically determined to be
≈ 5.1. To capture the wall effect, we modify the Stokes

settling velocity by a function that vanishes near the wall
and approaches unity in the bulk flow [22]. Thus

vR =
2
9

(ρp − ρf ) a2

µf
f̄(φ)w(h)g

where vR denotes particle velocity relative to the fluid
phase, a is a characteristic particle radius, µf is the
viscosity of the fluid phase, ρf and ρp are the den-
sity of the fluid and particulate phase respectively, and
w(h) ≡ Ah2√

1+(Ah2)2
. Here h is the local film thickness and

A is a parameter that determines the sharpness of the
transition from the no-slip wall to the bulk flow.

The effective mixture density ρ(φ) = φρp + (1− φ)ρf ,
and effective mixture viscosity [19]

µ(φ) = µf (1− φ/φmax)−2 (2)

are both functions of the local concentration. The vis-
cosity diverges as the concentration approaches φmax and
the mixture becomes increasingly more solid-like.

At the substrate, we enforce a no-slip boundary con-
dition. At the free surface, the normal stress balance is
given by n ·Π · n = γκ and the tangential stress balance
by t · Π · n = 0 where n and t are respectively the unit
outward normal and unit tangential vectors to the free
surface, γ is the surface tension of the mixture (here as-
sumed to be independent of particle concentration) and
κ is the curvature of the free surface.

To simplify the analysis, we consider the 2D problem,
neglecting variations in the y direction; i.e. we begin
by analyzing the evolution of the film prior to the on-
set of fingering. Consider the following rescaling, mo-
tivated by the scaling adopted in gravity-driven clear
fluid films [20]: x = x̃L ≡ x̃

(
`2H/ sinβ

)1/3, z = Hz̃,
p = P p̃ ≡ µf LU

H2 p̃, t = t̃T ≡ (3µf/γ)(`2L/H2 sinβ)t̃,
and (jx, jz) = U(j̃x, εj̃z). Here ` =

√
γ/ρfg is the cap-

illary length, H is the thickness of the film far behind
the moving front, dimensionless quantities are denoted
by a tilde, and a characteristic velocity is defined as
U = L/T . Equations (1) are rescaled using the above
relations and we retain only the lowest order terms in
ε ≡ H/L = (3Ca)1/3 where Ca = µfU/γ is the capillary
number. If εPe � 1, where Pe = UH/D is the Peclet
number and D is the diffusion coefficient for the partic-
ulate phase, particles diffuse rapidly across the depth of
the film creating a uniform distribution in z. Hence φ
may be approximated as φ(x, t). Following a standard
long wavelength approach for thin films [e.g. 4], we solve
for the velocities and pressures and depth-average the
equations bearing in mind that there are two mass con-
servation conditions, one for the mixture and one for the
particles. Dropping the tildes, this yields two coupled
equations for the evolution of φ and h:
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∂(ρ(φ)h)
∂t

+
{

ρ(φ)
µ(φ)

h3hxxx −D(β)
[

ρ(φ)
µ(φ)

h3(ρ(φ)h)x −
5
8

ρ(φ)
µ(φ)

h4(ρ(φ))x

]
+

ρ(φ)2

µ(φ)
h3

}
x

= 0 (3)

∂(φh)
∂t

+
{

φ

µ(φ)
h3hxxx −D(β)

[
φ

µ(φ)
h3(ρ(φ)h)x −

5
8

φ

µ(φ)
h4(ρ(φ))x

]
+

φρ(φ)
µ(φ)

h3 +
2
3
Vsφhf(φ)w(h)

}
x

= 0 (4)

where Vs ≡ ρp−ρf

ρf

a2

H2 , D(β) ≡ (3Ca)1/3 cot(β), sub-
scripts denote partial derivatives, and we have absorbed
the extra factor of (1 − φ) into f by defining f(φ) ≡
(1− φ)f̄(φ).

A full lubrication model of the form (3-4) for particle
laden flow has not been considered before in the litera-
ture. To determine macroscopic properties of the flow,
it is instructive to investigate the underlying convective
dynamics, described by the system of two conservation
laws:

∂(ρ(φ)h)
∂t

+
{

ρ(φ)2

µ(φ)
h3

}
x

= 0 (5)

∂(φh)
∂t

+
{

φρ(φ)
µ(φ)

h3 +
2
3
Vsφhf(φ)w(h)

}
x

= 0. (6)

Consider as an initial condition a jump in the height from
1 to the precursor thickness b, and a constant concentra-
tion of φ0. That is, at time zero, h = 1 for x ≤ 0, h = b
for x > 0, and φ = φ0. The above system has the form of
a 2× 2 system of scalar conservation laws

∂u

∂t
+ [F (u, v)]x = 0,

∂v

∂t
+ [G(u, v)]x = 0, (7)

where u = ρh and v = φh. The initial condition
gives us a Riemann problem i.e. both of the system
variables u and v have a jump at the origin at time
zero. Classical solutions of this problem, when they ex-
ist, are well-known in the theory of shock-waves [21].
An intermediate state (ui, vi) emerges separating the
left state (ul, vl) = (ρfρ(φ0), φ0), from the right state
(ur, vr) = (ρfρ(φ0)b, φ0b). The values ui and vi deter-
mine the density of particles, φi, and and the fluid thick-
ness, hi, in the ridge (see figure 4-Left).

A general 2× 2 system of conservation laws (7) is hy-

perbolic if the Jacobian matrix J(u, v) =
(

Fu Fv

Gu Gv

)
has

two real distinct eigenvalues λ1(u, v) and λ2(u, v), with
eigenvectors r1, r2. The problem is called genuinely non-
linear if ri · ∇λi 6= 0, where the gradient is with respect
to the variables u and v. For a large range of relevant
physical parameters in (5-6), both conditions are satis-
fied provided we include the wall function w(h). Setting
w(h) = 1 results in a change in hyperbolicity of the equa-
tions (5-6) at small h.

Under the assumptions of hyperbolicity and genuine
nonlinearity, there is a methodology for determining the

0.4

0.36

0.32

0.28

0 50 100 200150 250 300

co
nc

en
tr

at
io

n

distance

1.5

0.5

1

0

he
ig

ht

reduced model full model

FIG. 3: Full and reduced model numerical profiles for φ0 =
30%. (Top) Comparison of height profiles of the full system
(3-4) with the reduced system (5-6). (Bottom) Comparison of
concentration profiles of the full system (3-4) with the reduced
system (5-6). Profiles are plotted at 40 sec intervals.

intermediate values ui and vi in terms of the left and right
states. Thus, for a fixed concentration in the reservoir
and upstream film thickness, given the particle concen-
tration and thickness of the precursor film, we can find
the height, concentration and propagation speed of the
ridge. A one parameter family of shock solutions, con-
necting (ui, vi) to (ul, vl) or (ur, vr) can be determined by
recognizing that the weak form of (7) yields two Rankine-
Hugoniot conditions for the shock speed both of which
have to be satisfied. For the 1-shock, connecting (ul, vl)
to (ui, vi), we have

s1 =
F (ui, vi)− F (ul, vl)

ui − ul
=

G(ui, vi)−G(ul, vl)
vi − vl

(8)

which gives two equations in three unknowns. Analo-
gous formulas hold for the 2-shock connecting (ui, vi) to
(ur, vr). This gives a total of four equations and four un-
knowns, namely s1, s2, ui, and vi. Generically there will
be a locally unique solution, however these equations are
also accompanied by entropy conditions which restrict
whether a 1-shock or 2-shock is an admissible connection
[21]. In our case, the entropy condition is satisfied and
the shock connection problem can be solved numerically,
providing an implicit formula for determining the inter-
mediate state (ui, vi) that emerges from the Riemann
initial data.

Numerical simulations show that the reduced model
(5-6) captures the the large scale dynamics of the full
equations (3-4), including the shock speeds s1 and s2 and
ridge height hi and ridge particle concentration φi. Fig-
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FIG. 4: (Left) Schematic diagram of the connection problem.
(Right) Shock speeds calculated via the connection problem as
a function of precursor thickness for φ0 = 15% (filled symbols)
and φ0 = 30% (open symbols).

Full Model Reduced Model Shock Theory
hi 1.150 1.162 1.1619
φi 0.359 0.362 0.3620
s1 0.435 0.434 0.4556
s2 0.498 0.493 0.4956

TABLE I: Comparison of shock speeds and intermediate
states in model simulations and shock theory. Data shown
for φ0 = 0.30, b = 0.1. Quantitative experimental data is not
presented here owing to the sensitive dependence on precursor
film as discussed in the text.

ure 3 shows a sample calculation with parameters m = 5,
φmax = 0.67, φ0 = 0.3, b = 0.1, β = 90◦, and A = 0.5.
The large spike at the leading edge of the full system so-
lution corresponds to the capillary ridge due to surface
tension, which is neglected in the the reduced system. In
both solutions, an intermediate state appears connecting
the left and right states via shocks. The trailing shock in
figure 3 is smeared out due to numerical diffusion. The
full lubrication theory, reduced model and shock connec-
tion problem all consistently predict the formation of a

large particle-rich ridge at high inclination angles and
high concentrations as observed in the experimental data.
The numerically observed values in the full and reduced
model are compared with the analytic calculations from
the connection problem in table I. All three models dis-
play a sensitive dependence on the precursor thickness
making quantitative comparison with experimental data
challenging. This presents a marked contrast to the clear
fluid case in which the dependence on precursor is loga-
rithmic. This sensitivity is illustrated in the shock speeds
shown in figure 4-Right and is an interesting open ques-
tion for future studies.

The strong influence of the precursor on the flow struc-
ture underscores the need for more detailed experimental
measurements. Specifically, quantitative comparison be-
tween theory and experiment requires precise measure-
ments of the precursor thickness and shock separation
over time. Both of these are subjects of current study.

Shock theory for systems of conservation laws is well
known in gas dynamics but has never before been ap-
plied to the physics of contact lines. This new theory
suggests many avenues for further study including the
dependence of the dynamics on contact line physics, and
the extension of the theory to the transverse direction to
address the development of fingers, which appear to be
somewhat suppressed in the experiment by the formation
of the particle-rich ridge.
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