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Abstract

Video jittering occurs when the horizontal lines of video image frames are randomly
displaced due to the corruption of synchronization signals or electromagnetic in-
terference during video transmission. Inspired by the recent Bayesian/variational
dejittering model of Shen (SIAM J. Appl. Math., vol. 64, pp. 1691-1708, 2004), in
the current paper we propose a novel dejittering approach nicknamed “Bake-and-
Shake.” The bake step is to apply Perona-Malik type nonlinear diffusions to “melt
away” or heat up the jittered video frames, based upon which the shake step is able
to optimally estimate the individual line jitters and renormalize the jittered im-
ages. Numerical implementation of the Bake-and-Shake algorithm as well as several
computational results are presented.
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1 Introduction

Video jittering occurs when the synchronization signals on analog video tapes
are corrupted or when environmental electromagnetic interference randomly
delays video signals. It can often result in random displacements (i.e., jit-
ters) of horizontal lines in video image frames, and make video images either
unpleasant to watch or difficult to perceive important visual features. Fig. 1
shows a typical jittered video frame.
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(a) (b)

Fig. 1. (a) The ideal image. (b) The jittered image.

Traditionally, jittering in analog video tapes has been corrected by retrieving
the signal information on tapes that has nothing to do with image contents.
Such dejittering approaches are thus non-intrinsic since they fail to work prop-
erly if only provided with the jittered video images alone.

In the remarkable works [1,2], Kokaram et al. first explored dejittering meth-
ods that only rely on the video images without demanding any extra irrelevant
information. The authors proposed to register shuffled lines using multiresolu-
tion schemes and autoregressive image models for intrinsic video dejittering.
Following the same line of intrinsic dejittering, in [3] Shen developed a single
variational dejittering model based on the Bayesian rationale and the cele-
brated BV image model of Rudin, Osher, and Fatemi [4].

Inspired by the independent meaning of the Euler-Lagrange equations of the
variational model of Shen [3], in the present work, we propose a flexible
two-step method for image dejittering, which we have nicknamed “Bake and
Shake.” Likewise in all the aforementioned works [1–3], this new approach
also shares two characteristics. (a) First, it is also information-theoretically
intrinsic and does not depend upon any extra information (e.g., storage me-
dia or starting signals) other than the input jittered video frames. (b) It is
also intra-frame intrinsic and does not require the knowledge of correlations
among different video frames. The latter attribute reduces the video dejitter-
ing problem to a image estimation and restoration problem.

As the name explicitly suggests, the proposed Bake-and-Shake dejittering ap-
proach consists of two main ingredients: bake and shake.

The bake step is to employ Perona-Malik type nonlinear diffusions [5], that
can “heat up” the jittered video images and “melt away” the jigsaw patterns
caused by horizontal random line jitters. By doing so, on one hand, the jit-
tered images are inevitably mollified after losing many details, but on the other
hand, which is even more crucial, vertical correlations among randomly shuf-
fled horizontal lines become manifest in the baked images. It is the valuable
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positional information unveiled by this vertical correlation that will greatly
facilitate the next step of shaking. We shall explain in details why Perona-
Malik’s anisotropic diffusions can lose less information during the baking step
(compared with linear diffusions) and lead to more robust dejittering perfor-
mance.

The shake step follows immediately the bake step (see Fig. 2), and is the major
tool for estimating the random jitters. The vertical correlation revealed by the
bake step helps the shake step to optimally identify the random jitters along all
the individual horizontal lines, and to reshuffle (or shake) the jittered image.
Due to ubiquitous intensity noises, the shake step in our work is formulated
as a least-square estimation problem, and computed based on the Newton-
Raphson iterative algorithm for nonlinear optimization [6].

Furthermore, this two-step machinery towards dejittering can be cascaded
when necessary, even though our computational results show that one round
of bake and shake often already suffices for many applications.

Finally, the remarkable flexibility of our proposed bake-and-shake approach
also manifests in its versatile handling of color images (or multichannel images
more generally). The bake step can be easily implemented using numerous
existent nonlinear diffusion models for color or multichannel images (see, e.g.,
[7–12])

The organization is as follows. In the five subsections of Section 2, we explain
the details of the bake-and-shake model and algorithm. We start with the
general statistical formulation of the jittering problem. After revealing the
major functions of the bake and shake mechanisms, we explain separately the
mathematical formulations of each bake and shake steps. In particular, we
thoroughly explain the advantages of Perona-Malik’s nonlinear diffusions for
the bake step, comparing with conventional linear heat diffusions. Section 3
consists of two subsections on the computation of the bake-and-shake model
and algorithm. The first subsection details all the implementation schemes for
both the bake and shake steps, while the second subsection contains several
computational examples to illustrate the performance of our proposed bake-
and-shake approach. Conclusion and future works are discussed in the last
section.
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2 The Proposed Dejittering Model: Bake and Shake

2.1 The Jittering Problem

We first briefly discuss the stochastic model of the jittering process. Let Ω =
(a, b) × (0, H) ⊂ R2 be a Cartesian square domain modeling the continuum
limit of most contemporary display devices such as the monitors of TV’s,
computers, or cameras. A typical pixel in Ω will be denoted by (x, y). For
technical convenience, it shall also be assumed that a = −∞ and b = +∞.
(For finite a and b, boundary conditions can be properly formulated as in [3].)

Let uideal(x, y) be an ideal image without jittering on Ω. For each y ∈ (0, H),
there exists some random jitter s(y) ∈ R, which is often assumed to be Gaus-
sian with mean zero. In addition, s(y)’s are independent for different y’s,
and can further be assumed homogeneous. In combination, these lead to the
Gaussian white noise model for random horizontal jitters s(y) [3]. More gen-
eral jittering models can be developed based upon Markov chains or other
deterministic regularities [3].

In addition, as common in many applications, intensity noises are also ubiq-
uitous due to aged film grains or electromagnetic fluctuations in the environ-
ment. Assume that the intensity noise n(x, y) involved is additive and has
zero mean. One can also further assume the intensity noise is Gaussian white,
which is however not essential for the present work.

Thus the noisy image observation u0(x, y) under random horizontal jittering
can be modelled by

u0(x, y) = uideal(x− s(y), y) + n(x, y), x, y ∈ Ω.

By the stochastic nature of both s(y) and n(x, y), strictly speaking, u0(x, y)
becomes a random field. In reality, however, u0(x, y) stands for a typical (in
the information theoretical sense [13]) sample of the associated random field.
The goal of practical dejittering is to restore the ideal image uideal(x, y) based
on a typical single observation u0(x, y).

2.2 Overview of the Bake-and-Shake Algorithm

In the current paper, we propose a two-step model for the dejittering problem,
which has been nicknamed the bake-and-shake process.

We shall explain the two steps in great details in the coming two subsections.
Here we first outline the main mechanisms underlying this novel dejittering
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process. Fig. 2 shows the flow chart of this algorithm. The bake-and-shake
process can be iterated when necessary.

u0
1

0.5u

final exiting step

u u

Bake

Shake Denoising

iteration

Fig. 2. Flow chart of the bake-and-shake algorithm

The bake step applies a diffusion process to the noisy and jittered image u0. Its
action bears two fold missions. First, as well known in the image processing
literature, diffusion is a filtering process that can suppress the effect of intensity
noises n. Second, for the jittered image u0, diffusion also “melt away” the
jigsaw object boundaries introduced by random horizontal shuffling. It works
well mainly because the diffusion is a lowpass filtering processing while jittered
boundaries are high-frequency features. Thus the net effect of the bake step
is to produce a mollified (or baked) intermediate image u (denoted by u0.5 in
Fig. 2) that substantially suppresses the effects of both the intensity noise
n(x, y) and the horizontal jittering s(y). However, object boundaries in the
baked image become inevitably blurry, and typically still contain the remanent
low-frequency components from the jittering process. This necessitates the
shake step.

The shake step estimates the jitter variable s(y) based upon both the orig-
inal image u0 and the output image u from the bake step. It treats u as a
good approximation to the ideal image and employs a least-square criterion
to match f0(x) = u0(x, y) with f(x + s) = u(x + s(y), y) for each horizontal
line y ∈ (0, H). From the estimated jitters s(y), the output of the shake step
is u1(x, y) = u0(x− s(y), y), which shakes up the jitters and makes the image
almost jitter free. Notice that u1 still contains the intensity noise, which can
be cleaned up using any classical denoising schemes (see Fig. 2) [4,5,14,15].

2.3 The Bake Step

The importance of the bake step is to introduce vertical communication among
the horizontal lines. This is illustrated in Fig. 3. Panel (a) shows a synthetic
ideal image uideal, (b) its noisy and jittered version u0, and (c) the baked
image u. The second row shows the profiles of their 27th rows separately. The
noisy profile of image (b) is more than 5 pixels (which is quite large in the
literature [16]) off to the right, whereas the profile of the baked is very close
to the ideal image in terms of horizontal positioning.
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(a) ideal image (b) original (c) Baked image 
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Fig. 3. (a) The ideal image, (b) the given noisy and jittered image u0, (c) the baked
image u. Plotted in the second row are the corresponding profiles of the 27th row.
The (red) dashed line is the profile of the ideal image, while the (blue) solid lines are
those associated with (b) and (c). It is evident that the profile of the baked image
is horizontally much closer to the ideal one, though smoothened to some extent.
Baking has thus promoted vertical communication among the horizontal lines, so
that each one can approximately resume to its original position when assisted by
the others in the vicinity.

The core mechanism of the bake step is the diffusion process, which includes
the ordinary heat diffusion as a familiar example. In this physics sense, the
bake step acts upon the jittered noisy image u0 in very much the same way
as heat melts away ice tips. The net effect of the diffusion-based bake step is
that random horizontal jitters are mollified and the average smooth boundaries
resurface in the baked image, as manifest in the example of Fig. 3.

Mathematically, the jittering process introduces high-frequency components
into the image, whereas diffusion is a lowpass filtering process which gradu-
ally suppresses high-frequency irregularities. Diffusion has thus been widely
applied in image analysis and processing (see, e.g., Witkin [17] and the mono-
graph by Weickert [18]). Normally diffusion is only employed to remove inten-
sity noises, here it additionally (and more importantly) helps regularize the
shuffled boundaries.

Among many alternatives of diffusion processes, in the present work, we have
employed the celebrated anisotropic diffusion model proposed by Perona and
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Malik [5]:

∂u

∂t
= ∇ · [ g(|∇u|)∇u ],

u
∣∣∣
t=0

= u0.
(1)

Here the nonlinear diffusivity g(p) of p = |∇u| should at least satisfy

g(0) > 0, g(p) decreases as p →∞, and g(+∞) = 0.

Common choices include, for example, the Cauchy function

g(p) =
1

1 + p2/a2
, for some a > 0,

the Guassian function

g(p) = exp(−p2

a2
), for some a > 0,

the minimal-surface diffusivity

g(p) =
1√

1 + p2
, or more generally, g(p) =

1√
a2 + p2

,

and the diffusivity inspired by the total variation Radon measure [4] and mean
curvature motions g(p) = 1/p.

Due to the numerical smoothing effect of finite difference schemes, Eqn. (1) is
usually well posed computationally. Nevertheless, the noisy initial data u0 stir
up theoretical difficulty in justifying the initial computation of the gradient
∇u. This issue can be resolved by properly regularizing the diffusivity from

g(|∇u|) to g(|∇uσ|),

where uσ = Gσ ∗ u stands for the mollified version of u using a thin and tall
Gaussian kernel with small variance σ2. Interested readers are referred to the
important work of Catté, Lions, Morel, and Coll [19].

Unlike conventional linear diffusions, Perona-Malik diffusions cleverly intro-
duce adaptivity into the diffusivity coefficients: faster diffusion on homoge-
neous regions where images are smoother, and slower near edges where images
gradients become large. This edge-preservation property makes Perona-Malik
diffusions ideal for the dejittering application, since the edge information will
play a crucial role in robust shaking. We shall further elaborate on this point
in a quantified and precise manner in Section 2.5.
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2.4 The Shake Step

Let u denote the output from the bake step, which is a blurry approximation to
the ideal image. As illustrated in Fig. 3, u and the ideal image share the similar
positional information, and consequently, u can be employed to estimate the
jitters, which is the task of the shake step.

For any fixed y ∈ (0, H), define f0(x) = u0(x, y) and f(x) = u(x, y), which
are horizontal slices as illustrated in Fig. 4. We are interested in finding the

10 20 30 40 50

0

0.5

1

s

f(x) 

f
0
 

Fig. 4. Following the bake step in Fig. 3, for any fixed y ∈ (0,H), f0(x) is the
horizontal profile of the original noisy and jittered image u0(x, y), while f(x) is that
of the baked (diffused) image u(x, y). The displacement s approximates the ideal
unknown jitter t.

optimal jitter s that minimizes the following error function

e(s) =
∫

R
(f0(x)− f(x + s))2dx,

where as in Section 2.1, the image domain is assumed to be Ω = R×(0, H) for
simplicity (see Shen [3] for details in coping with the boundaries of bounded
domains). The optimal line jittering s must satisfy e′(s) = 0, where

e′(s) = −
∫

R
(f0(x)− f(x + s)) · f ′(x + s)dx.

which is a 1-dimensional nonlinear optimization problem.

We then employ the Newton-Raphson scheme to iteratively find the optimal
jitter estimation:

sn+1 = sn −
e′(sn)

e′′(sn)
, often with s0 = 0.

Let 〈f, g〉 denote the inner product in the Hilbert space L2(R). Then the
first derivative becomes e′(s) = −〈f0(x)− f(x + s), f ′(x + s)〉. Assuming the
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profiles die out in the infinities (or the Neumann boundary condition for finite
domains), the second derivative becomes

e′′(s) = 〈f ′(x+s), f ′(x+s)〉−〈f0(x)−f(x+s), f ′′(x+s)〉 = −〈f0(x), f ′′(x+s)〉,

where the last equality results from integration by parts:

〈f(x + s), f ′′(x + s)〉 = −〈f ′(x + s), f ′(x + s)〉.

Assume that the profile of the original image f0(x) has been generated by the
true jitter t, i.e., f0(x) = fideal(x + t) + n(x), where fideal denotes the ideal
profile. Suppose the baked profile f(x) is close to fideal(x), then

f0(x) = fideal(x + t) + n(x) ≈ f(x + t) + n(x). (2)

Since n(x) is independent of the image signal, one has 〈n(x), f ′′(x + s)〉 = 0.
Thus the second derivative e′′(s) can be expressed as

e′′(s) = −〈f0(x), f ′′(x + s)〉 ≈ −〈f(x + t), f ′′(x + s)〉,

which, based on integration by parts, yields

e′′(s) ≈ 〈f ′(x + t), f ′(x + s)〉.

Applying Taylor expansion to f ′(x + t),

f ′(x + t) = f ′(x + s) + f ′′(x + s)(t− s) + O(|t− s|2).

(Notice that the smoothness requirement for Taylor expansion is indeed sat-
isfied since f is the baked (or mollified) version.) Furthermore, since

〈f ′′(x + s), f ′(x + s)〉 =
(f ′(x + s))2

2

∣∣∣∣∣
∞

−∞
= 0

(either from the vanishing conditions at ±∞ or the Neumann boundary con-
dition for finite domains), one eventually has

e′′(s) ≈ 〈f ′(x + s), f ′(x + s)〉+ O(|t− s|2),

where t denotes the unknown true jitter. Due to the shift-invariance of Lebesgue
measures, one can replace the original denominator e′′(s) in the Newton-
Raphson algorithm by its approximate version

e′′(s) ≈ ‖f ′(x + s)‖2 = ‖f ′(x)‖2,

which is in fact independent of sn, and lessens the computational costs.
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In conclusion, the Newton-Raphson scheme can be well approximated by

sn+1 = sn −
e′(sn)

e′′(sn)
= sn +

〈f0(x)− f(x + sn), f ′(x + sn)〉
‖f ′(x)‖2

, (3)

which is more robust since the denominator is guaranteed to be nonzero (unless
the image profile is trivial and featureless, i.e., f(x) ≡ some constant).

The new approximate scheme (3) permits an independent interpretation. Sup-
pose the true jitter t � 1 is small, then a single iteration almost suffices for
accomplishing the shake step. Starting with the initial guess s0 = 0 (since
t � 1), one has

s1 = s0 +
〈f0(x)− f(x + s0), f

′(x + s0)〉
‖f ′(x)‖2

=
〈f0(x)− f(x), f ′(x)〉

‖f ′(x)‖2
. (4)

By Eqn. (2), Taylor expansion leads to

f0(x) ' f(x + t) + n(x) = f(x) + n(x) + tf ′(x) + O(t2).

Therefore,
s1 = t + O(t2).

As previously explained, the error can be further refined to O(t3) if f(x) well
approximates the ideal profile (which is valid after several iterations of the
bake-and-shake algorithm).

2.5 Why Perona-Malik Baking for Robust Shaking

With a help from the shake step in the preceding section, we now explain the
intrinsic advantages of Perona-Malik diffusions over linear isotropic ones for
the bake step.

First, as highlighted before, the main goal of the bake step is to promote
vertical communication among randomly shuffled horizontal slices, so that
their average positioning information is extracted as faithfully as possible.
(This of course comes at the necessary cost of blurring and mollifying the given
image.) Fig. 5 vividly demonstrates the advantage of Perona-Malik baking over
linear-diffusion based baking.

In addition to more efficiently recovering the original positioning information,
Perona-Malik baking also makes the Newton-Raphson shaking more stable and
robust, as manifest in the denominator ‖f ′(x)‖2 in Eqn. (3). With an assistance
from Fig. 6, this can be independently quantified as follows. The top panel
shows a constant (1-D) image signal f(x) and its jittered version f0(x) =
f(x + t) for some fixed positive jitter t. The featureless nature, especially
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(a) ideal imge (b) original (c) anisotropic (d) isotropic
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Fig. 5. (a) The ideal image, (b) the noisy and jittered version u0, (c) the baked
image u by Perona-Malik anisotropic diffusion, (d) the baked image u by a linear
diffusion process. The second row shows their corresponding horizontal profiles for
a typical y. The (red) dashed line denotes the ideal image profile, while the (blue)
solid lines are the individual profiles. Notice that Perona-Malik baking recovers the
original positioning information much more faithfully than linear diffusions.

f
0
(x)=f(x+t): when f is flat,  no clue for jitter t

f
0
(x)=f(x+t): when ||df/dx|| is small,  weak clue for jitter t

f
0
(x)=f(x+t): when f is Heaviside−like,  strong clue for jitter t

f
0
f
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f(x) f
0
(x) 
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t 

Fig. 6. Role of sharp edges for robust dejittering - illustrated via a noiseless 1-D
horizontal slice: f0(x) = f(x + t) with jitter s = t: larger slopes or larger ‖f ′(x)‖
norms lead to more robust jitter estimation.

lack of the edge information, of the signal leaves no jittering clue for the
dejittering. In fact any jitter estimation s works for this example. Notice that
this is an extreme featureless image with ‖f ′‖ = 0. The second signal f(x)
in the middle panel is nonconstant, and the difference between f0(x) and
f(x) gives certain information about the jitter. Consider the error function
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e(s) = ‖f0(x) − f(x + s)‖2, where f0(x) = f(x + t) with t unknown and to
be estimated. For any estimator s in the vicinity of the true jitter t, Taylor
expansion yields

e(s) = ‖f(x + t)− f(x + s)‖2 ≈ ‖f ′(x + t)(t− s)‖2 = ‖f ′(x)‖2|t− s|2.

With ‖f ′(x)‖ weak enough, this formula implies the difficulty in reading the
jittering information from the error function e(s) since it is insensitive to the
positional error |t− s|. Finally, the bottom panel shows a signal f(x) close to
the ideal Heaviside step edge H(x):

H(x) =

 1, x < 0

0, otherwise
.

The error function is given by

e(s) =
∫ ∞

−∞
|H(x + t)−H(x + s)|2dt = |t− s|.

In this ideal case, the jitter information can be directly readable from the error
function!

To conclude, it is desirable for the bake step to be able to preserve sharp edges,
and large gradient information makes the shake step more robust. This makes
Perona-Malik diffusions more appealing than linear ones (see Fig. 5).

3 Numerics and Computational Results

In this section, we first present the numerical details for implementing the
bake-and-shake algorithm, and then demonstrate the performance of our pro-
posed model and algorithm through several generic examples.

3.1 Numerical Details for Implementing Bake and Shake

For the bake equation (1), we take g(|∇u|) = g(p) = 1/
√

p2 + a2 (for some
a > 0) to be the minimal-surface type of diffusivity (see Section 2.3). Let
u(x, y; t) be digitized to u(i∆x, j∆y, n∆t), which for short is simply denoted
by un(i, j). The differentials are then approximated using numerical schemes
inspired by computational fluid dynamics (CFD) [4,20],

un+1 − un

∆t
= ∆x−(

∆x+un√
(∆x+un)2 + (∆m

y un)2 + a2
)+∆y−(

∆y+un√
(∆m

x un)2 + (∆y+un)2 + a2
),
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where, ∆x+u =
u(i + 1, j)− u(i, j)

∆x
and ∆x−u =

u(i, j)− u(i− 1, j)

∆x
denote

the forward and backward finite differences,

∆m
x u =

1

∆x
minmod(u(i + 1, j)− u(i, j), u(i, j)− u(i− 1, j)),

and minmod(a, b) =
sign(a) + sign(b)

2
min(|a|, |b|).

Color images can be treated either as RGB 3-dimensional vectorial func-
tions [7], or as tensor products of different color components as in CB and
HSV nonlinear color models (see, e.g., Chan, Kang, and Shen [8] ). Conse-
quently, the Perona-Malik baking step can be applied either directly to the
RGB vectors or individually to the nonlinear color components. The latter has
been carried out in great details in the work of Chan, Kang, and Shen [8].

For the shake step, we use the Newton-Raphson method (3) with a simple
difference scheme. Let I denote the digitized lattice approximating the real
line R (with the same step size ∆x as in the bake step). For each y ∈ (0, H),

sn+1 = round

(
sn +

(f0 − f(In)) •∆+f(In)

‖∆+f(In)‖2

)
.

Here f0 denotes the noisy and jittered horizontal profile vector, f(In) the
vector on the shifted lattice In = I + sn for the baked profile, and ∆+ the
forward finite difference scheme. The • symbol denotes the ordinary Euclidean
vector inner product, i.e., g(I) • h(I) =

∑
i∈I

g(i)h(i). These formulae easily

extend to color images.

The bake and shake algorithm is implemented iteratively as follows (also see
Fig. 2). The noisy and jittered image u0 is first baked to image u (or denoted
by u0.5 in Fig. 2), which is then employed as a mollified approximation to
the ideal image to estimate the optimal jitter s. The given noisy and jittered
image u0 is then dejittered to u1(x, y) = u0(x−s, y). If s(y) faithfully recovers
the true jitters t(y), u1 would become jitter free and its intensity noise n can
be cleaned up using any classical denoising schemes such as Rudin-Osher-
Fatemi’s [4]. In practice, u1 still contains minor jitters, and the iteration of
the above procedure can further reduce the jittering effect. Our numerical
experiments show that several loops (up to 5 in all our examples) of the bake-
and-shake algorithm suffice to produce satisfactory results:

u0 → u1 → u2 → · · · → u5.
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3.2 Computational Examples

We now show several computational examples to demonstrate the performance
of the bake-and-shake algorithm.

In Fig. 7, we first compare the dejittering performances based on three different
types of baking mechanisms: (a) the Perona-Malik diffusion proposed in this
paper, (b) the linear diffusion model ut = ∆u, as well as (c) the total variation
image restoration model (TV) of Rudin, Osher, and Fatemi [4]:

min
u

{∫
Ω
|∇u|dxdy +

λ

2

∫
Ω
(u− u0)

2dxdy

}
.

Notice that the TV denoising model has been employed as an intermediate
baking or smoothing tool, rather than the dejittering model. Due to the edge-
preservation characteristics shared by both the Perona-Malik diffusion and
TV restoration, the dejittering performances resulting from these two baking
mechanisms are quite comparable, as manifest in Fig. 7. On the other hand,
as expected from earlier sections, baking based on the linear heat diffusion
results in relatively poor dejittering performance.

(a) ideal image (b) jittered

(c) PM (d) TV (e) Heat

Fig. 7. Comparing the dejittering performances of bake-and-shake algorithms using
three different types of baking tools (for a gray-scale image): (a) the ideal image,
(b) the jittered image u0, (c) the dejittered image using Perona-Malik baking, (d)
the dejittered image using TV-restoration baking, (e) the dejittered image using the
ordinary linear heat diffusion as the baking step.

In Fig. 8, we apply the above three baking mechanisms to a standard color
test image. For this example, both the bake and shake steps are applied to
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the RGB vectorial images. And the computational results again confirm the
advantage of the Perona-Malik baking over the linear heat baking for the
bake-and-shake algorithm.

(a) ideal image (b) jittered

(c) PM (d) TV (e) Heat

Fig. 8. Comparing dejittering performances based on three different baking tools as
applied to an RGB vectorial test image: (a) the ideal image, (b) the jittered image u0,
(c) bake and shake by Perona-Malik baking, (d) bake and shake by TV-restoration
baking, and (e) bake and shake by the linear heat baking.

Fig. 9 and Fig. 10 further highlight the dejittering performance of the bake-
and-shake algorithm on RGB color images based on the Perona-Malik baking
mechanism. Notice that in Fig. 9, both the jittering and the intensity noise
are already quite severe. In both examples, although the bake step has been
repeatedly applied, the edges in the final outputs remain remarkably sharp
since the bake step has been employed merely as intermediate messengers or
information extractors.

4 Conclusion and Future Work

In this paper, we have invented a two-step Bake-and-Shake dejittering model
for restoring jittered and noisy video images. The bake step extracts valu-
able positional information of the target ideal image, based upon which the
shake step optimally estimates the individual horizontal jitters. By partition-
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(a) noisy jittered (b) dejittered (c) denoised

Fig. 9. (a) The noisy jittered image u0, (b) direct output from the iterated
bake-and-shake algorithm (see Fig. 2), and (c) when the output is further denoised.

(a) jittered (b) Bake & Shake

Fig. 10. (a) A jittered test image, and (b) the dejittered image by bake and shake.

ing the dejittering task into two separate key components-bake and shake, we
introduce the vast degree of freedom in choosing different mechanisms for the
baking and shaking steps.

Both the theoretical analysis and numerical results confirm the outstand-
ing advantage of baking based on Perona-Malik diffusions over linear heat
diffusions. Combined with the least-square minimization using the Newton-
Raphson iterative scheme, Perona-Malik baking eventually leads to a robust
and efficient shaking for optimal estimation of random horizontal jitters.

Our future work will focus on more complex image structures that are in-
compatible with the jittering or the baking processes. More specifically, we
shall study how to dejitter (a) images without clear edge information such as
generic textures in natural images, and (b) images with thin line structures,
which after the jittering process often only show collections of isolated points
rather than 2-D homogeneous regions of similar pixels. Fig. 11 and 12 and
their captions further clarify these two points separately.
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(a) ideal image (b) jittered (c) Bake & Shake

Fig. 11. Insufficiency of the bake-and-shake algorithm for dijittering pure texture im-
ages: (a) an ideal texture image (roses), (b) the jittered image u0, (c) bake and shake
via Perona-Malik. Since Perona-Malik diffusions are mainly designed for blocky
edges and perform less ideally for statistical textures, the resulting bake-and-shake
algorithm becomes less effective for image dejittering (see the remanent jittering
effect in (c)).

(a) jittered (b) Bake & Shake

Fig. 12. (a) The noisy jittered image u0, and (b) the output of the bake-and-shake
model. Notice how the jittered thin sail spars in the upper portion fail to be dejit-
tered. After random jittering, thin line (or 1-D) structures merely become scattered
points, and any diffusion based baking process (whether linear or nonlinear) cannot
deal with such isolated points.
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