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Abstract

We address the problem of estimating the three-dimensional shape and complex appearance of a scene

from a calibrated set of views under fixed illumination. Our approach relies on an affine subspace

constraint that must be satisfied when the scene exhibits “diffuse + specular” reflectance characteristics.

This constraint is used to define a cost functional for the discrepancy between the measured images and

those generated by the estimate of the scene, rather than attempting to match image-to-image directly.

Minimizing such a functional yields the optimal estimate of the shape of the scene, represented by a

dense surface, as well as its radiance, represented by three functions defined on such a surface. These

can be used to generate novel views that capture the non-Lambertian appearance of the scene.

1 Introduction

Multi-frame stereo consists of reconstructing the three-dimensional (3-D) shape of a scene from a col-

lection of images taken from different vantage points. This is one of the classical problems of computer

vision, where significant progress has been made in the last decade. In the early days of stereo, it was

common to decompose the problem into two steps: establishing correspondence between points in dif-

ferent views, and then triangulating their position in space. Points in different images are said to be in

correspondence when they are images of the same physical point in space via perspective projection.

Once correspondence is established, the position of the points as well as the relative pose of the cameras

can be determined using well-established procedures that are now the subject of textbooks [7, 11, 22].

Unfortunately the first step, establishing correspondence, is far less amenable to a clean and simple

solution. First of all, point correspondence can only be reliably established for a very small subset of the
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scene. For instance, given a scene that contains a white wall, we cannot say which point on one image of

the wall corresponds to in another image, since the local appearance is the same for every neighborhood

of a point. Therefore, after establishing correspondence and reconstructing the 3-D position of relatively

few “feature” points,1 one would have to “densify” the reconstruction by filling in points that cannot be

matched from image to image.

Second, and more important, correspondence cannot be established by just comparing local image

statistics unless the scene has the property that its appearance does not change with the viewpoint.

Materials that exhibit this property are called Lambertian, or diffuse, and they include matte surfaces

such as chalk, rough stone and certain fabrics2. However, most of the materials that populate our daily

scenes such as plastic, polished stone, skin, glass, metal, etc. do not enjoy this property. Indeed, one

can make an object that deviates severely from the ideal Lambertian model, for instance a car, appear

arbitrarily different from image to image by changing the viewpoint and the illumination.

In this paper the first issue is addressed at the outset by modeling the shape of the scene as a collection

of smooth surfaces: Like many recent works in multi-view stereo, we do not seek to establish corre-

spondence among a sparse set of feature points and then fill in the rest. Rather, we start with a generic

surface, say a large sphere or a smooth cube, and evolve it, possibly via changes of topology, to best

approximate the shape of the scene. We do so by numerically integrating systems of partial differential

equations using the level set method. The second issue is addressed by bypassing the direct comparison

of local image intensity, and instead comparing all images to the underlying model of the scene, which

necessarily includes the current estimate of its shapeas well as its radiance.Our model of the radiance is

1Even a few thousand feature points are far fewer than the millions of pixels in an image
2Most feature correspondence algorithms implicitly assume that the scene is “almost” Lambertian, in the sense that the

deviation from an ideal Lambertian model is small, not modeled explicitly, and instead lumped together with other factors as
“noise.”
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not in an explicit functional form; instead, it accounts for deviations from Lambertian reflection through

an affine subspace constraint on the radiance tensor field, which we will define shortly3.

The result is an algorithm that takes as input a sequence of images of a scene with complex appearance,

such as those in Figure 1 and, with no intermediate steps, returns an estimate of its shape, described by

one or more “dense” surfaces, and an estimate of its appearance, described by the radiance tensor field.

Such a description can be used to render the scene from novel viewpoints, assuming a static illumination,

in ways that preserve the complex appearance of the original scene.

Since a general scene cannot be reconstructed under varying and unknown illumination, we must make

assumptions about the imaging process. Specifically, we assume that illumination is fixed but otherwise

arbitrary, except for being “far enough” from the scene in a way that we will make precise in Section

2.1. Furthermore, we assume that the scene is a collection of smooth or piecewise smooth surfaces, and

that its reflectance can be modeled by the linear combination of an ideal Lambertian component and a

specular component, or what is known in computer graphics as a “diffuse + specular” reflectance model.

In the next subsection we will briefly review the state of the art as it relates to our contribution. Before

we formally introduce the quantities at play in Section 2.1 we use the terms “photometry,” “radiance,”

“reflectance” and “appearance” interchangeably, and similarly for “shape,” “structure” and “geometry.”

3Incidentally, as shown in [28], the distinction of comparing all images to an underlying model, as opposed to matching
image-to-image, is relevant only in the presence of non-Lambertian scenes, or other constraints on the diffuse albedo, as we
will discuss shortly and as shown in [28].
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1.1 Relation to prior work

In order for any 3-D reconstruction to be possible, some assumption must be made on the photometry

of the scene4. The most common assumption is that the light is fixed and the scene isLambertian,

i.e., the energy radiated from any point in the scene does not depend on the outgoing direction, so that

correspondence can be easily established by comparing individual images. Indeed, as we have shown in

[28], under the assumption of Lambertian reflection and in the absence of any additional information or

constraint on the diffuse albedo, there is no difference between comparing all images to an underlying

model of the scene as opposed to matching image-to-image directly. The situation is quite different, as

we discuss in [28], when the scene deviates from ideal Lambertian reflection. In this case, reflection

is most often described by an explicit model, a bidirectional reflectance distribution function (BRDF),

chosen among a parametric class derived by physical or empirical considerations5.

Most often, however, deviations from Lambertian reflection are modeled as “noise” or “outliers” and

either minimized by choice of a suitable cost functionals (such as photo-consistency [21]), or rejected

using robust statistical methods. For instance, one can select candidates for correspondence in each

image by looking at image statistics integrated over a region, compute the cross-correlation or other

score among putative correspondences, and then test whether they are consistent with a common epipolar

geometry. This works well when the scene is composed mostly of matte surfaces with few specular

highlights. However, for objects that areshinyand concentrated light distributions (see Figure1), this

approach shows limitations. Alternatively, one can set up a global cost functional obtained by integrating

4It is straightforward to show that if a scene has arbitrary reflectance properties and one can change the light distribution
from frame to frame, correspondence cannotbe established [32].

5For instance, [23] and [33] exploit the reciprocity condition of the BRDF to perform reconstruction using a particular
imaging setup where multiple images are obtained by swapping a point light source and the camera. We do not impose
constraints on the viewpoint, and do not restrict the illumination to be a point source. Indeed, we do not model illumination
explicitly, so our approach is quite different.
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Figure 1:(COLOR) Scenes with strong specularities are a challenge to algorithms relying on image-to-
image matching.

on the entire scene a local consistency measure (e.g. normalized cross-correlation) computed on the

images, and minimize it with respect to the unknown shape using variational techniques, an approach

pioneered by [8] in stereo reconstruction. Our approach is based on a similar philosophy, and we also

uses level set methods [27] to numerically solve the variational problem. However, while Faugeras and

Keriven estimate geometry alone, we estimate both geometry and photometry (radiance) and forego the

Lambertian assumption that is latent in the cost functional used in [8]. [16] have modified the cost

functional to minimize the effects of isolated specularities.

This work also relates to a series of works where the same computational framework is used in esti-

mating the shape and radiance for scenes of increasing complexity: from constant diffuse albedo [31] to

smooth diffuse albedo [18], to piecewise constant and piecewise smooth diffuse albedo [17], to arbitrary

diffuse and constant specular albedo, to arbitrary diffuse and specular albedos.

In addressing non-Lambertian reflection, our work relates to several studies on specular reflections in

stereo matching and reconstruction. [1] consider the likelihood of correct stereo matching by analyzing
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the relationship between stereo vergence and surface roughness, and propose a trinocular system where

only two images are used at a time in the computation of depth at a point. [2, 3] excise specularities as a

pre-processing step, similarly to [26], while [24] do so using polarized filters.

Non-Lambertian reflection has also been addressed in the context of photometric stereo, for instance

by [14]. In this case, the viewpoint is fixed while the illumination changes. In this respect, this is quite

different from our approach, that is more in line with traditional multi-view stereo in assuming that the

viewpoint, and not the illumination, moves. Other approaches [12] compare the observed images with

that of objects with known shape to obtain surface normals and hence shape.

This work also relates to the general problem of estimating reflectance properties as well as shape from

sequences of images. For instance [32] use known shape to estimate global illumination [32]; in light

field rendering [5, 10, 25] there is no explicit reconstruction of shape, and the radiance tensor, extended

to the volume, is sampled directly. Indeed, the rank constraint on the radiance tensor field is often used

in light field rendering, albeit not for inferring properties of the scene but, rather, for computational

efficiency.

This work addresses the problem of multi-view stereo with fixed illumination and arbitrarily changing

viewpoint. To the best of our knowledge, we are the first to propose a multi-view stereo algorithm that

can provide an estimate of both dense shape and non-Lambertian reflection. Our algorithm is based

on anaffine subspace constraint onthe radiance tensor field (Section 2.1), which we show to imply

(and hence be more general than) a “diffuse + specular” reflection models commonly used in Computer

Graphics (Proposition 1).
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2 Local modeling of radiance and image discrepancy

In this section we introduce the model of photometry, based on theradiance tensor field, and the measure

of discrepancy betweenmodel and imagesthat is the basis of our approach.

2.1 The radiance tensor field

Let S be a (smooth) surface embedded inR3 andP be the generic point onS, with coordinatesX =

[X1, X2, X3] ∈ R3 with respect to a fixed world reference frame. We denote withTPS the tangent plane

to the surface at the pointP . The generic vector in the tangent plane (embedded in Euclidean space) has

coordinatesv ∈ R3. Let an ideal perspective camera be characterized by a Euclidean reference frame

g ∈ SE(3), that describes the change of coordinates between the world reference frame and the frame

attached to the optical center of the camera, represented by a rotation matrix and a translation vector6.

Therefore, ifπ : R3 −→ R2 denotes the canonical perspective projection7, the pointP projects onto

each image in the coordinatesx = π(gP ).

For each pointP ∈ S we consider a discretization of a small neighborhoodΩP ⊂ TPS around

it. This discretization is usually done with a tessellation ofTPS, which we represent via the vec-

tors v1, v2, . . . , vm, wherem is the number of points inΩP , as shown in Figure 2. We assume to be

able to measure the amount of light leaving these points toward a discrete numbern of camera poses,

g1, g2, . . . , gn. Therefore, to each pointP we can associate an array ofm × n ideal measurements, one

6 g acts on a pointP with coordinatesX via gP , which has coordinatesRX + T whereR ∈ SO(3) is an orthonormal
matrix with positive determinant andT ∈ R3. The push-forward action ofg on vectorsv ∈ TR3 with coordinatesV is given
by g∗v, which has coordinatesRV.

7π(X) = [X1/X3, X2/X3].
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Figure 2:The local coordinate frame on the tangent plane, the discretization of the local neighborhood,
and the projection onto an image.

column for each camera view and one row for each point inΩP , as

R(P ) =


ρ(v1, g1) . . . ρ(v1, gn)

...
...

...

ρ(vm, g1) . . . ρ(vm, gn)

 (1)

whereρ(vi, gj) can be thought of as an approximate measurement of the radiance of the surface at a

point. Notice thatRij
.
= ρ(vi, gj) relates to theideal imageIj with an explicit dependence onP via the

irradiance equation [13, page 208], assuming a pin-hole projection:

Rij = Ij(π(gj(P + vi))) ∀ vi ∈ ΩP (2)
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for all j = 1, 2, . . . , n. The mapS → Rm×n; P 7→ R(P ) thus defines a tensor field onS, R(·) which,

for any fixedP , is anm × n matrix, called theradiance tensor, or simply “radiance”. In practice, the

imagesIj are measured only up to noise, so what is available is

Ĩj(x) = Ij(x) + wj(x); R̃ij = Rij + wij (3)

wherewj(x) measures the discrepancy of the data from the model and can be considered as the real-

ization of a random process (and therefore assumed to have a distribution associated to it), or simply

as an unknown matrix whose norm we wish to minimize. We callR̃ the measured radiance tensor field

obtained by substituting the noisy imagesĨ in equation (2).

In general, the radiance tensor depends on the material properties of the surface and the lighting

conditions. For instance, for the simplest case of Lambertian reflection,

R(P ) = R1(P ) · 1T
n (4)

whereRj(P ) denotes thej-th column ofR(P ) and1n denotes ann-dimensional vector with all the

elements equal to1. It is because, by the Lambertian assumption, the radiance is independent of the

viewpoint, and therefore all the columns ofR(P ) are identical. In fact, we can replaceR1(P ) in equa-

tion (4) with any other column ofR(P ). For more complex materials,R(P ) has more structures but

is, in general, not arbitrary. Proposition 1 shows that for ideal surfaces that obey a “diffuse+specular”

reflection model, all the columns ofR(R) live in an affine subspace of dimension1. In order to set

up the notation to state the proposition, we choose a reference frame〈e1, e2〉 for the tangent planeTPS

with the origin atP :〈e1, e1〉 = 1, 〈e2, e2〉 = 1, 〈e1, e2〉 = 0. LetNPS be the outward unit normal toS at
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λi ∈ H2
P is the incoming light direction and λo ∈ H2

P is the outgoing light direction. h ∈ H2
P is the

halfway vector between λi and λo. δ is the angle between h and N . Surface reflectance is described by
the bidirectional reflectance distribution function β that measures the ratio between the reflected energy
along the direction λo due to the energy coming from the direction λi and the incoming energy.

P , so thate1 × e2 = NPS. Then〈e1, e2, N〉 forms a Euclidean reference frame forR3 aroundP , where

we have indicated the normal vector withN as a short-hand forNPS. We denote withgP the change

of coordinates between the world reference frame and〈e1, e2, N〉 (see Figure 2). We can parameterize

each unit vectorλ in the upper hemisphere atP ,H2
P , with polar coordinates(θλ, φλ) ∈ [0, π/2]× [0, 2π],

i.e.,θλ is the angle betweenλ andN andφλ is the angle betweenλ ande1, for all λ ∈ H2
P .

The interaction of light with the surfaceS can be expressed, for most materials that we are going

to deal with, by thebidirectional reflectance distribution function(BRDF8). This is a function of two

directions inH2
P , the incident directionλi, parameterized by(θi, φi) and the reflected directionλo,

parameterized by(θo, φo), as well as the wavelength and polarization of the incident radiation, which we

will ignore (see Figure 3). Ward’s (anisotropic) elliptical Gaussian model [30] approximates the BRDF

8The BRDF is a simplified description of the radiometry of purely reflective (ideal) materials that yields an approximation
of the radiance commonly used in computer graphics. It measures the ratio between the reflected energy along the direction
(θo, φo) due to the energy coming from the direction(θi, φi) and the incoming energy.
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β with a linear combination of a diffuse term and a specular term:

β(θi, φi, θo, φo) =
ρd

π
+
ρs exp(− tan2 δ(cos2 γ/α2

x + sin2 γ/α2
y))

4παxαy

√
cos θi cos θo

(5)

whereρd is the diffuse reflectance coefficient (commonly referred to as thealbedo) andρs is the specular

reflectance coefficient;αx andαy are the standard deviations of the microscopic surface slope (surface

roughness) in the direction ofe1 ande2 respectively. They roughness coefficients are related to the

properties of the material and we will consider them to be constant in a neighborhood ofP . We note that

constant surface roughness in a neighborhood does not imply that either diffuse reflectance coefficient

(albedo) or specular reflectance coefficient is constant in that neighborhood. Leth be the halfway vector

between the directionsλi andλo: h
.
= λi+λo

‖λi+λo‖ ; (δ, γ) are the polar coordinates forh and are therefore

functions of(θi, φi, θo, φo). The radiance in the direction determined by the pointxj = π(gjP ) in thej-th

camera view is given by integrating the BRDF against the light distributionL in all directions(θi, φi):

ρ(0, gj) =

∫ 2π

0

∫ π/2

0

β(θi, φi, θo, φo)L(θi, φi) cos θi sin θidθidφi (6)

where the direction from P tocj, thej-th camera center, in the frame of the pointP , i.e.,gP
−1
∗

(
cj−P

‖cj−P‖

)
(see Footnote 6), is represented in polar coordinates as(θo, φo).

Proposition 1 (radiance tensor rank). Let S be made of a material that obeys the reflectance model

(5). Furthermore, consider a surface patchΩP ⊂ TPS that is small compared to the distance ofP from

the light sources and from the cameras. Then, ifR(P ) is computed forvi ∈ ΩP as in equation(1), we

have that∀P ∈ S

Rj(P ) ∈ A1
m, j = 1, 2, . . . , n (7)
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whereA1
m with 1 ≤ r ≤ min(m,n)− 1 denotes ar-dimensional affine subspace ofRm.

Proof. To facilitate computing the radianceρ(vi, gj) for eachvi ∈ ΩP ⊂ TPS; i = 1, 2, . . . ,m, in the

direction of the origin of the reference frame of cameraj = 1, 2, . . . , n, we will denote withg̃j(vi) the

directiong(P+vi)
−1
∗

(
cj−(P+vi)

‖cj−(P+vi)‖

)
fromP + vi to cj in the frame at the pointP + vi : 〈e1(vi), e2(vi), N〉.

SinceTPS is a plane, we can choose〈e1(vi), e2(vi), N〉 to coincide with the reference frame atP :

〈e1, e2, N〉. Under the assumption thatΩP is small, we can approximatẽgj(vi) with g̃j(0)
9. Again,

(θo, φo) are the polar coordinates ofg̃j(0). Under the same assumption, we can also approximate the

incoming light distribution at the pointP + vi with L(θi, φi). If we denote withρ(vi|w) the radiance of

pointvi along the directionλ, by equation (6), the radiance in the direction towardcj is given by

ρ(vi, gj) = ρ (vi|g̃j(vi)) u ρ (vi|g̃j(0))

=

∫
β(vi, θi, φi, θo, φo)L(θi, φi) cos θi sin θidθidφi

=

∫ 2π

0

∫ π/2

0

ρd(vi)

π
L(θi, φi) cos θi sin θidθidφi

+

∫
ρs(vi) exp(− tan2 δ(cos2 γ/α2

x + sin2 γ/α2
y))

4παxαy

√
cos θi cos θo

L(θi, φi) cos θi sin θidθidφi

= ρd(vi)s0 + ρs(vi)s1(gj)

where

s0
.
=

∫ 2π

0

∫ π/2

0

1

π
L(θi, φi) cos θi sin θidθidφi

s1(gj)
.
= s1(θo, φo) =

∫ 2π

0

∫ π/2

0

exp(− tan2 δ(cos2 γ/α2
x + sin2 γ/α2

y))

4παxαy

√
cos θi cos θo

L(θi, φi) cos θi sin θidθidφi.

9The meaning of approximation goes as follows:∀ε > 0, we can choose the size ofΩP small such that‖g̃j(vi)−g̃j(0)‖ <
ε.
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The fact thats0 does not depend ongj impliesRj(P )
.
= [ρ(v1, gj), ρ(v2, gj), . . . , ρ(vm, gj)]

T ∈ A1
m.

Remark 1. ρd, s0, ρs ands1 are all functions ofP . The affine subspaceA1
m may change with respect to

P as well. We do not assume at all that either the albedos or the light distribution is the same for every

P , but only that the surface roughness is locally constant inΩP .

Remark 2. Using g̃j(vi) to approximatẽgj(v0) is equivalent to using a scaled orthographic projection

for the imaging model inΩP . However, whenP moves over the surface, the parameters for the scaled

orthographic projection are allowed to change. Therefore, we arenot enforcing a scaled orthographic

projection for the entire scene. The imaging model is still the perspective projection we put up at the

beginning. In other words, we donot assume the overall size of the scene is small with respect to the

distances to light sources or cameras.

Remark 3. Proposition 1 is stronger than that of [15]. The affine subspace constraint implies the rank

constraint of [15], but the converse is not true. We will show in Section 3.1 that Proposition 1 leads to a

simpler and faster algorithm than the one presented in [15].

The intuition behind this proposition is that, in the limit where the light sources are far, and the patch

ΩP is small, the specular component of the radiance ofΩP is modulated by a scalar function that depends

on the viewpoint10. Of course, these conditions are a mathematical idealization. In practice, we verify

experimentally that the dimension ofAr
m decreases sharply and is negligible beyond the first. In the

experimental section (Section 4) we will report how the sizes of neighborhoods affect the performance

of the algorithm and we will also discuss the range of applicability of this constraint on realistic imaging

conditions.

10Also note that the limit where the area ofΩP goes to zero does not cause the rank to go to zero because the matrixR(P )
becomes smaller, since one can resize the tessellation of the tangent plane so as to keep the number of rows ofR(P ) constant.
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Regardless of the actual dimension for the affine subspace, a limitation on the dimension can be

exploited to set up a discrepancy function for stereo reconstruction, as we do in the next section. In view

of the claim above, one can then express the radiance tensor in terms of three vectors by lumpings0 into

d0. The relevance of Proposition 1 will be further discussed in Section 5.

Corollary 1 (local radiance model). At each pointP of an ideal surfaceS that obeys the conditions

of Proposition 1, the radiance tensor field can be represented with three vectorsd0(v), d1(v) ∈ Rm and

s1(g) ∈ Rn as:

R(P ) = d0(v)1
T
n + d1(v)s

T
1 (g). (8)

As we have pointed in Remark 1, the reader should notice thatd0(v), d1(v) ands1(g) are all functions

of the pointP on the surface. Note thats1 depends on the viewing directions, a necessary element in

modeling non-Lambertian reflection.

2.2 A discrepancy measure for non-Lambertian scenes

Naturally, due to image noise and deviation from the “diffuse+specular” reflectance model, themeasured

tensorR̃(P ) has its columns live in a higher dimensional affine subspace, or evenRm. The key idea here

is to use this subspace constraint to set up a matching criterion for stereo reconstruction. This is done

by setting up an error function between the measured radiance tensorR̃(P ) and the modelR(P ) at each

pointP (see equation (3)):

Φ(P )
.
= ‖R̃(P )− d0(v)1

T
n − d1(v)s

T
1 (g)‖2

F (9)

where we have chosen the squared Frobenius norm to compare radiance tensors. ClearlyΦ(P ) will
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depend on the coordinates ofP . In addition,Φ(P ) will also depend on the normal atP , sincevi lives in

TPS: Φ(P ) = Φ(X, N). If we define

φij = R̃ij − d0(vi)1
T
n − d1(vi)s1(gj), (10)

whereR̃ij is the(i, j)-th element ofR̃(P ), dk(vi) is thei-th component ofdk(v) for k = 1, 2 ands1(gj)

is thej-th component ofs1(g), then the squared Frobenius norm is the sum of the square of each element

φij. The surfaceS can then be found as the minimizer of the energyE
.
=
∫

S
Φ(P )dA:

Ŝ
.
= arg min

S

∫
S

Φ(P )dA (11)

wheredA is the area measure onS.

For eachP , we first compute the mean column ofR̃(P )

d̃0(v)
.
=

1

n

n∑
j=1

R̃j(P ) (12)

and then obtain the residual matrix̂R(P ) which is defined as

R̂(P )
.
= R̃(P )− d̃0(v)1

T
n . (13)

As we have noted, since the actual measured tensorR̃ will in general have no subspace constraint, the

residual matrixR̂(P ) will not have either. We can write it using the singular value decomposition (SVD)
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as

R̂(P ) =
r∑

i=1

d̃i(v)s̃
T
i (g) (14)

wherer is the rank ofR̂(P )11. The singular values are sorted in a decreasing order with respect tok.

Since, from the subspace constraint of Proposition 1, we can choose the basis ofR arbitrarily, we can

have

d0(v) = d̃0(v), d1(v) = d̃1(v) and s1(g) = s̃1(g) (15)

andR(P ) = d̃0(v)1̃
T
n (g) + d̃1(v)s̃

T
1 (g). The functionΦ can therefore be written as

Φ(P ) = ‖d̃2(v)s̃
T
2 (g) + d̃3(v)s̃

T
3 (g) + · · ·+ d̃r(v)s̃

T
r (g)‖2

F . (16)

Sinced̃0(v) is the mean column of̃R(P ), we have that the columns of the residual matrixR̂(P ) sum to

zero, i.e.,
n∑

j=1

R̂j(P ) =
n∑

j=1

r∑
k=1

d̃k(v)s̃
T
k (gj) = 0 (17)

wheres̃k(gj) is thej-th component of̃sk(g). By the properties of the SVD, we have that

〈d̃i(v), d̃j(v)〉 = ‖d̃i(v)‖2δij and 〈s̃i(g), s̃j(g)〉 = ‖s̃i(g)‖2δij (18)

whereδij is the Kronecker delta function, i.e.,δij = 1, if i = j; δij = 0, otherwise.

11The usual SVD yields unit-norm vectors̃di(v), s̃i(g) and additional singular valuesσi. In this paper, what we are really
interested is the fixed rank approximation ofR̂(P ) via SVD. Therefore, once SVD is computed, one can lumpσi into either
d̃i(v) or s̃i(g) or even divided̃i(v) and multiplys̃i(g) by some constant simultaneously without changing the decomposition,
sinced̃i(v) ands̃i(g) appear together in a product in the decomposition.
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3 Estimation of shape and radiance for non-Lambertian scenes

In this section we present our algorithm to recover the representation of shape and radiance described in

the previous section from a collection of images.

3.1 Shape estimation

Shape, in our context, is described by a representation of the surfaceS relative toanyEuclidean reference

frame. WhenS is represented explicitly, one can look for the solutionŜ via a local descent along the

gradient ofE. The optimality condition associated with equation (11) is given in the following theorem.

Theorem 1 (optimality condition). Let ΦX,ΦN be the first-order derivatives ofΦ with respect toX

andN andΦXN ,ΦNN be the second-order derivatives. We assume thatΦNN can be decomposed as:

ΦNN =
∑k

i=1 λipip
T
i whereλi ∈ R andpi ∈ R3 (note that this decomposition is always possible since

ΦNN is real and symmetric). We have that the following partial differential equation is the gradient

descent flow for the cost(11):

St =
(
2HΦ− 〈ΦX, N〉 − 2H 〈ΦN , N〉 − trace(ΦXN) +NT ΦXNN +

k∑
i=1

λiII(P
⊥
N pi)

)
N. (19)

whereP⊥
N is the projection fromR3 to TP (S), i.e.,P⊥

N = I −NNT , H is the mean curvature andII(t)

is the second fundamental form of a vectort ∈ TP (S).

Proof. See Appendix A.

Note that equation (19) involves second-order derivatives:ΦXN andΦNN and no higher-order deriva-

tives. This should not be surprising because the cost functional involvesN in the integrand, which is
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the first-order variation of the surfaceS. In practice the following flow based on the first-order deriva-

tives in equation (19) yields similar results to that of the flow (19), while saving a significant amount of

computations.

St =
(
2HΦ− 〈ΦX, N〉 − 2H 〈ΦN , N〉

)
N. (20)

The calculation of the flow above reveals some interesting structure, as major simplification occur after

equations (17) and (18).

We will prove a stronger result than needed to compute flow (20). In particular, we will show that even

if the dimension ofAr
m is higher than1, i.e.,r ≥ 1, the resulting flow still takes a simple expression. Let

r be the rank the residual matrix defined in equation (13). Suppose that the columns ofR(P ) satisfy an

affine subspace constraint of dimensionr0 and we taker0 terms from the SVD of̂R(P ) (equation (14)).

Therefore, the functionΦ takes the expression

Φ(P ) = ‖d̃r0+1(v)s̃
T
r0+1(g) + d̃r0+2(v)s̃

T
r0+2(g) + · · ·+ d̃r(v)s̃

T
r (g)‖2

F . (21)

Let φij be the(i, j)-th element ofΦ(P ).

Theorem 2 (differentiation of the score).Letξ indicate the arguments ofΦ, i.e.,ξ is one ofX1, X2, X3,

N1, N2, N3. Then

Φ̇ =

m,n∑
i,j=1

2φij
˙̃Rij (22)

where the dot indicates differentiation with respect toξ.

Proof. We will first show thatsi(g) sums to zero for any1 ≤ i ≤ r. Recall that the columns of the
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residual matrixR̂(P ) sum to zero (equation (17)). We have that

R̂(P )1n =
r∑

k=1

d̃k(v) 〈s̃k(g),1n〉 = 0 (23)

Multiplying both sides of equation (23) on the left bỹdT
i (v) where1 ≤ i ≤ r, we have

d̃T
i (v)

r∑
k=1

d̃k(v) 〈s̃k(g),1n〉 = ‖d̃i(v)‖2 〈s̃i(g),1n〉 = 0. (24)

Since‖d̃i(v)‖2 6= 0, we have

〈s̃i(g),1n〉 = 0, 1 ≤ i ≤ r. (25)

We define

φi .
= R̃i − d̃0(vi)1n −

r0∑
k=1

d̃k(vi)s̃k(g), i = 1, 2, . . . ,m,

φj
.
= R̃j − d̃0(v)−

r0∑
k=1

d̃k(v)s̃k(gj), j = 1, 2, . . . , n,

whereR̃i is the i-th row of R̃ and R̃j is the j-th column ofR̃, i.e., R̃i = [R̃i1, R̃i2, . . . , R̃in]T and

R̃j = [R̃1j, R̃2j, . . . , R̃mj]
T . Expanding the derivative we get

Φ̇ =

n,m∑
i,j=1

φ̇2
ij =

n,m∑
i,j=1

2φij

(
˙̃Rij − ˙̃d0(vi)−

r0∑
k=1

˙̃dk(vi)s̃k(gj)−
r0∑

k=1

d̃k(vi) ˙̃sk(gj)
)

=

n,m∑
i,j=1

2φij
˙̃Rij −

n∑
i=1

˙̃d0(vi)
〈
φi,1n

〉
−

r0∑
k=1

n∑
i=1

˙̃dk(vi)〈φi, s̃k(g)〉 −
r0∑

k=1

m∑
j=1

˙̃sk(gj)〈φj, d̃k(v)〉.
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However, from equations (26) and (26) we see thatφi is in the span of̃sr0+1(g), s̃r0+2(g), . . . , s̃r(g) and

φj is in the span of̃dr0+1(v), d̃r0+2(v), . . . , d̃r(v). Therefore, from equation (25) we have〈φi,1n〉 = 0,

and together with equations (18), we can conclude the proof by noting that the only term that contributes

to the derivative is
∑n,m

i,j=1 2φij
˙̃Rij.

As a consequence of the previous result, flow (20) for arbitrary dimensional subspace in an explicit

form read as:

St =

(
2HΦ−

m,n∑
i,j=1

2φij

〈
∂R̃ij

∂X
+ 2H

∂R̃ij

∂N
,N

〉)
N. (26)

3.1.1 Implementation notes

To computeφij we need to obtain the first singular value and the corresponding singular vectors of the

residual matrixR̂(P ) (or, equivalently, the rank-1 approximation ofR̂(P )). Since we are only interested

in the rank-1 approximation, we do not have to carry a full singular value decomposition. Instead, we use

the power iteration [9] to efficiently compute the largest singular value and its corresponding singular

vectors. Note that the algorithm presented in [15] uses the rank-2 constraint and therefore requires to

compute the first two singular values and the corresponding singular vectors. In general the algorithm

presented in this paper is about twice faster than the one in [15] because the computation of singular

values and vectors at every point dominates both algorithms.

We implement the flow (26) using level set methods [27]. Naturally, as with most of these variational

techniques, one can only hope to achieve convergence to a local extremum of the original cost functional,
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since the flow is based on the gradient descent principle, and existence and uniqueness results are not

available for this class of flows. In the experimental section we will give empirical validation to this

approach by testing the flow above on real image data starting from generic initial conditions.

3.2 Radiance estimation

Once the surfacêS has been found, one can use the representation of the radiance to generate images by

“radiance-mapping” the tensorR(P ) onto the surfaceS. Naturally, the visualization ofS in this case is

view-dependent, since different columns ofR(P ) contribute to the image of the same pointP depending

on the viewpointgi.

The radiance map is provided by the functionsd0(v), d1(v) and s1(g), estimated at each point of

the surface,P , using the singular value decomposition of the measured radiance tensorR̃, according

to Corollary 1 and equation (15). Given a novel vantage pointg′, the corresponding functions1(g
′)

can be interpolated from the existings1(gj). One simple way of doing so is to find the three views

closest tog′, and then use the linear interpolation to obtains1(g
′) from s1(gj). This technique also

allows extrapolating the radiance; as we show in the experimental section, one can notice artifacts when

comparing the results to actual images obtained from a novel viewpoint. However, such artifacts are

only noticeable by direct comparison. Notice thatd0(v) andd1(v) do not depend on the viewpoint,

and therefore do not need to be interpolated. Sinces1(g
′) is linearly interpolated froms1(gj), this new

radiance component does not increase the dimension of the subspace spanned by the columns of the

radiance tensor and therefore is consistent with the affine subspace constraint (Proposition 1).

Notice that the images generated from the radiance map are significantly different than those generated

by “texture mapping” the images̃I onto the surfaceS. In fact, the functions1(g) depends directly on
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the viewpoint, and therefore when the viewpoint moves, the highlights move on the estimated surface,

giving an overall result that is visually comparable with image-based rendering techniques that assume

true surface shapes [10, 5].

4 Experiments

In this section we report the experimental results of our algorithm tested on three datasets: “Van Gogh”,

“Buddha” and “elephant”. The first two datasets (shown in Figure 1) are courtesy of Jean-Yves Bouguet

and Radek Grzeszczuk (Intel Corp.). The third dataset (shown in the top row of Figure 10) is courtesy of

Daniel Wood (University of Washington). The Van Gogh statue is made of polished metal, and is highly

specular. There is a total of339 images in the dataset. Pseudo-ground truth has been generated by

laser or shadow scanning followed by mesh polishing (Figure 4). Buddha is actually a synthetic scene.

There is a total of281 images in the dataset. Ground truth is available (Figure 7). In Figure 4 we show

the estimates of shape produced by the algorithm described in Section 3.1, together with the estimates

obtained with the algorithm of [16], both compared with pseudo ground truth. In both algorithms, the

numerical grids we use are of size128× 128× 128. Our estimate is obviously not as crisp as the ground

truth, but it does capture important details on the face. Figure 8 shows the evolution of the estimate

of shape. In Figure 9 we show synthetic images generated using the radiance map, as described in

Section 3.2. Note that the specularities move with the viewpoint. In Figure 5 we show a few synthetic

images compared with the real images from the same vantage point. In Figure 7 we show the estimated

shape for the Buddha in Figure 1. The numerical grid size is128× 128× 128. In this case, ground truth

is available since the images are synthetic. We also show the results obtained with the algorithm of [16].

In Figure 6 we show images synthesized from the model, compared with corresponding true images. In
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Figure 4:Estimated shape (top), compared with pseudo-ground truth (bottom), obtained with a 3D laser
scanner and mesh polishing. Our results improve those obtained with the algorithm of [16] (middle).

Figure 8 we show the evolution of shape, and in Figure 9 we show several novel views. In Figure 10

(top row) we show several views of an elephant made of polished marble. There is a total of397 images

in the dataset. The numerical grid size we used is again128 × 128 × 128. The estimated shape of our

algorithms is reported in Figure 11 compared with pseudo-ground truth and that obtained using [16]. In

the bottom row of Figure 10 we show images synthesized from the model, whose viewing positions and

directions are the same as those in the top row.

In Table 1 we summarize the shape error for different approximations of surface reflectance. The error

is measured by the ratio between the volume of the symmetric difference between the estimated shape

and the true shape (or the pseudo-ground truth) and the volume of the true shape (or the pseudo-ground
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Figure 5:(COLOR) Synthetic images using the estimated radiance tensor (top) compared with the true
images taken from the same vantage point. Note that one can actually readthe text at the base of the
bust. This is obtained from the radiance estimate, not from texture mapping.

truth). Letψ be the level set function for surfaceS. Supposeψ is negative insideS and positive outside

S. Then the volume contained byS, defined asSin, can be measured as

Vol(Sin) =

∫
R3

(1−H(ψ))dxdydz (27)

whereH(x) : R → {0, 1} is the Heaviside function:H(x) = 1 if x ≥ 0; H(x) = 0 otherwise. In

practice, one can mollify the Heaviside function with a smooth approximation [4]. The volume of the
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Reflectance models Van Gogh Buddha elephant

Lambertian (the algorithm presented in [16]) 6.9% 5.5% 24.3%
1-dimensional affine subspace (the proposed al-
gorithm)

5.7% 3.5% 7.3%

2-dimensional affine subspace (a modified ver-
sion of the proposed algorithm by using the first
and second singular values and vectors in ap-
proximatingR̂(P ) in equation (14))

5.6% 3.4% 7.2%

Table 1:Shape error comparison chart for different reflectance approximations. The error is measured
by the ratio between the volume of the symmetric difference between the estimated shape and the true
shape (or the pseudo-ground truth) and the volume of the true shape (or the pseudo-ground truth). We
observe that using the proposed one-dimensional affine subspace constraint for the radiance tensor, we
can reduce the shape error by a factor of 2 in average, while using higher-order affine subspaces does
not improve the results much.

symmetric difference betweenSin andTin can be calculated by:

Vol(Sin∆Tin) = Vol(Sin) + Vol(Tin)− 2Vol(Sin ∩ Tin). (28)

We observe that using the proposed one-dimensional affine subspace constraint for the radiance tensor,

we can reduce the shape error by a factor of2 in average, while using higher-order affine subspaces

does not improve the results much. In Table 2 we show the degradation of the reconstruction as a

function of the size of the patchΩP for the Vangogh dataset. We tested neighborhood sizes from3 × 3

to 19× 19. We use odd sizes to have the neighborhoods symmetric around the center point. The unit of

the neighborhood size is chosen to be corresponding to the actual pixel size in the best view, for instance

5 × 5 means that the projected neighborhood in the best view occupies an approximate5 × 5 region in

image pixels. We observe that the proposed algorithm is very robust with respect to the neighborhood

size in the sense that the reconstruction errors are almost the same from7× 7 to 15× 15 neighborhoods.

When the neighborhood is chosen too small, the algorithm is sensitive to image noise and therefore has
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Size ofΩP 3× 3 5× 5 7× 7 9× 9 11× 11 13× 13 15× 15 17× 17 19× 19

Shape error 14.8% 7.6% 6.3% 6.0% 5.7% 5.8% 6.1% 6.4% 6.6%

Table 2: Shape error comparison chart for different sizes of ΩP for the Vangogh dataset. The error is
measured by the ratio between the volume of the symmetric difference between the estimated shape and
the pseudo-ground truth and the volume of the pseudo-ground truth. The unit of the neighborhood size
is chosen to be corresponding to the actual pixel size in the best view, for instance 5× 5 means that the
projected neighborhood in the best view will occupy an approximate 5× 5 region in image pixels.

trouble to converge. When the neighborhood is chosen too big, the algorithm has trouble to capture

sharp features presented in the object shape.

Occlusions are handled by computing visibility at each step of the iteration. Therefore, the technique

we present is computationally intensive and processing an entire dataset takes several hours. On the

other hand, the algorithm requires no manual intervention, no intermediate step, no mesh polishing

and no texture mapping after reconstruction. Therefore, its computational cost should be compared to

implementing the entire pipeline from images to rendering.

Figure 6:(COLOR) Synthetic images obtained with the estimated radiance tensor field (top) compared
with the true images taken from the same vantage point.
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Figure 7:Estimated shape (top), compared with ground truth (bottom), also compared with the results
obtained by the algorithm of [16] (middle).

5 Discussion

We have presented a novel algorithm for estimating dense shape and non-Lambertian photometry from

a collection of images. Our algorithm relies on an affine subspace constraint on the radiance tensor

field, which is derived from the diffuse+specular reflection model commonly used in Computer Graph-

ics, in the sense elucidated in Proposition 1. While one could dismiss the analysis and just introduce

the cost function (9) point-blank without detracting from the algorithm proposed (which is validated ex-

perimentally), the proposition indicates precisely under what conditions the affine subspace constraint is

satisfied, i.e., what the underlyingmathematical modelis. Naturally, the closest the scene is to satisfying
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Figure 8:Shape evolution for Van Gogh (top) and Buddha (bottom).

the assumptions (i.e. the closest it is to smooth shape, diffuse+specular reflection, fixed distant illumi-

nation) the smaller dimension the subspace spanned by the columns ofR̃(P ) is. However, even though

only ideal scenes viewed from noiseless images will satisfy the assumptions exactly, we can still exploit

the discrepancy derived from the idealized model to define a constraint that can be used to reconstruct

the scene from real images.

Those that object to the restrictiveness of the model laid out in Proposition 1 will be relieved to

know that extension to higher dimensional affine subspace is conceptually and computationally trivial.

One will need to take more terms from the SVD, but Theorem 1 assures that the gradient flow can be

computed essentially in the same way. However, it can be verified experimentally that, for most scenes,

an increase in the dimension of the model does not yield a significant improvement in the reconstruction,

further validating the mathematical model proposed (see Table 1).

Our algorithm can handle sharp changes of the radiance profile: In Figure 5, one can actuallyreadthe

text at the base of the bust from the reconstructed radiance. Note that there is no restriction whatsoever

imposed on the variation of the diffuse and specular components of the radiance, and nowhere it is
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Figure 9: (COLOR) Synthetic images obtained from the estimated radiance. As it can be seen, the
appearance changes significantly with the vantage point.

assumed that it be constant or smooth. What is assumed to be constant is the surface roughness,not the

albedo, so we can handle heavily textured objects. On the other hand, our algorithm does notrequire

strong texture or point features to be visible, and returns a dense estimate of shape, with no need to

interpolate or triangulate a surface from sparse points.

Note also that, although the measured radiance tensorat a given pointP is assembled using a local

approximation of the surface with the tangent planeTPS, this does not mean that our algorithm only

works for planar surfaces: In fact, the radiance tensor at a nearby pointQ is computed using the tangent

planeTQS that is not constrained to be similar toTPS. If one thinks ofR(P ) as a “signature” attached

to P ∈ S, the model imposes no constraint that nearby points should have similar signatures.
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Figure 10: Top row: three images from the elephant dataset (courtesy of Daniel Wood, University
of Washington). Bottom row: synthetic views generated using the estimated radiance. The structure
and position of specular highlights is correctly captured; there are some visualization artifacts at the
boundaries, but note that even the text on the small label is visible on the left image. Note that this is an
estimate of the radiance, not a texture map.

Figure 11: Estimated shape (top row) of the scene in Figure 10, compared with pseudo-ground truth
(bottom row), obtained with a 3D laser scanner and mesh polishing. Our results improve those obtained
with [16] (middle row). The ear is not clear in the reconstruction, although it is well captured as radiance
(Figure 10).
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A Gradient descent flow for
∫
S Φ(X, N)dA

In this section we present the proof for Theorem 1, i.e. deriving the gradient descent flow for the

cost (11). Note that the analysis for the cost (11) was also done by Faugeras and Keriven in [8] and can

be found in [19] (in French). In particular, Faugeras and Keriven derived the Euler-Lagrange equations

for the cost functional and then designed a flow based on it to find the optimal shape. However, in their

derivation it is not immediate to see that the resulting flow minimizes the cost functional. In this paper

we present a way of directly minimizing the cost functional (11) and show that the flow considered by

Faugeras and Keriven in [8] is indeed the gradient descent for the cost (11).

We shall express the surfaceS using a fixed parameterizationX : U → S; (u, v) 7→ X(u, v). We will

further assume thatU is simply connected to exploit integration by parts. This seems like a restrictive

assumption to start with but, in the end, the resulting flow will have a completely local expression which

does not depend on the choice of the parameterization. LetE, F , andG be the coefficients of the

first fundamental form ofS under the parameterizationX and e, f , andg be the coefficients of the

second fundamental form, i.e.,E
.
= 〈Xu,Xu〉 , F

.
= 〈Xu,Xv〉 , G

.
= 〈Xv,Xv〉, ande

.
= 〈N,Xuu〉 , f

.
=

〈N,Xuv〉 , g
.
= 〈N,Xvv〉. We can write the area formdA using the coefficients of the first fundamental

form dA =
√
EG− F 2dudv. By definitionN = Xu×Xv

‖Xu×Xv‖ = Xu×Xv√
EG−F 2 . We will also use the following

lemma from linear algebra, which can be verified by direct substitution:

Lemma 1. Letx,y ∈ R3 andA ∈ R3×3. We have the following identity:

x× (Ay) + (Ax)× y = trace(A)(x× y)− AT (x× y). (29)
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The general scheme we choose to minimize cost (11) is to first augment the parameterization with

an additional time variablet: X(u, v, t) and then updateX (and thus evolveS) according to a partial

differential equationSt = FN starting from a generic shape (such as a large sphere). We shall show

that the choice of the partial differential equation made in Theorem 1 minimizes cost (11). We useXt to

indicate the derivative ofX with respect to time and replaceXt with St when the whole expression does

not depend on the parameterization. Throughout our computation, we will always omit purely tangential

terms whenever they appear inside an inner product with the surface variationXt or St, because they

will not change the shape ofS [6]. We will first prove the following theorem, which will be used in the

further computation and enlighten it.

Theorem 3 (mean curvature flow). Let S be a closed regular surface inR3. The gradient flow to

minimize the surface area
∫

S
dA is the mean curvature flow:

St = HN. (30)

Proof. Computing the time derivative of the surface area, we obtain

∂

∂t

∫
S

dA =

∫∫ √
EG− F 2

tdudv =

∫∫
EtG+ EGt − 2FFt

2
√
EG− F 2

dudv

=

∫∫
G 〈Xut,Xu〉+ E 〈Xvt,Xv〉 − F (〈Xvt,Xu〉+ 〈Xut,Xv〉)√

EG− F 2
dudv

=

∫∫
−〈GXuu,Xt〉+ E 〈Xvv,Xt〉 − 2F 〈Xuv,Xt〉√

EG− F 2
dudv

=

∫∫
−〈G 〈Xuu, N〉N + E 〈Xvv, N〉N − 2F 〈Xuv, N〉N,Xt〉√

EG− F 2
dudv

=

∫∫ 〈
−Ge+ Eg − 2Ff

EG− F 2
N,Xt

〉√
EG− F 2dudv

=

∫∫
〈−2HN,St〉 dA.
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Note that for the sake of simplicity, we have omitted the integration domain foru andv. If we choose

St = HN , then we have

∂

∂t

∫
S

dA =

∫∫
−2H2dA ≤ 0.

Therefore,St = HN minimizes the surface area.

Now we come to our original cost functional
∫

S
Φ(X, N)dA.

Proof of Theorem 1.

∂

∂t

∫
S

Φ(X, N)dA =

∫∫
∂

∂t

(
Φ(X, N)

√
EG− F 2

)
dudv

=

∫∫
(〈ΦX,Xt〉+ 〈ΦN , Nt〉)

√
EG− F 2 + Φ

√
EG− F 2

t dudv

=

∫∫ (
(〈ΦX, N〉 − 2HΦ) 〈N,Xt〉+ 〈ΦN , Nt〉

)√
EG− F 2 dudv

=

∫∫
(〈ΦX, N〉 − 2HΦ) 〈N,St〉 dA

+

∫∫ 〈
ΦN ,Xut ×Xv + Xu ×Xvt −

Xu ×Xv√
EG− F 2

√
EG− F 2

t

〉
dudv

=

∫∫
(〈ΦX, N〉 − 2HΦ + 2H 〈ΦN , N〉) 〈N,St〉 dA

+

∫∫
〈ΦN ,Xut ×Xv + Xu ×Xvt〉 dudv (31)
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We continue on the second term
∫∫

〈ΦN ,Xut ×Xv + Xu ×Xvt〉 dudv:

∫∫
〈ΦN ,Xut ×Xv + Xu ×Xvt〉 dudv =

∫∫
〈Xv × ΦN ,Xut〉+ 〈ΦN ×Xu,Xvt〉 dudv

=

∫∫
−〈Xuv × ΦN + Xv × (ΦN)u + (ΦN)v ×Xu + ΦN ×Xuv,Xt〉 dudv

=

∫∫
−〈Xv × (ΦN)u + (ΦN)v ×Xu,Xt〉 dudv

=

∫∫
−〈Xv × (ΦNXXu + ΦNNNu) + (ΦNXXv + ΦNNNv)×Xu,Xt〉 dudv

=

∫∫
−〈Xv × (ΦNXXu) + (ΦNXXv)×Xu,Xt〉 dudv

−
∫∫

〈Xv × (ΦNNNu) + (ΦNNNv)×Xu,Xt〉 dudv

We can simplify the first term as follows:

∫∫
−〈Xv × (ΦNXXu) + (ΦNXXv)×Xu,Xt〉 dudv

=

∫∫ 〈
trace(ΦNX)(Xu ×Xv)− ΦT

NX(Xu ×Xv),Xt

〉
dudv

=

∫∫
(trace(ΦXN)−NT ΦXNN) 〈N,St〉 dA. (32)

We can also simplify the second term by noting thatΦNN can be decomposed as follows:

ΦNN =
k∑

i=1

λipip
T
i (33)

whereλi ∈ R andpi ∈ R3. We wish to make two remarks. First, as a real3× 3 symmetric matrix,ΦNN

can always be decomposed into the form of equation (33) (for instance via theeigenvalue decomposi-

tion). Second, equation (33) is more general than the eigenvalue decomposition, because it allowsk to
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take any number andpi is not necessarily orthogonal to each other. Thus, we have:

∫∫
−〈Xv × (ΦNNNu) + (ΦNNNv)×Xu,Xt〉 dudv

=

∫∫
−

k∑
i=1

λi 〈〈pi, Nu〉Xv × pi + 〈pi, Nv〉 pi ×Xu,Xt〉 dudv

=

∫∫
−

k∑
i=1

λi 〈pi, Nu〉 〈Xv × pi, N〉+ 〈pi, Nv〉 〈pi ×Xu, N〉 〈N,Xt〉 dudv

=

∫∫
−

k∑
i=1

λi

〈
P⊥

N pi, [Nu, Nv]


〈
P⊥

N pi, N ×Xv

〉
〈
P⊥

N pi,Xu ×N
〉

〉
dudv

The last step follows from the fact thatNu, Nv, Xu × N andN × Xv are all tangent vectors. If we

construct a curveC(t) : (−ε, ε) → S with Ct = P⊥
N pi, we can easily verify that

ut =
√
EG− F 2

〈
P⊥

N pi, N ×Xv

〉
and vt =

√
EG− F 2

〈
P⊥

N pi,Xu ×N
〉
,

and

〈
P⊥

N pi, [Nu, Nv]


〈
P⊥

N pi, N ×Xv

〉
〈
P⊥

N pi,Xu ×N
〉

〉

=
√
EG− F 2

〈
P⊥

N pi, Nuut +Nvvt

〉
=
√
EG− F 2II(P⊥

N pi).

Hence we have

∫∫
−〈Xv × (ΦNNNu) + (ΦNNNv)×Xu,Xt〉 dudv =

∫∫
−

k∑
i=1

λiII(P
⊥
N pi)dA. (34)
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Putting equations (31), (32) and (34) together, we arrive at

∂

∂t

∫
S

Φ(X, N)dA =

∫
S

(
〈ΦX, N〉 − 2HΦ + 2H 〈ΦN , N〉

+(trace(ΦXN)−NT ΦXNN)−
k∑

i=1

λiII(P
⊥
N pi)

)
〈N,St〉 dA. (35)

It is immediate that the gradient descent flow is given by

St =
(
2HΦ− 〈ΦX, N〉 − 2H 〈ΦN , N〉 − trace(ΦXN) +NT ΦXNN +

k∑
i=1

λiII(P
⊥
N pi)

)
N. (36)

Remark 4. Even though in the computation we have ignored all tangential terms that appear inside an

inner product withXt or St, it is possible, although far more laborious, to show that they indeed cancel

out through a more careful derivation.
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