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Abstract

In this paper we propose a variational approach to a path planning

problem in 2 dimensions using a level set framework. After defining an

energy integral over the path, we use gradient flow on the defined energy

and evolve the entire path until a locally optimal steady state is reached.

Unlike typical level set implementations where the interface being tracked

is a codimension-1 set, we allow for paths with positive, varying widths.

Applications of this method extend to robotic motion, tool-path milling,

and arial search patterns for example. Numerical methods and algorithms

are given, and examples are presented.

1 Introduction

The general problem of finding the optimal path through a domain under some
given constraints has multiple applications. From path planning for autonomous
vehicles [23], to computing tool path trajectories [8], to maximizing visibility [5],
there exist wide applications for the general solutions to this problem. Given
that the domain is not homogeneous, i.e. there is an associated cost function
to the path in the domain, the general solution begins to increase rapidly in
complexity.

A specific instance of the general problem is that of finding an optimal-
path map for a known environment. The optimal-path map for a known two-
dimensional terrain is a function ω(x, y) whose values describe how to best
reach the goal from the location (x, y). Optimality in this case could be shortest
path, least visibility from above, largest patrol area, etc. Previous work on true
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optimal-path maps for autonomous robotics have almost always investigated
restricted cases. While a thorough search is performed, it is usually over a finite
set of locations. Searching over an infinite set of locations does not allow the
possibility of reducing the problem to graph search.

Robotic Motion In [23], the problem of constructing optimal-path maps
for two-dimensional polygonal weighted-region domains was investigated for
piecewise-constant solutions. The complexity of the algorithm rendered it in-
compatible for real-time path generation, but when a large amount of planning
time is available (daily routes of a sentry, etc.) it became desirable. In [15] path
planning for robots was studied using level sets where there were objects to be
avoided in the domain. The method of solution was to construct a weighted
distance function over the entire domain and then, from a final position, back
propogate the solution perpendicular to the level sets of the distance function,
resulting in an optimally shortest path. Path planning algorithms for mobile
robots are also described in [17],[2],[16]. Also, in the context of manipulators
there has been path planning research done within a variational framework [24].

Tool Paths Other instances of the general problem arise in the generation of
tool paths for pocket machining. Here, material is milled from a blank, layer by
layer, until the object is machined into a manufactured part. The tool path for
a layer of a pocket is the centerline path along which a tool cuts the material.
Optimal for this problem involves minimal length and minimal curvature of
the path (high curvature induces more wear and tear on the drill). In [1], an
approximate solution to the problem of how to best produce tool paths for
pocket machining was presented. There, the authors solved an elliptic partial
differential equation (PDE) boundary value problem, and used the contours of
that solution to construct a solution. In [8] an extensive, categorized, reference
list is presented of papers related to numerical control tool path generation.
Some of the areas of research are isoparametric paths, non-isoparametric paths,
planar pocketing paths, roughing paths, and space-filling curve based tool paths.

Dynamic Visibility In [27] the framework for studying visibility and its dy-
namics using level sets was established. This included the use of implicit surfaces
to represent visible regions and the introduction of PDEs that govern horizon
and boundary curves. In [5] various variational problems were approached using
the framework established in [27], including single and multiple point visibility
optimization, the effects of weighted spatial regions, and the effects of memory.
In [5] a parameterized path planning algorithm was introduced that treats the
path as a finite union of multiple observers which are evolved so as to maximize
the accumulated visibility along the path. See also [29] for a path planning
algorithm based on visibility.

Related ideas in image processing having to do with active contours and
snakes can be found [14],[3],[11]. These papers introduce curve evolutions re-
sulting from variational frameworks used to segment images. Often these imple-
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mentations involve the maximization of a quantity defined by the image, such
as the norm of the gradient, over a curve, and they often involve regularizing
terms resulting in mean curvature flow when in a level set setting.

Something the above examples have in common that it is not only the path
that is optimized but also the set that the path carves out that must be con-
sidered. For the robot path planning algorithm the width of the set may be
dependent upon the size of the robot. In the tool planning problem it can be
the width of the drill bit. For searching we can consider either the region that
the observer can see to be analogous to the size of the drill bit in the milling
example. A reverse case would be if an eluder did not want to be seen, and then
the size of the region where the eluder can be detected would be analogous to
the drill bit size.

In this paper, we investigate the general problem of finding a “search path”
through a domain where we know some information about where targets may
be located. An agent searching such a domain would want to have a path that
satisfies being shortest with having a high confidence of finding targets. The
searcher can only “see” a finite distance about it at any given point, and this
distance may vary spatially according to local weather conditions, altitude, etc.
Therefore, we wish to generate an optimal path that gives a certain level of
confidence of locating targets which will be determined via the information we
know about the domain.

The remainder of the paper is organized as follows, in the next section,
we formulate the search path problem in a general framework, with general
metrics describing the optimization, and constraints stemming from the search
path problem. Following that, we introduce the level set method, and then our
algorithm. We present simulations of canonical examples demonstrating the
method and conclude with some remarks about the generality of the method.

2 Problem Formulation

The general path planning problem has had many formulations. For a given set
Ω ∈ R

n, we seek a path Γ ∈ R, with the following properties:

1. Optimize some function of Γ (Arclength, Curvature, etc.).

2. Given an a priori distribution, P , on Ω, maximize
∫

SΓ

P (x)dx

where SΓ = {x ∈ Ω : |x − Γ| ≤ c(x)} , where c(x) is the radius of the set
“cut-out” of the domain by the path Γ.

We note that this problem was motivated by the problem of computing
optimal search strategies in the presence of a priori knowledge [18]. The function
P represents any knowledge of the search domain, Ω. Possible choices for the
optimization would include minimal arclength and minimal curvature. Also, we
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note that this encompasses obstacle avoidance when 2 is minimized or the sign
of P is changed.

2.1 Level Set Formulation

The search path Γ will be represented by the 0 level set of a function φ :
Ω → R. Given an initial function φ(t = 0), and an energy E(φ) to be mini-
mized/maximized, we use the method of gradient descent/ascent to arrive at a
PDE of the form

∂φ

∂t
= −/ +

∂E

∂φ
, (1)

where ∂E
∂φ

is taken from the Euler-Lagrange equation. This PDE is then evolved
to steady state resulting in φ obtaining a local minimum. Most of our variational
problems will be nonconvex, so the initial choice of φ will determine the local
minimum in which we finish. The numerical methods for solving (1) will be
discussed later.

2.2 Examples of Energies and PDEs

The energy representing
∫

SΓ

P (x)dx (2)

will always be included in our variational formulation. First we assume φ is a
weighted signed distance function. One way to construct φ is to solve

|∇φ| =
1

R(x)
, (3)

where R(x) > 0, with boundary condition given by {φ(x) = 0|x ∈ Γ} [22],
[19],[25],[28]. In terms of the search problem R ≈ 0 implies that visibility is
reduced to almost nothing, while when R → ∞ visibility becomes large. Given
this assumption, we can see that the set

χ(SΓ) = H(r − φ)H(r + φ), (4)

where χ is the characteristic function, and H is the Heaviside function. Here r
is a constant, and we assume that the information about the radius of visibility
function c(x) has been incorporated into the function R(x).

Thus our integral (2) can be written as
∫

SΓ

P (x)dx =

∫

Ω

H(r − φ)H(r + φ) P (x) dx, (5)

where we have integrated over the entire domain Ω. To maximize this integral
we perform gradient ascent and arrive at the PDE

φt = P (x)[H(r − φ)δ(r + φ) − H(r + φ)δ(r − φ)], (6)
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where δ(y) = H ′(y) denotes the Dirac delta function. Intuitively (6) attempts
to move the ±r level sets away from the 0 level set where P > 0, so that

∫

SΓ

P
becomes larger as time progresses.

Another common energy term to be minimized is the length of Γ. We can
write

|Γ| =

∫

Ω

δ(φ)|∇φ| dx. (7)

Gradient descent yields

∂φ

∂t
= δ(φ)∇ ·

∇φ

|∇φ|
= δ(φ)κ, (8)

where κ is the mean curvature of Γ.
For certain problems such as the tool path problem one may want to control

the magnitude of κ along the path. Energies to be minimized in this case could
be of the form

∫

Ω

δ(φ)g(κ) dx, (9)

where g is a non-negative function of κ such as |κ|p, p > 0. The PDEs resulting
from (9) are fourth order involving second partial derivatives of κ.

In general we will evolve (6) with its right hand side augmented by adding
weighted terms that are found from the other energy minimizations/maximizations
that each particular problem demands. An example would be adding a term
λδ(φ)κ to the right hand side of (6), where λ > 0 can be thought of as a Lagrange
multiplier.

3 Numerical Methods

3.1 Advancement of Time Dependent PDEs

The PDEs found in section 2.2 are generally Hamilton-Jacobi equations. To dis-
cretize them we construct a uniform rectangular grid on Ω. Viscosity solutions
for these types of equations have been studied well [6], [10] and numerical meth-
ods that converge to the viscosity solution have been implemented [7], [20]. We
use these methods to solve our equations. In general they consist of upwind type
spatial discretizations and explicit Runge-Kutta time discretizations. On ∂Ω,
which is the boundary of Ω, we use Neumann boundary conditions: ∂φ/∂n = 0.

Most level set variational problem formulations involve only one level set
of interest, usually the set Γ0 = {x|φ(x) = 0}. Thus the PDEs to be evolved
only involve δ functions that have support localized near Γ0. However, for
our problem, (6) includes δ functions whose support lies near the sets Γ±r =
{x|φ(x) = ±r} when we use a numerical approximation to δ. When (6) is
combined with a Lagrange multiplier term derived from (8), then we have a
PDE with δ functions localized near the places where φ = −r, 0, r. Therefore
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three separate level sets of φ must be evolved, while φ maintains the criterion
that it is a weighted signed distance function satisfying (3) with Γ0 as the
boundary condition.

If we try to simultaneously evolve φ in the different regions near Γ0, Γ±r,
then we see that (3) will not be satisfied. This cannot be quickly repaired by
reinitialization of φ to a signed distance function because it is unclear which
boundary conditions should be used (i.e. Γ0, Γ−r, or Γr) Interesting motion for
our variational problem has occurs near all three level sets, and reinitialization
with only one of the Γz as the boundary condition would disregard motion near
the other two Γw 6=z.

To remedy this problem we propose to evolve φ near one of the Γz , z =
−r, 0, r for a short period of time, then if z = ±r we perform a pseudo-
reinitialization that approximates the solution to (3) with Γz as the boundary
condition (we will explain in a moment what we mean by ‘pseudo-reinitialization’
and why it is necessary), and if z = 0 we perform the usual reinitialization to
a weighted signed distance function solving (3). Once one of the Γz has been
advanced and φ has been reinitialized, we move to another Γz and repeat the
process. So prior to each advancement of a particular Γz we are forcing φ to
approximately or exactly satisfy (3).

In order to avoid the discretization of the δ function we modify the PDEs
by replacing the δ(φ) with |∇φ|. This allows all level sets to move with the
same speed. However, we would still like to maintain the local nature of the
support for the δ function, so we also multiply |∇φ| by a cutoff function, ρ(φ),
as described in [21] with support over points where |φ| < r.

3.1.1 Pseudo-reinitialization

In the method described above, if we were to use true weighted signed distance
reinitialization instead of the pseudo-reinitialization procedure, we would en-
counter problems where the reinitialization with boundary condition Γy would
pick the viscosity solution to (3) and we would lose interesting parts of φ near
Γw 6=y.

An example of this phenomenon is shown in figure 1. Note how on the right
plot Γ0 has not changed location, but Γr has been smoothed as the viscosity
solution to (3) has been found, eliminating the part of Γr containing a cusp.
In both plots Γ0 is a level set of φ that satisfies (3) with boundary condition
given by Γr (which is a condition that φ must satisfy), but one can see that
the area between the two curves in much larger in the left plot, and this area
could be an energy which we would like to maximize. Thus we would like to be
able to maintain cusped areas of the Γz while also requiring that (3) holds with
boundary condition given by Γ0.

The method we use to achieve this is denoted pseudo-reinitialization. For
notational purposes we will assume Γ0 is the boundary condition for reinitial-
ization, as using other Γz for the boundary only require shifts in the signum
function, S. The idea is that instead of using the PDE method of reinitializa-
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Figure 1: Left: Initial contour plot of φ. Dashed line: Γ0. Solid line: Γr. Right:
Contour plot of φ after true reinitialization with Γ0 used as boundary condition,
i.e. solution of (3).

tion to a weighted signed distance function [26] which solves the equation

φt + S(φ)

(

|∇φ| −
1

R(x)

)

= 0, (10)

we instead solve

φt + S(φ)

(

∇φ ·
η

|η|
− |η|

)

= 0, (11)

where η is a static vector field found by taking η = ∇φ prior to starting the
pseudo-reinitialization.

The difference between (10) and (11) is that we predefine the characteristic
flow directions, η/|η|, instead of letting them evolve during the reinitialization,
and we also use |η| instead of 1/R(x) to determine the growth of φ along the
characteristics. As long as φ has not changed too much during an evolution step
near Γ0, then both η/|η| and |η| will be close to the quantities they represent in
(10), which are ∇φ/|∇φ| and 1/R(x), respectively.

The idea behind (11) is that instead of allowing the characteristics to fol-
low a rarefaction that would be found when taking the viscosity solution to
(10), as in figure 2, we instead have them follow paths that they would take if
reinitialization was being done with Γr as the boundary condition and we were
finding the viscosity solution to (10) in that case. Figure 3 shows an example
of the paths the characteristics might take if Γr had a protruding bump. These
paths are quite different than those in the viscosity solution to 2, and could
be thought of as being the characteristic paths of a nonphysical shock in the
solution to (10).

To solve (11) we first choose η. This is done in a Godunov type upwind
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Figure 3: Characteristics in pseudo-reinitialization.
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Figure 4: Left: Two contour plots of φ at different times. Solid lines are initial
contours: Γ0 (leftmost curve running from top to bottom), Γr (rightmost curve
running from top to bottom). Dashed lines are contours of φ after Γ0 has been
evolved a short period of time (it has moved slightly to the left), and then true
reinitialization has been performed with Γ0 used as boundary condition. Right:
Similar contour plots of φ, except that the dashed lines now have been calculated
using pseudo-reinitialization with Γ0 as boundary condition.

manner. For each gridpoint xi,j we make the following choices:

η1 = maxmod(max(D−
x φi,j , 0), min(D+

x φi,j , 0))/dx,

η2 = maxmod(max(D−
y φi,j , 0), min(D+

y φi,j , 0))/dy, (12)

if S(φi,j) ≥ 0, and

η1 = maxmod(min(D−
x φi,j , 0), max(D+

x φi,j , 0))/dx,

η2 = maxmod(min(D−
y φi,j , 0), max(D+

y φi,j , 0))/dy, (13)

if S(φi,j) < 0, where

maxmod(x, y) =

{

x if |x| ≥ |y|,
y otherwise.

Here D±
x φi,j = ±(φi±1,j − φi,j), and D±

y φi,j = ±(φi,j±1 − φi,j). We note that
more accurate W/ENO methods can also be used to construct η.

Once η has been chosen we can advance (11) using upwinding or W/ENO
methods [20],[13] in space and TVD Runge-Kutta methods [20] in time as it is
basically a linear advection equation with a forcing term.

Figure 4 shows an example of how pseudo-reinitialization retains cusped
structures. One can imagine more drastic cases where the point of the cusped
region expands to form a larger inlet region which would be removed during
typical reinitialization.
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3.2 Topology Preservation

For certain problems such as searching it makes physical sense that the search
path Γ0 enters Ω from one point a ∈ ∂Ω, and leaves through one point b ∈ ∂Ω
while never changing topology.

When using level set methods, one of the advantages over particle tracking
methods is the ability to change topology without user intervention or adjust-
ments to the algorithms being used. However, in our case we may wish to avoid
these topological changes. If topology preservation is required for a particular
problem it is implemented in the way outlined in [12].

This method of topology preservation in applicable only to uniform rectan-
gular grids and relies on the well studied field of digital topology. Its implemen-
tation is local in nature and thus does not add significant complexity to the run
time of the algorithm. It consists of a check of the signs of all the neighbors xk,l

of a point xi,j with max(|k− i|, |l− j|) ≤ 1, along with their connectivities, after
all φi,j have been advanced a timestep. If a topological change would occur in
Γ0 at xi,j if φi,j was allowed to change sign, then this sign change is prohibited.
We refer the reader to [12] for more details on implementation and references
concerning this technique.

We also note that in order to keep the points where Γ0 intersects the bound-
ary fixed, we imposed Dirichlet boundary conditions φ = 0 there. If these points
do not lie on the uniform grid then we can modify the grid slightly near them
so that they are included in the discretization of Ω. If this is done then a local
method for advancing the solution on an unstructured grid could be used near
the points.

3.3 Outline of Evolution Procedure

In this section we outline the evolution procedure. We give a listing of the steps
taken during one iteration. The evolution procedure is repeated until steady
state is reached.

In certain steps of the computational procedure we shift φ by adding or sub-
tracting r at all points so that equations such as (11) involving signum functions
can be solved similarly no matter when they are called. This is explained in this
way to emphasize that coding can be done using a smaller number of functions
that do identical jobs on shifted versions of the data. When this is done we
denote the shifted version of φ as φ ± r. It is assumed that after the step in
question is completed φ is then shifted back the opposite way by ∓r.

The evolution loop advancing the solution from time t1 to t1 + dt is given
below. We illustrate the steps with an example PDE of the form:

φt = P (x)[H(r − φ)δ(r + φ) − H(r + φ)δ(r − φ)] + µκδ(φ), (14)

using the substitutions of δ(φ) functions by |∇φ|ρ(φ), which is how they are
implemented numerically.

1. Find η based on φ + r using (12), (13).
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2. Evolve from time t1 to t1 +dt the points near where φ = −r, i.e. evolve all
PDE terms with δ(r + φ) in them, e.g. φt = P (x) H(r − φ)|∇φ|ρ(r + φ).

3. Pseudo-reinitialize using (11) with φ + r.

4. Find η based on φ − r using (12), (13).

5. Evolve from time t1 to t1 + dt the points near where φ = r, i.e. evolve all
PDE terms with δ(r − φ) in them, e.g. φt = P (x) H(r + φ)|∇φ|ρ(r − φ).

6. Pseudo-reinitialize using (11) with φ − r.

7. Evolve from time t1 to t1 + dt the points near where φ = 0, i.e. evolve all
PDE terms with the δ(φ) in them, e.g. φt = µκ|∇φ|ρ(φ).

8. Reinitialize to a weighted signed distance function from the 0 level set
using (10).

9. Go to step 1.

4 Numerical Simulations

In this section we present some numerical simulations. The PDE we evolve to
steady state is

φt = P (x)[H(r − φ)δ(r + φ) − H(r + φ)δ(r − φ)] + µκδ(φ), (15)

using the methods mentioned above. The domain Ω is [−1, 1]2 for all problems,
discretized in a uniform rectangular grid with dx = dy = 1/80. As mentioned
above Neumann BCs ∂φ/∂n = 0, are used. Topology preservation is used in
all figures except for figure 12. After replacing the δ functions with |∇φ|ρ(φ) a
conservative estimate on the CFL condition for the problem is

dt max

{

|P |

dx
+

|P |

dy
,

2µ

dx2
+

2µ

dy2

}

≤ 1, (16)

where we use the max applied to the P and κ terms individually instead of to
their sum because we are splitting the evolution procedure.

For the individual examples we do not explicitly write the initial conditions,
but rather shown them in contour plots. The way they are constructed is by
determining an initial contour Γ0(t = 0) and finding an arbitrary function that
takes Γ0(t = 0) as its 0 level set, and then running reinitialization over the entire
domain Ω with Γ0(t = 0) as the boundary condition.

For each example we show the initial and steady state solutions as well as
a plot of the energy over time. This energy function, defined by taking (5) −µ
times (7), is what we hope to maximize. The δ and Heaviside functions used are
the compactly supported ones given in [4], with support parameter ǫ = 2dx. It
should be noted that a more accurate numerical construction of these singular
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Figure 5: Initial, steady state and energy vs. timesteps plots. Constant visibility
function R(x).
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Figure 6: Initial, steady state and energy vs. timesteps plots. Constant visibility
function R(x).

functions can be found in [9] should a more exact measure of the energy be
needed.

In all examples the path boundary level sets are r = ±0.25.
In figure 5 we show the initial, steady state and energy plots for an example

with constant R(x) = 1. The circular objects have P (x) = 40, while P (x) = 0
otherwise. The regularization coefficient µ = 0.5.

In figure 6 we show the initial, steady state and energy plots for an example
with constant R(x) = 1, but this time we use a different initial condition. The
circular objects have P (x) = 40, while P (x) = 0 otherwise. The regularization
coefficient µ = 1.

In figure 7 we show the initial, steady state and energy plots for an example
with varying R(x). In the lower half of the plane R(x) = 0.6, and in the upper
half, R(x) = 1. The circular objects have P (x) = 40, while P (x) = 0 otherwise.
The regularization coefficient µ = 0.5.

In figure 8 we show the initial, steady state and energy plots for an example
where P (x) is nonzero in a larger region of interest. Within a circle of radius
0.9 we set P (x) = 20 + 20 G(x, y), where G(x, y) is a compactly supported
approximation to a δ function with radius of support 0.9, see figure 9. In figure
8 the boundary of the region with nonzero support is shown. In this example
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Figure 7: Initial, steady state and energy vs. timesteps plots. Varying visibility
function R(x).
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Figure 8: Initial, steady state and energy vs. timesteps plots. Gaussian type
P (x).

R(x) = 0.5 in the entire domain, and µ = 0.5. In this example the steady state
solution is the simple back and forth sweeping pattern.

In figure 10 we show the initial, steady state and energy plots for an example
where object avoidance is the objective. Here P (x) = −40 in the circular objects
and 0 elsewhere. In this example R(x) = 0.5 in the entire domain, and µ = 1.

In figure 11 we show what can happen if the initial conditions are too close to
a local minimum that is far form the global minimum. The problem parameters
are identical to those of figure 10, but a different initial condition is imposed.

In figure 12 we show the initial, intermediate, steady state and energy plots
for an example where topology change is allowed. Here P (x) = 40 in the circular
objects and P (x) = −40 elsewhere. In this example R(x) = 0.5 in the entire
domain, and µ = 0.02.

Note how concentric ellipses have formed within each of the elliptical regions
where P > 0.
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Figure 10: Initial, steady state and energy vs. timesteps plots for object avoid-
ance. Solution converges to global minimum.

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
−1

−0.5

0

0.5

1

20 40 60 80
−14

−12

−10

−8

−6

−4

Figure 11: Initial, steady state and energy vs. timesteps plots for object avoid-
ance. Solution converges to local minimum.
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5 Conclusion

We have presented a level set based algorithm for solving a variational approach
to path planning. Some key features of this algorithm are the energy integrals
used to define the search criteria, the splitting technique used to advance the
PDEs, and the pseudo-reinitialization. The number of timesteps needed to
converge to steady state are on the order of hundreds, and for 2 dimensional
problems the runtime can be made close to real time for applications.

The energy integrals used are very basic and encompass general properties
that are desirable in many path planning problems. However, they are not ex-
haustive and more complicated energies based on functionals of curvature and
other path properties can be constructed. Solving some of these types of varia-
tional formulations would be straightforward, but there are definite challenges
ahead in this area.

An analytic proof of the numerical convergence of the splitting and pseudo-
reinitialization techniques to a true maximization of the energy is also needed.
While these techniques give quantitative results that indicate energy maximiza-
tion, it would be useful to have a better understanding of their numerical prop-
erties.

Extensions to 3 dimensions would also be useful, but in 3d the path Γ0 is a
codimension-2 set and therefore either requires the use of 2 level set functions,
or a new way of being tracked. Also, the splitting scheme in 3d may become
more complicated.

Some other problems which we have not approached but are feasible for
future research are: multiple non-intersecting paths, time dependent parameters
such as R, P, µ, paths passing through multiple prescribed points, and self-
intersecting paths. Level set motion with interfaces having positive width may
also have applications in image processing, such as segmentation of thin objects,
and also in areas of physics where the dynamics may demand that an interfacial
width take nonzero measure.
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