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Abstract. We design a class of Weighted Power-ENO (Essentially Non Oscillatory) schemes to

approximate the viscosity solution of Hamilton-Jacobi equations. The essential idea of the Power-

ENO scheme is to apply an extended class of limiters to the classical third order ENO schemes to

improve algorithmic behaviors near discontinuities. Then a weighting strategy based on appropriate

smoothness indicators lifts the accuracy of schemes to fifth order accuracy. Numerical experiments

demonstrate accuracy and robustness of the new schemes.
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1. Introduction. We consider the initial value problem for the Hamilton Jacobi

equation

φt + H(x, φ,∇φ) = 0, φ(x, 0) = φ0(x), x ∈ Rd, t > 0,(1.1)

where H is a non-decreasing function of φ.

Such Hamilton-Jacobi (HJ) equations appear in many applications, for example,

geometrical optics, optimal control, differential games, material sciences and calcu-

lus of variations. Therefore, it is essential to develop efficient, high order accurate

numerical methods to solve such equations.

Theoretically, the generalized weak solution, so-called viscosity solution, exists, is

unique and depends on the initial data continuously [7, 2, 5]. Computationally, such a

viscosity solution can be approximated by monotone schemes [8, 5]. Since monotone

schemes are at most first order accurate for approximating viscosity solutions, a lot

of efforts were devoted to designing efficient, highly accurate numerical schemes for

such equations; see [16, 17, 9, 1, 12, 14, 2, 22, 3, 6, 4, 18] and references therein. In

this paper we design a class of new schemes for such equations based on Weighted
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Power-ENO (“Essentially Non-Oscillatory”) schemes, which is formally fifth order

accurate.

The ENO schemes were originally proposed for hyperbolic conservation laws by

Harten, Engquist, Osher and Chakravathy [11]. Later the schemes were adapted

to solve Hamilton-Jacobi equations by Osher and Sethian [16], and Osher and Shu

[17]. Liu, Osher and Chan [15] proposed the Weighted ENO schemes to overcome

some shortcomings of ENO schemes, such as poor parallelizability. Afterwards, Jiang

and Shu [13] realized that the weighting strategy may yield other advantages besides

parallelizability, such as high order accuracy and stability. Moreover, Jiang and Peng

[12] extended such strategy to design WENO schemes for Hamilton-Jacobi equations.

Since then, such weighting strategy has been used successfully in designing high order

schemes for Hamilton-Jacobi equations: Weighted central ENO schemes [3], Hermite

WENO schemes [18], high order WENO schemes on unstructured meshes [22]. In

this work we propose yet another weighted method for Hamilton-Jacobi equations,

the so-called Weighted Power-ENO schemes.

The Weighted Power-ENO schemes were originally developed by Serna and Mar-

quina [19] for hyperbolic conservation laws. The essential idea of the Power-ENO

scheme is to apply an extended class of limiters on second order differences to the clas-

sical third order ENO schemes to improve algorithmic behaviors near discontinuities.

Then a weighting strategy based on appropriate smoothness indicators [13] improves

the accuracy of the scheme to fifth order accuracy. Since there exist some well known

relations between HJ equations and conservation laws, we adapt such Weighted Pow-

erENO schemes to HJ equations. But since HJ equations are not conservative, we

are also able to design a new scheme specifically for HJ equations, and this scheme is

not appropriate for conservation laws. Comparing to the standard WENO fifth order

scheme, the resulting scheme enjoys similar overhead and has much better capability

of resolving viscosity solutions to higher order accuracy.

The paper is organized as follows. In Section 2, we present some monotone

schemes and derive Weighted Power-ENO schemes. In Section 3, we give extensive

numerical examples to demonstrate the accuracy of the new schemes. We conclude

the paper in Section 4.
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2. Numerical Schemes.

2.1. Monotone Schemes. We restrict our discussion to the two-dimensional

case of problem (1.1):

φt + H(x, y, φ, φx, φy) = 0, φ(x, y, 0) = φ0(x, y), t > 0.(2.1)

Let (xj , yk, tn) be a uniform discretization of R2 × [0, T ] with mesh sizes ∆x, ∆y

and ∆t. φn
j,k denotes a numerical approximation to the viscosity solution of equation

(2.1),

φ(xj , yk, tn) = φ(j∆x, k∆y, n∆t).(2.2)

In the following displays the dependence on x, y and φ has been suppressed for

the sake of clarity. We consider a first order monotone scheme,

φn+1
j,k = φn

j,k − ∆t g
(∆x

−φn
j,k

∆x
,
∆x

+φn
j,k

∆x
,
∆y

−φn
j,k

∆y
,
∆y

+φn
j,k

∆y

)

,(2.3)

where g is a Lipschitz continuous, consistent and monotone flux. Here consistency

with H means that g(u, u, v, v) = H(u, v), and monotonicity of g means that g is non

increasing in its second and fourth arguments and non decreasing in the other two;

∆x
−φn

j,k = φn
j,k − φn

j−1,k ; ∆x
+φn

j,k = φn
j+1,k − φn

j,k;(2.4)

∆y
−φn

j,k = φn
j,k − φn

j,k−1 ∆y
+φn

j,k = φn
j,k+1 − φn

j,k .(2.5)

We use the method of lines to integrate the HJ equation in time with an explicit

TVD Runge-Kutta scheme [20, 21]. We may choose different monotone fluxes as the

basis for first order schemes [16, 17]. In the numerical examples, we have used the

following three monotone fluxes.

The monotone Lax-Friedrichs flux is defined by:

gLF (u−, u+, v−, v+) = H
(u− + u+

2
,
v− + v+

2

)

− 1

2
α1(u

+ − u−) − 1

2
α2(v

+ − v−),

where, for a ≤ u ≤ b and c ≤ v ≤ d, α1 = max |H1(u, v)| and α2 = max|H2(u, v)|,

Hj(u, v) being the partial derivative of H with respect to the jth argument.
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The Godunov flux reads as follows [17]:

gG1(u−, u+, v−, v+) = extv∈I(v−,v+) extv∈I(u−,u+) H(u, v),

where I(a, b) = [min(a, b), max(a, b)], and

extu∈I(a,b) =



















mina≤u≤b a ≤ b,

minb≤u≤a a > b.

When H(u, v) = h(u2, v2), such that h1 ·h2 > 0, where hj is the partial derivative

of h with respect to the jth argument, we use the Osher-Sethian flux [16]:

gG2(u−, u+, v−, v+) =



















h([max((u−)+, (u+)−)]2, [max((v−)+, (v+)−)]2) h1 ≥ 0,

h([max((u−)−, (u+)+)]2, [max((v−)−, (v+)+)]2) otherwise,

where (a)+ = max(a, 0) and (a)− = −min(a, 0).

To obtain formal higher order accuracy for HJ equations, the strategy is to first

approximate spatial derivatives with higher order finite differences, insert them into

monotone fluxes, and use higher order TVD Runge-Kutta time stepping to march in

time.

2.2. Weighted PowerENO Methods. The classical third order ENO scheme

on a uniform mesh uses an adaptive procedure to choose one three-point stencil among

three three-point candidate stencils. Since such a three-point stencil uniquely deter-

mines a parabola, the ENO strategy boils down to using only one parabola among

three available parabolas. The Power-ENO was designed by incorporating a new class

of limiters into the classical third order ENO schemes. The limiters in the classical

ENO schemes are replaced by a class of weaker limiters, so-called the powerp limiters;

then the new limiters are applied to neighboring second order differences so that more

information of fine scales is retained.

A carefully designed convex combination of the three candidate parabolas gives

rise to the Weighted Power-ENO method; the scheme was applied to the hyperbolic

conservation laws [19] and demonstrated to have better capability to resolve discon-

tinuities in solution.
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To obtain better behavior near discontinuities of the solution gradient, we adapt

the Weighted Power-ENO method to tackle the HJ equations. In the following we first

describe power limiters; then we detail the fifth order Weighted Power-ENO schemes.

Let x > 0 and y > 0 be positive numbers. For a natural number p, the power-p

mean, powerp(x, y), was defined in [19]:

powerp(x, y) =
(x + y)

2

(

1 −
∣

∣

∣

∣

x − y

x + y

∣

∣

∣

∣

p)

.(2.6)

It is easy to verify that the following inequalities hold for any x > 0 and y > 0:

min(x, y) ≤ powerp(x, y) ≤ powerq(x, y) ≤ x + y

2

when 0 < p < q. Moreover,

lim
p→∞

powerp(x, y) =
x + y

2
:= power∞(x, y).(2.7)

Since the reconstruction procedure for the multi-dimensional HJ equations that we

are going to use is dimension-by-dimension, it suffices to consider the one-dimensional

case of the HJ equation

φt + H(φx) = 0.(2.8)

We first compute forward differences,

zj+ 1
2

=
∆x

+φn
j

∆x
,(2.9)

from discrete point values, φ = φ(xj), located at nodes xj . Next we associate

three polynomials with each interval Ij = [xj , xj+1]. We point out that first or-

der approximations of u+ and u− at the node xj are u+
j = u+(xj) = zj+ 1

2
and

u−
j = u−(xj) = zj− 1

2
.

Next we introduce the following notation for the differences:

dj = zj+ 1
2
− zj− 1

2
,(2.10)

dj+ 1
2

=
dj + dj+1

2
,(2.11)

Dj+ 1
2

= dj+1 − dj .(2.12)
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Then the Weighted PowerENO methods are based on a convex combination of

the following three candidate parabolas associated with Ij :

pP
j (x) = zj+ 1

2
− Pj

24
+

x − xj+ 1
2

∆x

[

dj +
Pj

2
+

Pj

2

(

x − xj+ 1
2

∆x

)]

,(2.13)

pj+ 1
2
(x) = zj+ 1

2
−

Dj+ 1
2

24
+

x − xj+ 1
2

∆x

[

dj+ 1
2

+
Dj+ 1

2

2

(

x − xj+ 1
2

∆x

)]

,(2.14)

pP
j+1(x) = zj+ 1

2
− Pj+1

24
+

x − xj+ 1
2

∆x

[

dj+1 −
Pj+1

2
+

Pj+1

2

(

x − xj+ 1
2

∆x

)]

,(2.15)

where Pj := powermodp(Dj− 1
2
, Dj+ 1

2
). Here powermodp(x, y) = (sign(x)+sign(y))

2 powerp(|x|, |y|).

At x = xj , we have

pP
j (xj) = zj+ 1

2
− 1

2
dj −

1

6
Pj ,(2.16)

pj+ 1
2
(xj) = zj+ 1

2
− 1

2
dj+ 1

2
− 1

6
Dj+ 1

2
,(2.17)

pP
j+1(xj) = zj+ 1

2
− 1

2
dj+1 +

1

3
Pj+1.(2.18)

The convex combination to obtain optimal accuracy for u+(xj) at the left interface

of Ij is

u+(xj) = w0 · pP
j (xj) + w1 · pj+ 1

2
(xj) + w2 · pP

j+1(xj),(2.19)

where

wk =
αk

α0 + α1 + α2
(2.20)

for k = 0, 1, 2, and

αk =
Ck

(ε + ISk)2
.(2.21)

Here C0 = 0.6, C1 = 0.2 and C2 = 0.2 are the optimal weights, and the smoothness

indicators are

IS0 =
13

12
(Pj)

2
+

1

4

(

2zj+ 1
2
− 2zj− 1

2
+ Pj

)2

,(2.22)
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IS1 =
13

12

(

zj− 1
2
− 2zj+ 1

2
+ zj+ 3

2

)2

+
1

4

(

zj− 1
2
− zj+ 3

2

)2

,(2.23)

IS2 =
13

12
(Pj+1)

2
+

1

4

(

2zj+ 3
2
− 2zj+ 1

2
− Pj+1

)2

,(2.24)

where P is the powereno limiter computed for the two neighboring second-order dif-

ferences. To obtain the above smoothness indicators, we have used the L2-norm of

the derivatives of the polynomials involved so that the optimal degree of accuracy can

be achieved [13].

A similar formula for u−(xj) is obtained from the polynomials associated with

Ij−1,

u−(xj) = w0 · pP
j−1(xj) + w1 · pj− 1

2
(xj) + w2 · pP

j (xj)(2.25)

with C0 = 0.2, C1 = 0.2 and C2 = 0.6 taken as the optimal weights in the formulas

(2.20) and (2.21).

In particular, the three parabolas evaluated at the right interface of Ij−1 are,

pP
j−1(xj) = zj− 1

2
+

1

2
dj−1 +

1

3
Pj−1,(2.26)

pj− 1
2
(xj) = zj− 1

2
+

1

2
dj− 1

2
+

1

12
Dj− 1

2
,(2.27)

pP
j (xj) = zj− 1

2
+

1

2
dj −

1

6
Pj .(2.28)

The resulting method is a fifth order accurate Weighted Power ENO method for

p ≥ 3 as shown in [19]. The optimal value of p to get fifth order accuracy for the

approximation of hyperbolic conservation laws is p = 3 as shown in [19]. Since HJ

equations are non conservative and their solutions do not develop jump discontinuities,

we are able to design a new scheme specifically for HJ equations and such a scheme is

not appropriate for conservation laws. To this end we use the weakest possible limiter

in the power limiter class, that is, the Power∞ mean, to define the Weighted Power∞

ENO method.

Moreover, simpler expressions for the three parabolas in terms of zj ’s are obtained

when the Power∞ mean is invoked:

pP
j−1(xj) =

1

6
zj− 5

2
− 2

3
zj− 3

2
+

4

3
zj− 1

2
+

1

6
zj+ 1

2
,
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pj− 1
2
(xj) = −1

6
zj− 3

2
+

5

6
zj− 1

2
+

1

3
zj+ 1

2
,

pP
j (xj) = − 1

12
zj− 3

2
+

7

12
zj− 1

2
+

7

12
zj+ 1

2
− 1

12
zj+ 3

2
.

In this case, the corresponding smoothness indicators are,

IS0 =
13

48

(

zj− 5
2
− zj− 3

2
− zj− 1

2
+ zj+ 1

2

)2

+
1

4

(

1

2
zj− 5

2
− 5

2
zj− 3

2
+

3

2
zj− 1

2
+

1

2
zj+ 1

2

)2

,

IS1 =
13

12

(

zj− 1
2
− 2zj+ 1

2
+ zj+ 3

2

)2

+
1

4

(

zj− 1
2
− zj+ 3

2

)2

,

IS2 =
13

48

(

zj− 3
2
− zj− 1

2
− zj+ 1

2
+ zj+ 3

2

)2

+
1

4

(

1

2
zj− 3

2
− 5

2
zj− 1

2
+

3

2
zj+ 1

2
+

1

2
zj+ 3

2

)2

.

The Weighted Power ENO method proposed in [19] is a fifth order accurate recon-

struction procedure suitable for the approximation of hyperbolic conservation laws,

since it satisfies the “local total variation bounded property (LTVB)”, as shown in

[19]. This property is important for a reconstruction method to approximate piecewise

smooth functions with jump discontinuities.

A limiter is designed to ignore the non-smooth information of discontinuities so

that the total variation at jump discontinuities is diminished. However, when the

solution is smooth in some region, the limiter also ignores smooth information from

neighboring cells such that the loss of accuracy occurs in such smooth regions. Such a

drawback is shared by both WENO5 and WPowerENO5 since the coefficients of the

convex combination for the three different parabolas may change abruptly, and the

resulting method degenerates to third order accuracy. However, the above Weighted

Power∞ ENO method does not suffer from such a drawback because the Power∞ mean

is an arithmetic mean, and the resulting method makes use of smoothness information

from neighboring cells. Since it is not LTVB, the Weighted Power∞ ENO method is

not appropriate for the approximation of hyperbolic conservation laws. However, this

method is useful for approximation of viscosity solutions to Hamilton-Jacobi equations

because viscosity solutions are continuous.

As shown in Theorem 1 of [19], Weighted Power∞ ENO method is a fifth order

accurate method with the smallest local truncation errors among all Weighted Power

ENO methods of fifth order accuracy. The main advantage of the WPowerENO is
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that it is more centered (local) since the lateral parabolas use information of the

central second order difference in contrast to the classical ENO methods that ignore

such information. In addition, Weighted Power∞ ENO is the most centered of all the

WPowerENO methods.

3. Numerical experiments. We apply WENO5, Weighted PowerENO5 with

p=3, and Weighted Power∞ENO5 to a set of model problems.

3.1. Example 1. We consider

φt + H(φx) = 0, −1 ≤ x ≤ 1, t > 0(3.1)

φ(x, 0) = − cos(πx), −1 ≤ x ≤ 1(3.2)

with a convex flux H , H(u) = (u+1)2

2 , and a non-convex flux H , H(u) = − cos(u+1).

We solve both initial value problems up to two different times t = t1 = 0.05 and

t = t2 = 0.16. The solution is smooth up to t = t1, and its derivative is discontinuous

at t = t2 in both cases.

In Tables 3.1, 3.2, 3.3 and 3.4, we display the L∞ and L1 errors of the schemes

under study. At t = t2, the errors are computed at a distance 0.1 away from dis-

continuities in the derivative of the solution. For time stepping in the three schemes,

we have used third order TVD Runge-Kutta schemes [17] by taking ∆t ≈ ∆x
5
3 to

realize fifth order in time. At t1 the smallest L∞-errors are reached by Weighted

Power∞ENO5 method; at t2 this method has the largest L∞-errors (due to the pres-

ence of discontinuities) among the three methods. We notice that fifth order accuracy

in smooth regions is achieved in all the cases.

3.2. Example 2. We solve the linear equation φt + φx = 0, φ(x, 0) = f(x −

0.5), −1 ≤ x ≤ 1 with periodic boundary conditions.

We choose f(x) to be a primitive of the Harten function which is discontinuous

[10]:

f(x) = −(

√
3

2
+

9

2
+

2π

3
)(x+1)+



































2 cos( 3πx2

2 ) −
√

3, −1 ≤ x ≤ − 1
3 ;

3/2 + 3 cos(2πx), − 1
3 ≤ x ≤ 0;

15/2− 3 cos(2πx), 0 ≤ x ≤ 1
3 ;

(28 + 4π + cos(3πx))/3 + 6π(x2 − x), 1
3 ≤ x ≤ 1.
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Table 3.1

H(u) =
(u+1)2

2
at t = 0.05

Scheme N L∞ error L∞ order L1 error L1 order

40 0.16E-04 - 0.50E-04 -

WENO-GODUNOV 80 0.76E-06 4.45 0.21E-05 4.59

160 0.30E-07 4.66 0.88E-07 4.55

40 0.56E-04 - 0.76E-04 -

WPowerENO-GODUNOV 80 0.20E-05 4.81 0.29E-05 4.70

160 0.73E-07 4.77 0.11E-06 4.75

40 0.53E-05 - 0.15E-04 -

WPower∞ ENO-GODUNOV 80 0.20E-06 4.71 0.60E-06 4.61

160 0.96E-08 4.39 0.25E-07 4.63

Table 3.2

H(u) =
(u+1)2

2
at t = 0.16

Scheme N L∞ error L∞ order L1 error L1 order

40 0.31E-03 - 0.38E-03 -

WENO-GODUNOV 80 0.86E-05 5.17 0.13E-04 4.87

160 0.14E-06 5.87 0.26E-06 5.60

320 0.47E-08 4.96 0.69E-08 5.28

40 0.17E-03 - 0.37E-03 -

WPowerENO-GODUNOV 80 0.13E-04 3.68 0.25E-04 3.88

160 0.21E-06 6.04 0.46E-06 5.76

320 0.22E-08 6.55 0.61E-08 6.24

40 0.25E-02 - 0.50E-02 -

WPower∞ENO-GODUNOV 80 0.44E-03 2.52 0.52E-03 3.26

160 0.24E-04 4.20 0.24E-04 4.41

320 0.42E-06 5.86 0.43E-06 5.84

The results computed with 100 grid points and CFL= 0.6 at times t=2, 8, 16 and

32 are shown in Figure 3.1. We observe that as time increases all the schemes smooth

out the corners. However, both Weighted PowerENO5 and Weighted Power∞ENO5

methods perform better than the classical WENO5 at the corners in terms of capturing

sharp transitions. Moreover, the plots also indicate that the Weighted Power∞ENO5

method outperforms the other two at those corners.
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Fig. 3.1. Comparisons. Left column: WENO5 (‘∗’) and WPowerENO5 (‘+’). Central column:

WENO5 (‘∗’) and WPower∞ENO5 (‘o’). Right column: WPowerENO5 (‘+’) and WPower∞ENO5

(‘o’).
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Table 3.3

H(u) = − cos(u + 1) at t = 0.05

Scheme N L∞ error L∞ order L1 error L1 order

40 0.47E-04 - 0.13E-03 -

WENO-GODUNOV 80 0.31E-05 3.89 0.65E-05 4.28

160 0.14E-06 4.52 0.27E-06 4.60

40 0.67E-04 - 0.15E-03 -

WPowerENO-GODUNOV 80 0.84E-05 3.05 0.13E-04 3.48

160 0.73E-06 3.53 0.10E-05 3.73

40 0.30E-04 - 0.99E-04 -

WPower∞ ENO-GODUNOV 80 0.21E-05 3.87 0.47E-05 4.41

160 0.91E-07 4.50 0.19E-06 4.60

Table 3.4

H(u) = − cos(u + 1) at t = 0.16

Scheme N L∞ error L∞ order L1 error L1 order

40 0.16E-03 - 0.31E-03 -

WENO-GODUNOV 80 0.15E-04 3.41 0.31E-04 3.29

160 0.71E-06 4.43 0.12E-05 4.76

320 0.21E-07 5.07 0.35E-07 5.04

40 0.12E-03 - 0.28E-03 -

WPowerENO-GODUNOV 80 0.11E-04 3.43 0.19E-04 3.88

160 0.12E-05 3.13 0.13E-05 3.89

320 0.22E-07 5.78 0.32E-07 5.33

40 0.20E-03 - 0.59E-03 -

WPower∞ENO-GODUNOV 80 0.60E-04 1.75 0.70E-04 3.10

160 0.32E-05 4.24 0.34E-05 4.36

320 0.44E-07 6.16 0.52E-07 6.03

3.3. Example 3. We solve a 2D nonconvex Riemann problem,

φt + sin(φx + φy) = 0, φ(x, y, 0) = π(|y| − |x|).(3.3)

We evolve until time t = 1 with a grid of 40× 40 points using WENO, WPowerENO

and WPower∞ENO schemes based on the flux gG1 .

All the schemes converge to the viscosity solution. However, there are some

differences in the maximum and minimum values reached by the three schemes as
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shown in Table 3.5. We observe that the WPower∞ENO scheme has sharper resolution

of discontinuities in derivatives than both WENO and WPowerENO schemes do. We

display the results at t = 1 in Figure 3.2.

Table 3.5

Scheme maximum minimum

WENO5 2.3960 -2.4145

WPowerENO 2.4081 -2.4953

WPower∞ENO 2.8358 -2.6634
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Fig. 3.2. Top left, WENO. Top right, WPowerENO. Bottom, WPower∞ENO
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3.4. Example 4. We consider a problem related to optimal control [17]:

φt − (sin y)φx + (sin x + sign(φy))φy − 1

2
sin2y − (1 − cosx) = 0(3.4)

with the initial data φ(x, y, 0) = 0 in the interval [−π, π] × [−π, π]. We use a grid of

40× 40 with periodic boundary conditions.

We compute the solution up to t=1 for WENO, WPowerENO and WPower∞ENO

based on the Lax-Friedrichs scheme and the third order TVD Runge-Kutta scheme.

We display the results at t=1 in Figure 3.3. We observe that sharper resolution in

discontinuities of first derivatives is achieved by WPower∞ENO.
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Fig. 3.3. Top left, WENO. Top right, WPowerENO. Bottom, WPower∞ENO

3.5. Example 5. Consider the “level set reinitialization” equation

φt + sign(φ0)
[√

φ2
x + φ2

y − 1
]

= 0, φ(x, y, 0) = φ0(x, y).(3.5)
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We choose φ0 to be the distance function to the circle centered at the origin with

radius 1/2, plus some perturbation in radial and angular directions near the circle:

φ1
0(x, y) =







d + δ, |d| ≤ ε;

d, otherwise;
(3.6)

and

φ2
0(x, y) =







d + 2δ, |d| ≤ ε;

d, otherwise,
(3.7)

where d =
√

x2 + y2 − 0.5, θ = tan−1( y

|x|), ε = 0.2 and δ = ε
16π

sin
(

4πd sin 5θ
ε

)

. We

use φ0√
φ0+(∆x)2

to approximate sign(φ0).

We perform the computation using the Osher-Sethian flux gG2 , which is simpler

than the general one gG1 , together with the third order TVD RK stepping in time

for the three schemes. We evolve in time using a grid of 100×100 points and a CFL

number of 0.6.

We compute φ up to different times and compute the mean curvature K, K ≡

∇ · ∇φ

|∇φ| of the level set φ contours, by using central differences. As the regularization

for the possible zero denominator, we replace ∇φ

|∇φ| with ∇φ√
|∇φ|2+∆x2

.

For the first case corresponding to φ1
0, the maximum of the mean curvature of

the initial data is 43.545925 and the minimum is −33.465937; for the second case

corresponding to φ2
0, the maximum is 88.5558 and the minimum −66.4770.

Figure 3.4 shows the results for the first case. From top to bottom we display the

initial data and the results for steps 16, 64 and 256.

Figure 3.5 shows the results for the second case. From top to bottom we display

the initial data and the results for steps 128, 512 and 1024.

From all the three schemes in both cases there are significant differences in the

curvature before and after the reinitialization. The curvature computed from the so-

lution of the Weighted Power∞ENO5 is less noisy in all cases than both the WENO5

and Weighted PowerENO5 methods; the noise persists in some regions for the lat-

ter two methods. Although the behaviour of WENO5 and Weighted PowerENO5 is

similar, the noise dissipates for the Weighted Power∞ENO5; we believe that the non-

smooth limiters in the WENO5 and Weighted Power ENO methods might cause the
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persistence of some degree of noise in the curvature, and the arithmetic mean type

limiter in the Weighted Power∞ENO5 method might be responsible for the better

behaviour of the method.

Next, we consider the recovery of a non-smooth distance function. For this pur-

pose, we use φ0 to be the signed distance function, dl(x, y), to the lemniscate

a4 = [(x − a)2 + y2][(x + a)2 + y2](3.8)

with a = 0.5, plus some perturbation in radial and angular directions near the curve:

φ3
0(x, y) =







dl + 3δ, |dl| ≤ ε,

dl, otherwise,
(3.9)

which is defined in [−1, 1] × [−1, 1] with δ = ε
16π

sin
(

2πd sin 5θ
ε

)

, ε = 0.2 and θ =

tan−1( y

|x|).

Let us remark that dl(x, y) has a jump discontinuity in first order partial deriva-

tives along the y-axis.

We evolve in time using a grid of 200 × 200 and a CFL number of 0.6 for the

three schemes. We compute φ up to different times and compute the corresponding

mean curvature of φ in the whole domain excluding a small neighbourhood of the x-

and y-axis to improve visualization of the noise in contour lines.

In Figure 3.6, we display the initial perturbed data φ3
0 and the converged solution

(to steady state) for the Weighted Power∞ENO scheme. There is no distinguishable

difference in the steady solutions from the three schemes.

Figure 3.7 shows the contour plot of the curvature. From top to bottom we display

the initial data and the results for steps 16, 64 and 256.

We remark that the three schemes converge to the steady state very fast and a

significant reduction of the noise in the computed curvatures is achieved in all cases.

Finally, we also remark that we have used the fourth order TVD Runge-Kutta

time stepping procedure designed by Spiteri and Ruuth [21] in the computation; the

main advantage of RK4 is that we can speed up the computation 50% by doubling

the CFL number to achieve the same accuracy .
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Fig. 3.4. Curvatures at steps 0, 16, 64, and 256. Left column: WENO. Central column:

WPowerENO. Right column: Weighted Power∞ENO.
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Fig. 3.5. Curvatures at steps 0, 128, 512 and 1024. Left column: WENO. Central column:

WPowerENO. Right column: Weighted Power∞ENO method.
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4. Conclusion. We have designed a class of Weighted Power-ENO (essentially

non oscillatory) schemes to approximate the viscosity solution of the Hamilton-Jacobi

equations. The essential idea of the Power-ENO scheme is to apply an extended class

of limiters to second order differences in the classical third order ENO schemes to

improve algorithmic behaviors near discontinuities. Then a weighting strategy based

on appropriate smoothness indicators improves the accuracy of schemes to fifth order

accuracy. Numerical experiments have demonstrated accuracy and robustness of the

new schemes.
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Fig. 3.6. Left: perturbed initial data. Right: converged solution
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Fig. 3.7. Curvatures at steps 0, 16, 64 and 256. Left column: WENO. Central column:

WPowerENO. Right column: Weighted Power∞ENO method.


