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Abstract

The aim of this paper is to study continuum models for surface
diffusion taking into account free adatoms on the surface, which is of
particular importance in the (self-assembled) growth of nanostructures.
The extended model yields a coupled system of parabolic differential
equations for the surface morphology and the adatom density, involving
a cross-diffusion structure.

We investigate two different situations, namely the growth of a
film on a substrate and the growth of a crystal-like structure (a closed
curve or surface). An investigation of the equilibrium situation, which
can be phrased as an energy minimization problem subject to a mass
constraint, shows a different behaviour in both situations: for the film
the equilibrium is attained when all atoms are attached to the surface,
while for a crystal the adatom density does not vanish on the surface.
The latter is also a deviation from the usual equilibrium theory, since
the equilibrium shape will be strictly included in the Wulff shape.
Moreover, it turns out that the total energy is not lower semicontinuous
and non-convex for large adatom densities and rough surfaces.

The dynamics of the adatom surface diffusion model is investigated
in detail for situations close to a flat surface in the film case and the
situation close to a radially symmetric curve, both with an almost spa-
tially homogeneous adatom density, where the cross-diffusion structure
of the model and the decay to equilibrium can be studied in detail. Fi-
nally, we discuss the numerical solution of the adatom surface diffusion
model in the film case and provide various simulation results.
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1 Introduction

Surface diffusion is one of the most important growth mechanisms in nanoscale
surface growth and modern materials science (cf. [51]). Though the basic
growth laws were known for several decades after they have been derived
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by Mullins [40] in the modelling of thermal grooving, strong interest in the
theory and simulation of surface diffusion has been initiated recently, driven
by applications to electromigration of voids (cf. e.g. [2, 3, 35]), shape tran-
sition in alloys (cf. [16]) and in particular, by the growth of nanostructures
(cf. [27, 34, 44, 45, 47, 50]).

The standard model of isotropic surface diffusion is given by a geometric
motion law for a surface T'(¢):

— divg(LVsu) +pV = r-n (1.1)
on I'(t). The unknowns in this system are the chemical potential p and the
surface I'(t), with its outer unit normal n, its mean curvature x = div n,
and its normal velocity V', given by

0
V= a—’t‘ ‘n, xel(). (1.3)

The vector r denotes a deposition flux to the surface, L is the mobility of
atoms on the surface, 1 the (constant) free energy, and p is the material
density. The subscripts S in the differential operators are used to denote
derivatives with respect to the surface variables S.

The surface diffusion model (1.1), (1.2) and extensions to anisotropic
situations have been discussed with respect to modelling aspects (cf. e.g.
[5, 13, 17, 41]), analysis (cf. e.g. [4, 8, 10, 24, 25, 38]), and numerical
simulation (cf. e.g. [6, 7, 14, 15, 18, 32, 39, 45, 49]). The main properties
of surface diffusion are the dissipation of the surface energy

E(L(t) = /F(t)zp ds (1.4)

via
d

FEEO) == [ (Vonlas (15)

and conservation of the volume (respectively the mass for constant bulk

density), i.e.,
i)
— dx = 0. 1.6
it Jouw” (1.6)

Surface diffusion is usually treated as a fourth-order evolution equation
for some variables representing the surface, which somehow shadows the
physical interpretation of the model. The first equation (1.1) actually mod-
els the diffusion of atoms along the surface, while (1.2) determines the at-
tachment and detachment process. In many cases, e.g. in vapour deposition
processes, it is important to include adatoms (”attached atoms”) into the
model, which freely diffuse on the surface. Moreover, it is often important
to model kinetic effects appearing in the attachment process.



If adatoms and kinetic effects are included, the model changes to (cf.
[26] and Section 2.1)

gf — divs(LVsu) + (p—0k)V = r-m (17)
bV — vk — (p—6k)p = 0, (1.8)

where 0 denotes the adatom density, b is a kinetic coefficient. For the sake
of simplicity, we shall consider b as well as the diffusion coefficient L and
the bulk density p to be positive constants throughout the paper. The
free energy in this case depends on the adatom density, and the chemical
potential y is determined by

p=1'(9), (1.9)

which corresponds to the original interpretation of the chemical potential as
the free energy variation when atoms are attached to or detached from the
surface. The term

pt=p— ok (1.10)

can be interpreted as an effective density. If the adatom density is contin-
ued to be locally constant in normal direction, then the effective density
corresponds to the variation of the total mass

mm®:A5ﬁ+4pﬁ. (1.11)

with respect to local surface variations. The surface energy of the system is
now a functional of the surface and of the adatom density, i.e.,

ﬂR&:A¢@d$ (1.12)

The analysis and numerical simulation of the surface diffusion model
(1.1), (1.2) is still a subject of ongoing research, but there exists a variety of
results that contribute to the understanding of the dynamics. The equilib-
rium problem related to classical surface diffusion, namely the minimization
of the surface area (or anisotropic versions of the surface energy) subject to
a volume constraint seems to be completely understood nowadays. For the
adatom surface diffusion model (1.7), (1.8), which is certainly of practical im-
portance and may even model the ongoing surface physics more accurately,
the situation is different. To our knowledge there are neither analytical nor
numerical results about the dynamics available, and even the corresponding
equilibrium problem seems not to be well-understood. The aim of this paper
is a detailed analytical and numerical study of the adatom surface diffusion
model (1.7), (1.8), which hopefully contributes to the further understanding
of surface diffusion processes. We shall study the model for surfaces in R3,



with obvious physical interpretation, as well as for curves in R? (sometimes
called edge diffusion), which can be applied e.g. to adatom diffusion along
islands in epitaxial growth (cf. [12]).

The main results we shall obtain below are the following:

e Convexity of the surface energy for small adatom densities and suffi-
ciently flat surfaces, and non-convexity of the surface energy for larger
adatom densities and in particular for rough surfaces, which is a sig-
nificant difference to models ignoring free adatoms, where the surface
energy is globally convex in isotropic and weakly anisotropic situations.

e In the case of films growing on substrates, the global equilibrium is ob-
tained for a flat surface and vanishing adatom density, which clearly is
the same one as without modelling free adatoms. In the case of struc-
tures growing in the bulk, the equilibrium is different, in particular
the Wulff shape with vanishing adatom density is not an equilibrium
when adatom densities are included in the energy model.

e The dynamics of the model changes from a fourth-order parabolic
evolution equation to a coupled system of two second-order parabolic
evolution equations with cross-diffusion structure. This structure is
studied in detail by asymptotic expansions around flat surfaces and
spherical shapes with constant adatom densities. Moreover, by lin-
earization around such special structures and arguments based on the
implicit function theorem, we are able to provide existence results in
some situations. In addition, we derive exponential decay to equilib-
rium for smooth nonnegative solutions in the case of a film growing
on a substrate.

e We introduce a numerical scheme based on finite element discretization
in space and a semi-implicit time-stepping, which allows to compute
approximations to the nonlinear adatom surface diffusion model by
solving a stable linear system in each time step.

The paper is organized as follows: in the remainder of this section we
introduce the basic notations and review the definition of function spaces
used throughout the paper. In Section 2 we introduce some basic formu-
lations of adatom surface diffusion and provide a formal discussion of the
relation to the classical surface diffusion model. Section 3 is devoted to the
study of equilibrium structures, starting with an investigation of the sur-
face energy and its convexity properties, and continuing with the explicit
computation of the global equilibria and the characterization of stationary
points. In Section 4 we study the dynamics by adatom surface diffusion
close to important special situations, provide an existence result for initial
values close to flat films, and verify the exponential decay of the energy and
the adatom density for films. A derivation of a fully discrete scheme for



the numerical simulation in the film case is provided in Section 5, as well as
several simulation results illustrating the nonlinear dynamics. Finally, we
conclude in Section 6.

1.1 Notation

The basic notation used in this paper is as follows: by x we denote spatial
variables in R? or R and by x; their components. The time variable is
denoted by t in general, and surface variables are denoted as S. For surfaces
(or curves) we always use the notation I' and for domains (partly) bounded
by I' the notation €2. Moreover, we shall use the notation D for a rectangular
domain of the form D = H‘ii:l(—di, d;), for d; € Ry.

The geometric quantities used frequently in the following are the unit
outer normal n (i.e., the normal pointing into R\ Q) and the mean
curvature k. The total velocity of a boundary point is denoted by V, the
normal velocity by V =V - n, and the tangential velocity by v=V — Vn.

Partial derivatives of a function f with respect to variable y are denoted
by %> as the gradient V f we denote the vector of partial derivatives with
respect to the spatial variables (and not the time variable), and similarly
the divergence with respect to spatial variables is denoted by div f. If a
gradient or divergence is taken with respect to the surface variables we use
a subscript S, i.e. Vg = (I —n®n)V and divg.

1.2 Function Spaces

Throughout the whole paper we shall use standard notation for function
spaces. For a domain M C R™ we denote by C'(M) the space of continuous
functions on M equipped with the supremum norm. By C*(M), k € N we
denote the space of k-times continuously differentiable functions equipped
with the norm (using standard muli-index notation)

aa
1floe = max |12

aEN™, o] <k Ix HCO.

By LP(M), p € [1,00) we denote the Lebesgue space of measurable p-
integrable functions, with the norm

Hmm:(@u@wa>w,

and by L% (M) the space of measurable essentially bounded functions with
the norm

[ fllzoe = ess sup [f(x)].
xeM

For k € N and p € [1,00], we denote by W#"P(M) the Sobolev space of
functions with distributional derivatives up to order k in LP(M), equipped



with the norm

1/p
o~ f
s = {3 1521
aeN™ |a|<k
for p € [1,00), and
80&
I fllwreo = max  ||=—=|pe.

aeN™ |a|<k = OXX

For the particular case p = 2 we use the standard notation H¥(M) =
WH2(M), and we denote its dual space by H*(M). We refer to [36] for
detailed definitions of Sobolev spaces.

For M being of the form M =[]/, (m;, mj) we can define subspaces
of all the spaces above including only periodic functions, as the closure
of periodic functions of class C'°° with mean value zero in the respective
topology. These periodic spaces shall be denoted with an extra subscript

per. In particular we have

LP.. :={ ue LP(D) | u periodic, /udX:O}
D

per

and
WL := { w e W*(D) | u periodic, /D wdx =0},

We shall also need spaces of vector-valued functions on a time inter-
val [0, 7] with values in a Sobolev space W*P(M). The space of contin-
uous maps from [0, 7] into a Sobolev space W¥*P(M) shall be denoted by
C(0,T; WkP(M)). In an analogous way we define the spaces C*(0, T; W*P(M)),
LP(0, T; WHEP(M)) and WH49(0, T; W*P(M)). We refer to [37, 46] for details
on vector-valued spaces for evolution problems.

2 Formulations and Basic Properties

In the following we briefly review the derivation of the model and discuss
the basic geometric setup used in the cases of films and crystals growing by
adatom surface diffusion. We shall introduce strong and weak formulations
of (1.7), (1.8), and verify basic properties of the evolution such as energy
dissipation and mass conservation.

2.1 Derivation of the Model

Since the adatom surface diffusion model (1.7), (1.8) is not a standard model
in literature, but has been derived only recently (cf. [26]) in a general setting,
we briefly discuss its derivation in the case we are interested in.



Let Tg(t) C T'(t) be arbitrary and let Qy(t) C Q(t) be an arbitrary
subdomain such that T'o(t) = 0Qy(¢) NT'(¢). Then the mass mq(t) contained
in Qu(t) and at its boundary consists of inner atoms and atoms on Iy(t) ,

i.e.
mo(t) = / p dx+/ 0 dS.
Qo(t) To(t)

If we ignore bulk diffusion but allow deposition and surface diffusion of
adatoms, then change of mass in Qq(t) is only due to deposition (with ef-
fective density r - n) and flux of mass over the boundary of I'y. If we use a
standard diffusion law for the flux (equal to LV gu-Ny, where L is a mobility
coefficient and Ny is the unit outer normal to I'g(¢) restricted on I'(¢)) we
obtain

d
T4y = /r-nds+/ LVsu- Ny ds
dt T aro

— /F (r-n— divs(LVgp)) ds, (2.1)

where we have used Gauss’ Theorem to rewrite the second term. In order
to compute the time derivative of mg(t) we can apply standard results for
derivatives of domain-dependent integrals (Theorem 4.2 in [20, p. 352] for
the first and Theorem 4.3 in [20, p. 355] for the second one), which yields

dmo oy /des+/ <85+Vn-V6—5/<LV> ds
dt To o \ Ot

Since I'g is arbitrary and § can always be continued locally constant in
normal direction, we can conclude the local equation (1.7) from (2.1), or,
equivalently
06 .

i Vn-Vé— divg(LVsu) + (p—0k)V =r-n (2.2)
if 0 is not continued constant in normal direction away from I'(¢), which will
become important for representations of surfaces via graphs over a fixed
domain.

We now consider the energy dissipation relation. Since the derivation
in [26] is based on non-standard concepts such as configurational forces, we
shall present a slightly different derivation here. For 7 sufficiently small and
a given normal velocity, let

I™(t: V) == { x(S) + m(S) | x(S) € T(t) }.

By the principle of minimal work, the normal velocity on I' is determined
such that the work in an infinitesimal time interval (7 — 0) is minimized,
i.e.,

lim (WT(t; V) - Wt f/)) <0 VvV,

T—0

7



where W7 (t; V) denotes the work needed to move T'(t) to I'"(t; V). This

dissipation relation is equivalent to
lim ow?
=0 OV

(t;V)=0.

The total work is the sum of work done by interfacial forces, mass trans-
port and by kinetic forces. Using again the results on derivatives of shape
functionals (cf. [20]), the work done by interfacial forces can be expanded
as

Wi(t: V) = LB (5V),0) — B((), ) = - /F(t) o)k dS + O(7).

With Q7 (¢; V) denoting the domain with boundary I'"(¢; V') we obtain the
work done by mass transport as

1
Wit:V) = T(—/ p,udx—/ 5,udS>
Q7 (V) L7 (V)

! (—/ pp dx —/ o dS)
T Q(t) I(t)
= —/ (p—0r)uV dS + O(r)
(t)

Finally, the work of kinetic forces can be expanded in the usual way as

Wi(t:V)= b V2 dS + O(r).
()

Hence, the energy dissipation becomes

v (-
0 = —|(- Y(0)kV dS — p—O0r)uV dS
57 (= f O 0= )
+b/ V2 ds),
2 Jr
which yields (1.8).

We finally mention that the whole surface diffusion model can model a
reasonable physical situation only when the adatom densities are reasonably
small, since otherwise one would obtain a high number of free atoms diffusing
not only along the surface, but also along a vapour phase. If § is small, then
we have to first order that

0 <9(0) = 9(8) — dp.

As we shall see below, the stability condition ¢ — du > 0 also appears in the
analysis at several instances.
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Figure 1: Geometric setup in the case of a film growing by adatom surface
diffusion.

2.2 Film Growth

We start with a film on a substrate growing by surface diffusion. For the sake
of simplicity, we restrict our attention to a periodic case and assume that
the substrate covers the region z < 0. For a rectangular domain D C RY,
d = 1,2 we consider a film represented by its height function, i.e.,

Q) =1 (x,2) | xe€ D,0< z<u(x,t) }, (2.3)
with the free surface
I(t) ={ (x,u(x,t)) | xe D }. (2.4)

This setup is illustrated in Figure 1.
The unit outer normal is determined in terms of the height function as

n— clg(_vu’ 0, (2.5)

with the length of a surface element abbreviated by Q = /1 + |Vu|?. The

mean curvature andnormal velocity of the surface are given by

Vu 1 ou
= di — V=——. 2.6
K iv ( 0 ) , Qo (2.6)
Finally we transform the surface divergence and gradient, it is well-known
that the differential operator appearing in (1.1) and (1.7) can be written as

(cf. e.g. [6])

divs(LVsp) = 22 div( Pg“) (2.7)

with the matrix
P=Q1-Vu®Vu . (2.8)

By representing the adatom density 6 and the chemical potential y as
functions of x € D and ¢ € [0,7] and multiplication of the equations (2.2),
(1.8) by @, we obtain:



Definition 2.1. The strong formulation of the adatom surface diffusion
model for film surfaces is given by the partial differential equations

Q——d ( Pg“>+aa;‘( dv<5VQ“)+p>+vu-r12 = 1y (2.9)

b@ —Q div ((w—ué)w> —0Vu-Vu— puQ 0 (2.10)

ot Q

in D x (0,T). A strong solution is a pair of functions

(6,u) € WH((0,T) x D) x L>®(0,T; W»*°(D)) n WhH(0,T; L>=(D)).

satisfying (2.9), (2.10) as well as periodic boundary conditions and the initial
conditions

0(.,0) = do, u(.,0) = up in D. (2.11)

Note that since the adatom density is not constant in normal direction
in the graph representation we are using (2.2) in this case, and the effective
density appearing in (2.9), (2.10) changes to

pt = p— div (6VQU> (2.12)

By multiplication with test functions ¢, w and subsequent integration by
parts we derive the weak formulation of the adatom surface diffusion model
in the film case, given by:

Definition 2.2. The weak formulation of the adatom surface diffusion model
for film surfaces is given by the variational equations

00 PVu-Ve Vu ou ou |
/D[ Q-+ Li@ 56 V(at >+p8t dx

= /D [rs — Vu-rio] ¢ dx  (2.13)
/ [ ou w Vu-Vw  Vu-V(wup)

"oV g 0 0

— pwp| dx
=0 (2.14)

for all smooth periodic test functions (p,w) € L>®(0,T; WH°(D))?, to be
solved for periodic functions

(6,u) € WH(0,T; L*(D) x HY(D)) N L>(0,T; HY(D) x WhH*(D))

satisfying the initial conditions (2.11).

10



We shall see below that the weak form is crucial for the construction of
numerical schemes based on finite element discretizations.

By a suitable choice of test functions in (2.13), (2.14) one can verify the
global energy dissipation

d

d
GEC®.50) = & [ 66) Q dx

5,
= —/ [L(PVM)'Vu+b|au
D

1
2} — dx
t

Q
+/ [rg—Vu-rlg] ,udx
D

and global mass conservation

Cm(r(),6(0) = & /D (pu+ 6Q) dx = /D [rs — V- 113] dx

for all weak solutions and all ¢ > 0. In particular it becomes clear that energy
and mass are transported only through the deposition flux, in absence of this
flux (r = 0), the surface energy is decreasing (strictly for a nonstationary
surface) and the total mass of the film is conserved.

We finally take a look on the structure of the adatom surface diffusion
model, which can be seen well from (1.7), (1.8). The two equations can
be interpreted as diffusion equations for the adatom density § and the film
height u, where the equation for § includes cross-diffusion terms, i.e., second
spatial derivatives of w.

2.3 Crystal Growth

In the case of a crystal (as which we actually denote any closed curve or
surface), we represent the bulk by a domain Q(t) C R¥! d = 1,2. The
surface is then the whole boundary I'(t) = 0€2(t) (see Figure 2).

The strong formulation of the adatom surface diffusion model is given by
(1.7), (1.8). For the sake of brevity and simplicity we restrict the derivation
of a weak formulation to the case d = 1 and assume that the curve I'(t) =
0€)(t) can be represented by an arclength parametrization of the form

I(t) = { x(s,?) | I%(S,t)l =1,5€0,A(®)] }.

ox

The tangent is obtained as t = &% and we use the orientation n =
(%, —%) for the unit normal. In addition to the mean curvature we can

introduce the curvature vector K = kn = %. For the total velocity we

obtain V = %, the normal velocity is V' = V -n, and the tangential velocity
v=V —Vn.

11
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Figure 2: Geometric setup in the case of a crystal growing by adatom surface
diffusion.

In order to obtain a weak formulation we follow the approach in [7, 32]
for parametric surface diffusion introducing weak forms for the scalar and
vectorial quantities for velocities and curvatures. This yields after obvious
integrations by parts with respect to s:

A 796 0x 05 = Oudp
/0 (at(p_v.as(%+Lasas+(p—6ﬁ)V<p—r-ngo> ds = 0

A(t)
/ OV —yk —(p—9dk)p)wds = 0
" A(t)
/ (k—K-n)¢ds = 0
0

At)
/ (V-V-n)(ds = 0
0

) ox 09
K-+ ——.2= —
/0 < + 5 83) ds 0

A®)
/ (V-\I/—ax-\ll> ds = 0
0 ot

for all sufficiently smooth scalar test functions ¢, w, &, ¢, and sufficiently
smooth vectorial test functions &, W.
Global mass conservation for the mass functional

m(T(#), 8(2)) = /Q(t) p dx + /F(t) 5 ds



can be concluded as in the derivation of the model, resulting in
—m(T'(t),46(t)) = / r-ndS

and
d
4wy, o)) = —/ (bV2 + L|Vspl? — pr - ) dS.
dt F(t)

2.4 Importance of the Kinetic Term

In [26] it has been argued that including the kinetic term b # 0 into the model
is of particular importance, since it makes the second equation parabolic and
therefore might have a regularizing effect. A detailed investigation of the
relation (1.8) in the case b = 0 shows that absence of the kinetic term (but
included adatom densities) may yield unphysical behaviour of the model,
namely either negative densities or transition to a convex surface with infi-
nite speed.

Suppose that the solution satisfies § > 0 and p°f > 0 and that the surface
free energy functional 6 — (9) is an increasing function with 1 (d) > (0) >
0. Then we have that p = 9/(6) > 0 and for b = 0 the curvature satisfies

due to (1.8)
B pef
K=——pun<0.

(4

Hence, the surface is always convex for positive time, which means that
nonconvex parts of the initial surface are removed at infinite speed, which
seems to be a an effect that does not model the actual physics. For positive
values of the kinetic coefficient, nonconvex parts of the surface will still be
removed, but in finite time.

For a film, the absence of the kinetic term has even more severe conse-
quences. Under the same assumptions on § and v as above, with positive
effective density pf defined by (2.12), the height function satisfies

—div (11)?) =p*u>o0.

Hence, u is the solution of an elliptic partial differential equation of sec-
ond order for arbitrary fixed ¢ (note that the coefficient % is positive) and
consequently, it cannot attain a strict minimum inside D. The only peri-
odic function that does not attain a strict minimum inside the domain is
a spatially constant one. Hence, the surface would transform to a flat film
immediately, another unphysical effect happening since the kinetic term is
ignored.

We finally mention that a similar argument could be applied to the origi-

nal surface diffusion model (1.1), (1.2). However, in this case we would only

13



obtain negativity of the chemical potential p, which is not an unphysical
effect at the first glance since p is not related directly to a material density
in (1.1), (1.2). However, as we shall see below, the original surface diffusion
model (with additional kinetic term) can be derived formally as an asymp-
totic limit of (1.7), (1.8) for small adatom densities. In this asymptotic,
u corresponds to the limit of ¢”(0)d and since we assume the free energy
functional to be convex (i.e., ©” > 0), the chemical potential should be non-
negative, too. This argument might motivate a different future treatment of
the model (1.1), (1.2), which seems to make sense from a physical viewpoint
only if the chemical potential is nonnegative.

2.5 Relation to Known Interface Motion Laws

In order to understand the relation to the frequently used models for the
motion of interfaces, we compare the initial dynamics of the adatom surface
diffusion model with the model of kinetic surface diffusion (also called in-
termediate surface motion laws in [24]), by which we understand (1.1), (1.2)
with an additional kinetic term, i.e.,

— divg(LVsu) +pV = r-n (2.15)
bV — ok —pu = 0. (2.16)

Assume we are given the same initial surface and initial chemical potential
and denote by V45P the velocity obtained from the adatom surface diffusion
model and by VESD the velocity obtained from kinetic surface diffusion.
Then, at time ¢t = 0 we have

bVATE — VESP) = (§ — g — o).
Due to the convexity of 1, we obtain ¥(d) — du < 1pp and hence,

VASD < VESD - if i > ()
VASD > VESD if 5 <0

i.e., the initial evolution by adatom surface diffusion is faster on concave
and slower on convex parts of the surface. For the later evolution we cannot
provide any rigorous arguments, but we expect a similar behaviour. In
particular, the inclusion of adatoms into the model breaks the symmetry
between convex and concave parts in general.

Another important relation to kinetic surface diffusion is a limiting be-
haviour as the cost of free adatoms tends to infinity. We shall illustrate this
situation by a formal asymptotic expansion in a cost parameter § tending
to infinity, assuming that the free energy is of the form ¥ () = 1o + B11(9)
with strictly convex ¢ : R — R, satisfying 1 (0) = 0. We then assume an
asymptotic expansion of the adatom density in the form

§=06"+p371" + 5725 + O(B7®)

14



and of the surface as
I'={x"(S) + B~ 'x'(9) + 0(8~%)}

with S being an appropriate surface parametrization. We assume that the
expansion of the surface is sufficiently smooth in space and time, such that
we can make an analogous expansion for the normal, curvature, and the
normal velocity. As a consequence of the assumed form of the surface energy
and the expansion of d, we may expand the chemical potential as

p=BY1(8%) + ¥{(8°)5" + O(57).
Using these expansions in (1.7), (1.8), we obtain

—B( divs(LVs¥{(6")) + Q1 + O(B) = r-n’
—B1(8%)K° = Blp — 8°k%)y1 (8% + Ry + O(B) = 0,

where @1 and R; denote the zero order terms in the expansion (to be spec-
ified below). From the highest order term in the first equation we deduce
that 1 (0°) is constant over the surface, which implies that §° is constant
due to the strict monotonicity of ¥|. From the highest order term in the
second equation we obtain

(1(8%) = 8% (8"))w" = —pip1 (8),

and hence, either ¥](6°) = 0 (which is equivalent to 6° = 0) or ¥ is a
positive constant (a situation that is impossible e.g. in the film case). For
6% = 0, the first-order terms in the expansion are given by

Q1 = —divg(LVgu')+pV°—r-n°
Ry = bV° — ok’ — pp'

with u! = 9/ (6°)6'. Hence, the first order asymptotic expansion of the
adatom surface diffusion model, determined by @1 = R; = 0 is exactly the
kinetic surface diffusion model (2.15), (2.16).

The kinetic surface diffusion model is clearly not the only one we can
obtain as a limit. If, in addition to the assumptions above, we have a small
kinetic coefficient expanded as

b=0byB ' +0(87?),

then the lowest order exansion as well as the term ()1 remain the same, but
Ry = —ok" — pp'. Hence, the asymptotic limit in this situation is given by
the surface diffusion law (1.1),(1.2).

An interesting dynamic of different type appears as a limit when the
kinetic coefficient b > 0 is fixed and the mobility of the adatoms is large,

15



i.e., L =LoB+ L1+ O(B71). In this case, with the same expansion of § and
V' as above, we obtain
—6% divs(LoVse1(6%)) — 8 divs(L1Vsy1(67)))
—B divg(LoVsy{ (6°)") + Q1+ O(8) = r-n’
—B1(8°)K° = B(p — 8°k)Y1(8°) + Ri + O(B) =

The treatment of the lowest order terms is the same as above, and in partic-
ular for the film case 6° = 0 is the only possible solution. As a consequence,
the first order term in the first equation implies divg(LoVst/(0)6%) = 0

and hence, ¢! is constant with respect to S. The terms to vanish at the next
order are given by

Q1 = — divs(LVs¢/'(0)8*) + pV® —r-n°
Ry = bV°—qpor? — pyf (0)6".

From @1 = 0 we deduce
O—/ Q1 dS = (pV°? —r-n°) ds,
I(t) I'(t)

i.e., a formula for the mean value of the velocity. Moreover we derive from
R; =0 that

0 = / Ry dS :/ (VY — 4por® — pyp (0)61) dS
L'(t) I'(t)

_ b/ ron? dS—%/ K0 ds — |D(8)]pe!/(0)5".
P Jr(t) I'(t)

We can insert the last relation again into R; = 0 and derive as a limit

1 b
bV — m/ kdS | = r-n’ ds, 2.17
’ ( IO s ) A1 e .

a well-known model of surface attachment limited kinetics (SALK). In the
absence of a deposition flux, this limit becomes the volume-conserving ver-
sion of the mean-curvature flow

1
bV — o (/1— M/I“(t)ﬁ dS) =0. (2.18)

3 Equilibrium Structures

In the following we consider equilibrium structures of surfaces with free
adatoms. We distinguish between local equilibria determined as stationary
solutions of (1.7), (1.8), and global equilibria, obtained as the global min-
imizers of the surface energy subject to a mass constraint. We start by
discussing the properties of the surface energy.
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3.1 Surface Energy

In the following we further investigate the structure of the surface energy
term in presence of adatom densities. For the sake of simplicity we restrict
most arguments to the film case. The surface energy for a film is given by

E(6,u) :== E(I',0) = /Dw) Q dx. (3.1)

Throughout the remainder of the paper we make the following assump-
tion on the surface free energy :

Assumption 1. We assume that ¢ : R — R is twice continuously differ-
entiable and strictly convex. Moreover, we assume that v attains its unique
minimum at 0, with ¢(0) =1 > 0.

In several cases below we will also consider a prototype free energy of
the form
W(8) =1+ %52. (3.2)

Under Assumption 1, the functional 6 — () — 1 is nonnegative and
strictly convex and we have Q > 1. Hence, for 6 and u sufficiently smooth,
there exists a constant ¢ > 0 such that

E(a,u)_/D(w(a)_n Q+0) dec/D<52 dx—l—/D!Vu\ dx.

This argument shows that the energy functional uniformly bounds the L?-
norm of d and the total variation of u. Hence, it is natural to consider
the energy minimization in the spaces L?(D) (for §) and a space of func-
tions of bounded variation (for w). Unfortunately, the energy functional is
unbounded in these spaces, so that we have to expect ill-posedness of the
adatom surface diffusion model for general data. As we shall see below, the
surface energy is not convex (even in stronger topologies), but at least global
minimizers of the energy at constant mass can be computed.

3.2 Non-Convexity of the Surface Energy

In the following we investigate the properties of the surface energy functional
E. We start by computing the first and second derivatives:

Lemma 3.1. The surface energy functional E defined via (3.1) is twice
Fréchet-differentiable on L (D) x W1°(D) with derivatives given by

EGm) = [ (w00 Qw75 ax
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for allm € L>®(D) and all v € WH*(D), and

E"(8,u)(m1,v15 2, 02) = /D <¢"(5)?71772Q + () o3

Vu - Voo Vu - Vo
# (o T ) ax

for all n1,ne € L>®(D) and all vi,vy € WH*°(D).

(PV’U1) . V’l)g) dx

In order to obtain information about the convexity of the surface energy
we investigate the coercivity properties of the second derivative at different
points. It turns out that for surfaces close enough to flat surfaces, E" (6, u)
is positive definite:

Theorem 3.2. For each § € L>°(D) there exist constants c1,co € RT such
that

B0 u) (. vin,0) = 1 [ (1P +[90f?) dx (33)
D
for all w € WH*°(D) such that |Vu| < cg almost everywhere in D.
Proof. Since 1) is strictly convex, we have

ci= irgf Y"(8) > 0.

Using the Cauchy-Schwarz and arithmetic-geometric-mean inequalities we
can estimate the surface energy as

Boamun = [ (aPerue Vg ax

_/D (<1 —Oen?Q + cé((?i) \Vuc-?ngh) i

for each € € (0,1). Since @ > 1 and
(PVv) - Vv = Q*|Vo|* — |Vu - Vo|?,

we may conclude for |Vu| > ¢

2 2 2
E"(8,u)(n,v;n,v) > / 1) )WU' dx

(66772 WO - F) -

D c(l—¢)) @Q
Since all terms depending on ¢ and @ are bounded in L*°(D), we can choose
€, ¢1 and ¢y sufficiently small such that (3.3) is satisfied. O

For positive adatom density and a very rough surface (|Vu| large), the
contrary to the above statement is true, i.e., we can find a direction in which
the second derivative is negative:
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Theorem 3.3. Let § € L*™(D) be such that 6 > dy almost everywhere for
some constant &y € Ry. Then, for each u € WH*(D) satisfying |Vu| > co
almost everywhere for a sufficiently large constant co € R, there exists a
pair (n,v) € L®(D) x WH*°(D) such that

E"(5,u)(n,v;n,v) < 0.

Proof. Let
C := sup ¢ (9), c:= inf ¥"(6)
xeD xeD

and A := % +1 (note that ¢ and C' are finite, and due to the strict convexity
of 1, ¢ is positive). Because of ¥(0) = 1 and ¢’(0) = 0 we can estimate
cd < 1'(8) < C§ and ¥(6) < 1+ §6% almost everywhere.

We now choose n = —60 and v = Au. Then, we have the following
estimates for the terms appearing in the second derivative (in the almost
everywhere sense):

ae 52 052
vt = O ) < S+ TuP)
(PVv) - Vo 9 |Vul? 9 C? |Vul?
RS LIl B e Dt
00 Np(0) g < A0+ ) o
. 2 2
zw'(a)nWQW - —2A¢'(5)5|V5‘ < —2Ac52|V5| .
From the definition of A we obtain
Cs? |Vu|? 62 62
—— (14 |Vul?) = \ed? =—(C=cVu>) < 2(C=cd) <0
0 (1 +[Vaul?) 0 Q( [Vul?) 0! 0)
for ¢y > \/g . Moreover, for ¢3 > /\2% — 1 we have
C? |Vul|? |Vul? |Vul? Co?
201 4 29 N2 _ Loy 522
)\(+2)Q3 Acd 0 )\Qg()\—i-z)\ Q%)
Vul? C
)\| ng ()\—5(2)(C+CC(2)—)\2)>
and the last term is negative for c% > )\(2;558). Hence, for ¢y sufficiently
0
large, we obtain
PVv) -V Vu-V
1,0) = 0" 0)°Q + 00) T T 4 200 5 <0

almost everywhere, and consequently

B(6,u)(n, v;m,v) = /D I(n,v) dx < 0.
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From the motivation of the model it seems obvious that undesirable
effects like nonconvex energies can occur for large adatom densities. Note
however that as a consequence of Theorem 3.3, the surface energy cannot
be globally convex for positive adatom density (even arbitrarily small) and
very rough surfaces.

3.3 Equilibrium Films

The global equilibrium film structure at given mass is determined as a global
minimizer of

E(6,u) — min subject to m(d,u) = mg (3.4)

d,u

with the mass m given by

m(d,u) = /D(,ou—l—éQ) dx. (3.5)

As one can see from the discussion in the previous section, we cannot con-
clude the existence of a minimizer by standard arguments such as lower
semicontinuity of the energy functional and compactness of its level sets.
However, we can explicitly compute the global energy minimizer, determined
by a flat surface and and vanishing adatom density.

Theorem 3.4. The variational problem (3.4) has a unique global minimizer
in L2 (D) x Wy (D), given by

per

mo

(6(X)7 fL(X)) = (0, m), VxeD.

Moreover, (5,@) 1s the unique stationary point of E subject to constrained
mass M.

Proof. We have
BG.1) = [ 0(0) dx=|D|.
D

Since 1(0) = 1 is the unique global minimum of ¢) and @ > 1 (with identity
only if Vu = 0), we conclude that

E(a,u):/chS)dez/D1 dx,

with equality if and only if Vu = 0 and § = 0. Since the only pair (d,u)
satisfying these properties as well as the mass constraint is given by (0, ),
this pair is a unique global minimizer of (3.4) subject to (3.5).
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We now turn our attention to stationary points, i.e., weak solutions of
(2.13), (2.14) with % =0, %7; =0, and r = 0. From (2.13) we observe that
each local equilibrium satisfies

/LW dx = 0.
D Q

for all sufficiently smooth test functions ¢. Due to the positive definiteness
of the coefficient matrix Lg we obtain that u is constant, which implies
with the strict monotonicity of ¢’ that ¢ is constant. Using these results in
(2.14) we further deduce

Vu- -V
w—au)/D“Q wdxzpu/Dwdx.

for all sufficiently smooth test function w. Using the particular constant
function w = 1, we obtain that p = 0, and hence,

Vu - Vw
¢/dx:o,
p @

for all w, which implies that u is constant. Since v is a convex function with
unique minimum at 6 = 0, u = ¢'(6) = 0 is only possible for § = 0. Thus,
from the mass constraint we obtain that (3, @) as above is also the unique
stationary point.

O

3.4 Equilibrium Crystals

In the crystal case, the global equilibrium is determined by the minimization
of the surface energy E (defined via (1.12)) subject to a mass constraint,
i.e.,

ET,$) — Hg(rzla subject to m(I',0) = my. (3.6)

)

In the absence of free adatoms, the minimization of the surface energy
is a famous problem, whose solution, i.e., the minimizer of

ET,0) — IEI@I}) subject to m(I",0) = my. (3.7)

is called the Wulff shape. In the isotropic case, it is well-known due to
isoperimetric inequalities that the Wulff shape 'y is a sphere, with radius
1/(d+1)
mo )

determined by the mass constraint as Ry = (pTd

the volume of the unit ball in R*t!. Surprisingly, and opposed to the film
case discussed above, this property is not true in the crystal case, as a
consequence of the following result:

, where wy denotes
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pwd
Then, there exists € > 0 such that for R € (Rw — €, Ry) and I'g being the
sphere with radius R,

1/(d+1)
Proposition 3.5. Let I'yy be the sphere with radius Ry = (m) .

E(I'g,0r) < E(T'w,0),

where O is the constant positive adatom density determined via m(I',dr) =
my, i.e.,
mo — pwde+1

oq R4 ’

with o4 being the surface area of the unit sphere in R4,

op =

Proof. From the above formula for g we conclude that dgr is continuously
differentiable with respect to R and the derivative is given by

dogr dmyg PWd
Dr _ Pod) g,
dR (ade+1 )

We consider the function
e(R) := E(Tg,6r) = oatp(5r) R,
which is then also continuously differentiable with derivative

de _ dd
E(R) = dogp(Sp) R + UdW((SR)RddT?

At R = Rw we have dgp = 0 and since ¢ has a minimum at 0, we have
Y'(6r) = 0. Thus, %(R) = dadRCéV_1 > 0, which implies the assertion due
to the continuous differentiability of e. O

Proposition 3.5 shows that the Wulff shape with vanishing adatom den-
sity cannot be a global minimizer of the energy, it cannot even be a local
equilibrium (it is a strict local maximum in the class of radially symmet-
ric shapes and constant adatom densities). We shall now show that the
global equilibrium is still attained at constant adatom density and a spher-
ical shape:

Theorem 3.6. The global minimizer of the surface energy at constant mass

s attained for some shape I'r being the minimizer among all spheres with
mo—pwgR4T!
oqRa

stationary point (f‘, 5), i.e. a solution of (1.7), (1.8) with % =0andV =0,
the adatom densityg and the mean curvature K of ' are constant.

radius R < Rw at a constant adatom density dgp = . For each

Proof. Let I' = 09, let I'g C I, and let § be an arbitrary nonnegative
function on I'. Then we define

5:{5 on '\ Ty

|F—1O|froé dS onTy.
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From the construction we see m(I',8) = m(I,d), and, because of the con-
vexity of 1,

E(,$) - E(I,5) = / (¢(3) - ¢(5)) as < | ') - s) ds
To o
— (5\F0)/F0(5—5) ds =0,

where we have used the fact that 4 is constant on I'y and has the same mean
value as 0. Hence, at fixed shape the energy can always be decreased locally
by averaging, which implies that no state with nonconstant adatom density
can be stable. In particular, we may conclude that there exists a global
minimizer with constant adatom density. The fact that the minimizer for
constant adatom density is of spherical shape follows from the isoperimetric
inequality and since we have shown above that the Wulff shape is not an
equilibrium, the radius of the equilibrium shape is smaller than Ry .

For a stationary solution (1.7), (1.8) we have divs(LVgd) = 0, which
implies that § is constant due to the closedness of the surface. Consequently,
¢(5) and the corresponding chemical potential p = 1’ (5) are constant, too.

Equation (1.8) then reduces to x = 6‘1 —, which implies that the mean

V6) -3
curvature is constant. O

We mention that the stationary points depend on the spatial dimension.
For curves (d = 1) a stationary point is a circle, while for d > 2 also different
surfaces with constant mean curvature can be found, which are all stationary
points.

In order to gain insight into the behaviour of the minimizer with respect
to the surface free energy, we consider a special example using the prototype
surface free energy (3.2).

Example 3.7. We consider the special case of a two-dimensional crystal
(d = 1) with the surface free energy v given by (3.2). In this case the only
stationary point is a radially symmetric equilibrium shape with radius R
and constant adatom density g, satisfying

mo — pR?m

Sp —
R 2Rm

due to the mass constraint.

In order to obtain the minimizer of (3.6) over the special class of radi-
ally symmetric shapes and constant adatom densities, we can equivalently
consider the minimization of the functional

(mo — pR?7)?

e(R) := E(Bg,dg) = Rr(2+ v0%) = Rr(2+ R )
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Surface Energy E(B,3,)

Figure 3: Plot of the surface energy E(Bg,0r) in Example 3.7, with constant
m—pR*m
2Rm

adatom density dp =

with respect to R € (0, Ry]. Plots of the energy functional e for different
values of v are shown in Figure 3 (for p = 1). We have seen above that the
Wulff shape R = Ry is not a minimizer and hence, we look for a minimizer
R, in the interior, which must satisfy

d
= é(R*) =27+ L(mg — pR27)(mg + 3pR27).

0 4R

This yields a fourth order algebraic equation for the radius R, having two
imaginary, one negative real and one positive real solution. Since we are
only interested in positive real solutions, the unique stationary point in the
interval (0, Ryy) is given by

2
Ro—_L |mo_4_ <mo_4> L 3mg
V3p\ ™ v Ty T
One observes that for v — oo, the equlibrium radius tends to the radius

Ry = \/% of the Wulff shape. On the other hand, for v — 0, the equi-

librium radius tends to zero. This behaviour is not surprising, since the
parameter v measures the energetic cost of free adatoms. If v is large, it
is not energetically favourable to have free adatoms, while for + small the
energy can be decreased by releasing adatoms. However, if 7 is very small
and thus R, << Ry, the continuum model probably does not correctly
represent the physics, since there are more free adatoms than atoms in the
bulk. A plot of the equilibrium radius R, and the corresponding adatom
density dr, vs. the value of v is shown in Figure 4.
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Equilibrium Radius and Adatom Density vs. a

— Radius R
1 —— Density &

Figure 4: Equlibrium values of the radius R and the adatom density dp for
for different values of « in (3.2).

4 Special Dynamics

In this section we study the dynamics of adatom surface diffusion in special
situations, in particular for small adatom densities.

4.1 Almost Flat Films

In the following we study the dynamics of (2.9), (2.10) around a flat surface
with an adatom density being almost spatially homogeneous. For the sake
of simplicity we consider a deposition flux being homogeneous in the vertical
direction, i.e., r3 = r3(t) and that rj2 = 0. We assume that the initial values
satisfy

So(x) = &)+ esp(x) + O(e?), (4.1)
up(x) = uf+ euy(x) + O(e?), (4.2)
and look for solutions of (2.9), (2.10) in an expansion of the form
S(x,t) = 8%(t) 4+ edl(x,t) + O(?), (4.3)
u(x,t) = uO(t) + eut(x,t) + O(?). (4.4)

Then we can also expand the chemical potential in terms of 6° and ' as

e

75 (6°(1))0 (%, 1) + O(€?).

p(x,t) =9/ (0°(1)) +e
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Since we can assume that all mass and the mean height are included
in (58 and ug, respectively, we can restrict our attention to perturbations

satisfying
/ 5 dx:/ ug dx = 0.
D D

We shall verify below that the property of mean zero is conserved also for
u! and 61 at later time ¢ > 0.

Lowest Order Expansion

The zero-order expansion of (2.9), (2.10) is obtained as the solution of the
a system of ordinary differential equations characterizing the spatially ho-
mogeneous sitation:

%((50+pu0) = r3 (4.5)
d 0
bd%—pw(ao) = 0. (4.6)

with initial values u) and &). Note that (4.5) corresponds to the conservation
of the total mass m = (6° + pu®)|D|, and (4.6) can be interpreted as the
energy dissipation relation at zero order.

We collect some results on (4.5), (4.6) in the following:

Theorem 4.1. For all initial values (63, u)) € R2 and each r3 € C([0,T)),
there exists a unique solution (6°,u’) € C1([0,T7])% of (4.5), (4.6). If the
initial values are monnegative, then (8°(t),u%(t)) > (0,ul) for all t € [0,1]
Moreover, in the absence of deposition (r3 = 0) 6°(t) decays to zero expo-
nentially, more precisely

50(t) S e—(}b71p2t/27
where ¢ = infs " () > 0.

Proof. Existence and uniqueness follows from the Picard-Lindel6f Theorem
0
for ordinary differential equations. We can eliminate dst to obtain the first-

order equation

Ao’ .y o0
E—i_b p P (87) = r3. (4.7)

Standard arguments for ordinary differential equations imply that 69 > 0 if
58 > 0 and r3 > 0. For the film height we obtain

du® ds® _
'OE =T3— dat =b 1027/1/(50) > 0,

i.e., monotone growth, which is stopped only when there are no free adatoms
(6° = 0).
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Moreover, we have

¥ (69)8° = (%) —(0) + 1(50)2 1 @(050) do =
2 o do2 =

Hence, by multiplying (4.7) with 26° we obtain

%(50)2 + b1 p2(69)2 < 2r36p.

For r3 = 0 this estimate implies the exponential decay. O
We finally mention that in the presence of a deposition flux, we may

conclude that §°(t) decreases if cb~1p?6Y > 2r3, i.e., the adatom density is
not too small and the deposition is not too fast.

First Order Expansion

We now proceed to the first-order expansion of (2.9), (2.10), which deter-
mines the evolution of spatial heterogeneities. We start with an expansion
of the length of a surface element Q = /1 + |Vu|?, which we obtain as

0. 1
Q=1+6WQVU+O(62),

and since Vu" = 0, we conclude that the first-order expansion of Q vanishes.
By analogous reasoning we obtain that the matrix P is expanded as

P =1+0(H).

Inserting these relations we derive the system

for (61, ul), where ¢y := ?:T’f(éo). The mean values

ml(t) ;= Lx X Ly = | wl(x X
(1) /Dé<7t>d, B (t) /D (x,1) d

satisfy the system of ordinary differential equations

dh!

d 1 1
il MY =0 -
(m" + ph) =0, o

1
= pcom’,
dt PCo

with homogeneous initial values m!(0) = h'(0) = 0. Thus, the unique solu-
tion is given by m!(t) = hl(t) = 0, i.e., the zero mean values are conserved

in time.
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We can insert the relations for & W and 2% into (4.8) to obtain

1
aa(st LeoAST + 071 p2cpd + b7 p(v(8°) — 2069 Aut = 0 (4.10)
oul
b — ((0) = W08 Au! —peod’ = 0, (4.11)

with the notation u® = +(6°). In the form (4.10), (4.11) the cross-diffusion
structure of the system can be seen very well, we obtain a cross-diffusion
term in the parabolic equation for §!.

Note that for the effective diffusion coefficient in (4.9) or (4.11) we obtain

d, o oy 0d8®  dd®  du® 5 dP o ds0
at W) =) =1 i = = e g
Inserting (4.7) we deduce

d

() - 08%) = TE )b 2 (8) — )

do?

This term is nonnegative for r3 < b=1p?u°, and in particular for 73 = 0 the
coefficient 1(6°) — u%6Y is nondecreasing in time. Hence, if the initial value
satisfies 1(0]) — pddy > a > 0 for some a € R, then

Y(8°(t)) — pl()6°(t) > a, YV te0,T). (4.12)

Because of the physical interpretation as a system with underlying en-
ergy dissipation, we do not look for standard weak solutions with (55, ucl]) €
Lger(D)z. As a motivation we consider a second-order expansion of the

energy around the equilibrium (83, u9) = (0, T%I) which is given by

62
[ 9V THVuP dx = D1+ G [ (@06 + [Vul) + 0.

Hence, in order to guarantee that the first non-trivial term in the energy
expansion is defined, we have to look for weak solutions corresponding to
initial values
(5(1)7 U’O) Lf)er(D) X Hgl)er(D)
We denote the product space for the weak solution as
Vper = {( 1 1) ‘ 51 € C(O T H}%er( )) OC([O T] L?Jer(D))
mcl(o T; H; L(D)),u' € C(0,T; H2,.(D))

per per

NnC([0,T); HE. (D)) nCY(0,T; L3, (D))}.

per per

In order to derive existence and regularity results for (4.10), (4.11), we
rewrite the model as an abstract parabolic equation in the form

0
(0 uh) + AWM @ ut) =0,
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with the operators A(t) : H2..(D) x H} (D) — L2..(D) x H.1(D) defined

per per per per
via
.A(t)((51 ul) — —LCOA(Sl + b_1p26051 + b_lp(¢(50) _ 2M050)Au1
o b7 ((8%) — p06°) At — b pegs” -

We start by verifying that A(¢) is the generator of a parabolic evolution
semigroup (cf. [1]) in the time interval (0,7);

Lemma 4.2. There exists wy € C such that, for each t € (0,T) and Re
w > wg > 0, the operators
(WI + A(t) : Hper(D) x Hyor(D) — Lipe,(D) % Hyer(D)

are continuous linear operators with bounded inverse. Moreover, the depen-
dence of A(t) ont is Lipschitz in the time interval (0,T).

Proof. The continuity of the operators wl+.A(t) can be obtained from stan-
dard estimates on the defined spaces, and the Lipschitz-continuous depen-
dence on t follows together with the Lipschitz-continuity of the coefficients.
In order to verify the existence and boundedness of the inverse, we rewrite
the equation (wlI 4+ A(t))(v,w) = (f,g) as

B(t)(v,w) = C(t)(v,w) = (f,9)
with the operators

[ —LegAv + (w+ b peg)v + b7 p(1(6%) — 2u°6%) Aw
B, w) = < T () = 080 Aw + wu )

and
C(t)(v,w) := B(t)(v,w) — A(t)(v,w) = (0,b™ pcov).

Since B(t) is a differential operator in triangular form, it is straight-forward
to show that B(t)~! exists and is continuous for Re w > 0. Moreover, from
the compactness of embedding operators we can deduce that C(¢) is a com-
pact operator, and hence, B(t)~!C(t) is compact. Thus, (wI+.A(t))(v,w) =
(f,9) is equivalent to
(I=BB~'CW))(v,w) =Bl (v,w),  in Hio (D) x Hyo (D).

Since I — B(t)71C(t) is a compact perturbation of the the identity, it is
continuously invertible if and only if it is injective (due to the Riesz-Schauder
theory, cf. e.g. [33, Thm. 79.1]), we may conclude that (wl + A(t)) has a
continuous inverse if and only if it is injective.
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Now assume that (wl 4+ A(t))(v,w) = 0, then we can multiply the two
equations with (v, —Aw), integrate over 2, and add them to obtain (after
applying Gauss’ Theorem)

0—L/M%WW+@H¢”&mWP+V%wwwﬂfﬁmwj
Q

+b‘1(w(5°) - ,u050)\Aw\2 + w\Vw\Q + b tpcgvAw | dx.

By considering in particular the equation for the real part and applying the
Cauchy-Schwarz inequality we deduce

3 B 2+ w 60 _92 060 2
0 > /Q[LCOWUZJF(RGWer 'pPco—b IP(CO Q(L(EO))_MOI;O) ) ol

+(Re w|Vw|? | dx.

If
5+ ((6°) — 2u°6")?

> p-1 (Co
O=lom T 2(w(80) — 080

then we may conclude v = 0 and Vw = 0, which implies w = 0 since
[pw dx = 0. Thus, A(t) is injective, which completes the proof. O

Since A(t) defines a parabolic evolution semigroup, we can now apply
well-known results from linear parabolic theory (Theorem 1.2.1, p.43, and
1.2.2, p.44, in [1]) to conclude the following well-posedness result:

Theorem 4.3. Let (65,uj) € L2.(D) x H}.(D), let (6°,u°) € C'([0,T7])?
be the unique solution of (4.5), (4.6), and let (4.12) be satisfied. Then (4.8),
(4.9) has a unique weak solution (6%, u') € Vper, which depends continuously

on the initial value.

Linear Stability of Equilibria

In the following we study the linear stability of equilibria, i.e., the first-

order expansion around a flat surface with vanishing adatom density. Since
0

ddit =0 and §° = 0 at equilibrium, the system (4.8), (4.9) simplifies to

d6' oul
Z _ LeaASt - = 4.1
D coAd” +p En 0 (4.13)
1
bfg; — Aul = pepdt = 0. (4.14)

Multiplying (4.13) by cod! and (4.14) by aa—utl and subsequent integration, we
obtain the estimate

d (co 142 1/ 1)2
dt<2/D(5)dx+2 D\Vu]dx
2 1)2 ou' 2
< —Lcg | [V |"dx—0b | (—=-)° dx.
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Inserting (4.14) at the right-hand side we deduce
1
b/(au)Q dx = bl/ (Aut + pegd)? dx
p Ot D
= b_1/ [(Au')? + 2pcoAut st + p*ch(6")?] dx
D
1
> b_l/ [(1 —v)(Aut)? + (1 - ;)p2cg(51)2 dx
D

for arbitrary v € (0,1). Moreover, due to Poincaré inequalities (note that
6! and u! have mean zero), there exists a constant C' > 0 such that

/ (Vo2 dx c/ (61?2 dx
D D
/(Au1)2 dx > C/ |Vul|? dx.
D D

Y

Thus, we obtain the estimate

1
4 CO/ (612 dx + / IVull? dx ) < —b7l(1 y)c/ IVul|? dx
1
- <LcoC' —b 12k (= — 1)) / (61)? dx.
v D
Thus, for 1 — v sufficiently small there exists a constant ¢ such that

d
—El < _¢E!
a =

holds for the first-order expansion of the energy functional

1
E' .= 620/ (61?2 dx + 2/ |Vul|? dx.
D D

As a direct consequence, we obtain the exponential decay of the energy
E' and the exponential convergence 5! — 0 and u' — 0. Hence, we may
conclude linear stability of the equilibrium in the film case.

Local Existence for the Nonlinear Problem

In the following we provide some partial existence results for (1.7), (1.8)
for initial shapes sufficiently close to flat films, and initial adatom densities
sufficiently close to constant densities. The main tool of this analysis is the
implicit function theorem, to whose application the results of the previous
section on the linearization (i.e., the first-order expansion) around special
situations provide a basis. For the sake of simplicity we restrict our attention
to the film case for dimension d = 1 and assume without restriction of
generality that D = (0,1). Moreover, we assume for simplicity that rio = 0.
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The function space in which we look for a solution is given by

Woer = {(8,u) | § € C(10,T]; Hyer(D)]) N C(0, T; Hpor (D))
NCY(0,T; Hper (D)), w € C([0,T]; Hyer (D)) N C(0, T Hpey (D))
NCH(0, T3 Hper (D))}

a choice which is motivated by the need to obtain § € C(D x [0,7T]) and

= /14 |Vul? € C(D x [0,T]) via embedding. We can use this setting
to obtain a local existence around flat initial surfaces and around constant
initial adatom densities:

Theorem 4.4. Let (0),u) € R% satisfy ¢(83) — ¢/'(50)85 > 0 Moreover,
let D = (0,1), Yy € C([0,1]), r12 = 0, and let € > 0 be arbitrary. Then
there exists T > 0 and a constant Cy > 0 such that for all initial values

(60, u0) € Hy, (D) x H2. (D) and right-hand sides r3 € C*(0,T]; Hp,,.(D))N
C([0,T); H)3 (D)) such that

luo — ugll 2 + (180 — 8ol 2 + [lrs — 751 < Co

there exists a locally unique solution (u,d) € Whye, of (2.9), (2.10) with initial
value (ug, dp).

Proof. We give a sketch of the proof based on the Implicit Function Theorem
in Banach spaces (cf. [19, Theorem 15.1]). First of all, one observes that
(6°,u0) is a spatially homogeneous solution of (2.9), (2.10) for the constant
initial value (43, u3). Moreover, with our choices of function spaces (and
the embeddings H}..(D) — C(D) and H2 (D) — CY(D) for D = (0,1))
it is straight-forward to verify that the operators defining the left-hand side
of (2.9), (2 10) are continuously Fréchet-differentiable in a neighbourhood
of (6°,u% 60, u% rY). By analogous reasoning as in the proof of Theorem
4.3 (applying again Theorem 1.2.1, p.43, and 1.2.2, p.44, in [1], but with
the function space setting of Wper) one can show that the linearization of
(2.9), (2.10) around (8%, u%; 69, u" ) is well-posed, i.e., the derivative of
the equation operator with respect to (0,u) has a continuous inverse. The
implicit function theorem finally implies the existence of a locally unique
solution. O

Note that the result of Theorem 4.4 is still local in time, since the con-
stant Cy bounding the difference of initial values and deposition to the ho-
mogeneous case may depend on T'. Since general flat surfaces are not stable,
one has to expect blow-up of the solution to the first-order expansion and
global existence cannot be obtained using the above techniques. The situ-
ation obviously differs close to equilibrium, since uniform estimates for the
solutions of the linearized problem around equilibrium can be obtained.
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Theorem 4.5. Let the assumptions of Theorem 4.4 be satisfied. Then
there exists a constant Cy > 0 such that for all T > 0, initial values
(60, u0) € H},.(D)x H2 (D), and right-hand sides r3 € C*([0,T]; H},,(D))N
C([0,7); HHE(D)) N L2([0,T] x D) satisfying

per

m
luo — mllm + 100l + sl < Co

there exists a unique solution (u,d) € Whyer of (2.9), (2.10) with initial value
(up,d0)-

For the sake of brevity we just sketch the derivation of an a-priori esti-
mate uniformly in time, the global existence can then be obtained together
with Theorem 4.4. If u' and §! denote the solution of (4.13) with right-hand
side 73 and (4.14), then for 6° = 0, the functions v := %—6;, w = 88“ solve

do_ g O w0
ot Vo2 TP T o
ow 0w
ba—w—pcm} = 0.

Multiplication of the equations with cgv and %,7 addition and integration
yields

5 [ (conle, 1P+ 5 e T >r>dx—;/<cov<x,o>2+r§;<x,o>|2>dm

:co/ ar?’ v dx dt — // 12+b|i;|2) dx dt.
0

Applying integration by parts and the Cauchy-Schwarz inequality to the
first integral in the second line we deduce

1 L
2/ (cov(z, T)* + |7 x,T)] dm+/ / 200| b\a—wP) dx dt
D

1
SQ/(Cov(:r,O) +|—(x0 d:r—l—/ /7“3 dz dt,
D

which provides a uniform estimate in 7.

We finally mention that in the case r3 = 0, the above estimate for v and
w can be used together with a Poincaré-inequality to obtain exponential
decay of v and w in time. In order to obtain a result on the decay of the
solutions (6, u) of (2.9), (2.10), we shall investigate the decay of the energy
below.
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Long-Time Behaviour of the Nonlinear Model

We now turn our attention to the long-time asymptotics of the nonlinear
model (2.9), (2.10), again restricting our attention to the case D = (0,1) C
R! for simplicity. We consider solutions such that % is globally bounded in
L>*(D x R4 ) and hence, there exists a constant cg such that

2
1<Qz,t) =4/1+ <gz> < cq, VaxeDteR,. (4.15)

Note that due to the continuous embedding H?(D) < C'(D) in the case
D C R!, the global existence of such solutions with uniform bound is guar-
anteed by Theorem 4.5.

The basic quantity, whose decay we shall study in the following, is the
energy difference

e(t) = E(3(t), u(t)) — E(5,a) = / W(6(z, 1)Q(, 1) — 1] da.

D

From the energy dissipation relation we deduce as above

de L (0u 2 b fou)?

R — (== — | = dx. 4.16

dt /D[c23 (c%:) +Q<3t> ! (416
In order to obtain exponential decay of e, we need to estimate the right-hand

side from above by —cge for some constant ¢y € R4, which is again mainly
based on Poincaré inequalities.

Theorem 4.6. Letr =0 and let (6,u) € C(Ry; HY(D))NC(R4; H*(D)) be
a nonnegative solution of (2.9), (2.10) on D = (0,1) satisfying (4.15) and

Y(6(x,t)) — d(z, t)u(z, t) > a, V(z,t) € D x Ry (4.17)
for some a > 0. Then there exist constants cg > 0 and c; > 0 such that

E(5(t),u(t)) < E(6,4) + E(5(0), u(0))e™ ! (4.18)

2
/(52 dx—i—/ (8u> dzx < cre” ot (4.19)
D D oz

Proof. We start by estimating the right-hand side of (4.16). Inserting (2.10)

and
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we obtain

b [Ou\> B 1T 0%u 5]
/DQ<at) o = [ o _(¢(5)—5M)W—PMQ] da

- 82 2
> /Db;5 _(1#(5)—5#)8;—/%23] da

2

2
— [ i | -2 (55) +p2u2Q6] &o

—2% /D(w(é) - 5’u)88x (arctan gu) pu dx

for any € € (0,1). Since u is periodic, 6—; has mean zero, and we may
therefore apply the Poincaré inequality to obtain an estimate of the form

ou\ 2 ou2\ 2
C — < -
C/D<333> dx_/[)<8x2) e

for some constant ¢ > 0. From the nonnegativity of J, (4.17) and the
convexity of 1) we deduce

1 (6) — 26p| < [¥(6) — du| < ¥(0) =

and hence, using integration by parts (and periodicity of u and ¢ to cancel
the boundary terms)

—22 /D(w(é) - 5#)88 (arctan g) pu dx

€p o
=2— — 204) = — dx >
2 , D(w(é) 251) 81‘ arctan d:c o / | —

_ ea’ 5/ % dr — 26’0 / 6—'“ dx
2bc5Q p \ Oz a?bé Ox
Using (4.15), (4.17), and the Poincaré inequality we further deduce
b [ou\? € a2¢ (ou\? 2p%c; ou 2
(=) de> = aLcocpova 2 2 Q (Yp d
/D Q (at> v = b/D [2@22 <0x> TP T g <8x> ©
and hence,

dt b/ [ <> +cqpp +<;’CL3 2’;) @2‘)] da.

Choosing 0 < € < ; SLQC we obtain an estimate of the form
€Q

da. (4.20)




Using the properties of the maps %Z — @ and 0 +— (d) ( convexity,

values and derivatives at § = 0 and %Z = 0), we deduce

¢ = [w®-nQdr+ [(@-1ds

D

/D(w(é)—l) dm+/D(Q—1) dx

v

v

C

for some constants C, C' > 0. Together with (4.20) we can now conclude

Z0) < —coelt)

for almost any t and the Gronwall Lemma implies (4.18) Moreover, the above
lower bound on e implies (4.19). O

We finally mention that in the case of the assumptions on the solution
made in Theorem 4.6, namely (4.15) and (4.17), are satisfied at least if the
initial value is sufficiently close to equilibrium in the sense of Theorem 4.5.
For a constant Cj sufficiently small, the uniform bounds on the linearization
can be used to obtain (4.15) and a uniform bound of the form 0 < 6 < CyC}
for all ¢t > 0. Consequently, we can estimate

Y(8) — o >1— CECy

for some constant Co, and for Cj sufficiently small this implies (4.17)

4.2 Crystals close to Radial Symmetry

We now consider the dynamics for a crystal structure in R? close to radial
symmetry, without restriction of generality centered at the origin. The

angular variable will be denoted by 6. We consider a deposition flux being

homogeneous in the radial direction, i.e., r = 7o(t) . We assume that the

x|
initial value satisfies

So(x) = 60+ esh(x) + O(?) (4.21)
x0(8) = RY(cosh,sinh) + exp(0) + O(e?) (4.22)

and look for solutions in an expansion of the form

5(0,t) = &°%t) +e 5M0,t) + O(?) (4.23)
x(0,t) = RO(t)(cosh,sinf) + e x(6,t) + O(?). (4.24)
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We look in particular for an expansion such that the arclength is unchanged
to first order, i.e.,

ox 0 9
50 =R"(t)+ O(e),
which leads to the condition
oxrl . oxl 7
%SIHH— %COSQ = 0 (425)

for the first-order expansion of the parametrization x! = (z1, z1).

Lowest Order Expansion

In order to obtain the lowest order expansion of (1.7), (1.8) in the above
parametrization we notice that the curvature is given by

1 € 82.'E1 axl . 2
=m0 gp 0+ O,

and the normal velocity can be expanded as

dR° oxt oz} . 2
V= W—i—e(ﬁcose—i-ﬁsme)‘i‘@(e )-

The derivatives with respect to the shape variable S turn to derivatives with
respect to the angular variable 6, which vanish at lowest order. Thus, the
lowest order expansion is determined by

deso 59\ dR°
@ (“ RO> o o (426)
dR° oY oY

We shall use the notation p° = v/(6°) for the chemical potential correspond-
ing to &Y.
The conservation of the total mass

m(t) = 2R%76° + (R°)%mp
is described by (4.26), which is equivalent to

dm
— =2R%ry,
dt 0
i.e., the change of mass is proportional to the mass flow over the surface.
In a similar way, we have dissipation of the lowest order expansion of the
surface energy
E°(t) = 2R"my(87),
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which we obtain as

dE° dRO\?
QLT opop (G 2RO 0
7 R 7rb< 7 ) + 2R mrop

In particular, we obtain a decrease of the surface energy at constant mass
in the absence of deposition.

Theorem 4.7. For all initial values (63, R)) € R2 with Ry > 0 and each
ro € C([0,T)), there exists a unique solution (6°, R®) € C*([0,T))? of (4.26),
(4.27) with R°(t) > 0 for all t € [0, 7).

Proof. We insert (4.27) into (4.26), and equivalently rewrite the system as

ds® 50 50 50
L 2 (o S

AR () %\ (50
E R (Hm)w )
Now let [ := %, then we can seek (6%, f) equivalently as a solution of
ds®
= b+ f0°) (fe(0°) = (o + £0°) w'(6) + 7o
T b P 5 (o 10°) ()

Since the right-hand side is continuous and a C'-function of (6°, f) we may

conclude existence and uniqueness of a solution (6%, f) € C1([0,7])? from

the Picard-Lindel6f Theorem for ordinary differential equations. It suffices

to show that f > 0 to conclude the assertion. On the other hand the identity
dR°

o = bR b7 (p+ £67) ¢'(07)

implies the boundedness of Ry = % and %. Hence, there exists a solution
Ry € CL([0,T]) such that Ro(t) > 0 for all t € [0,T]. O

In the film case, we have seen that the lowest order expansion of the
adatom density decays to zero exponentially. In the crystal case we cannot
expect such behaviour, since the adatom density does not vanish at equi-
librium. One would rather expect that the adatom density will be bounded
away from zero for all times if

69 >0 and 7o(t) >0, Vt>0. (4.28)

This can be seen as follows: since 1/(6) > (0) = 1 and R°(t) is bounded,
there exists a constant C' > 0 (depending on T, §), and R") such that

$(8%) — ROpy! (6%) — 6%/ (8°) > 1 — Cpy/ (8°) — 6%/ (8°),
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and because ¢/(6°) — 0 as §° — 0, there exists a constant a > 0 (depending
again on T, &), and R) such that

»(8%) = R°p/(8°) — 6%¢/(8") > 0

for 6° < a. With the ordinary differential equation for §° we conclude that

do° 50 60 &0
= b ! (p—I—RU> (wéo) — <p+RO> w/(50)> +r9>10>0

if 6°(t) < a. Hence, under the assumption (4.28) we may conclude the lower
bound §°(t) > min{s),a} > 0 for all t € [0, T].

We can use a similar reasoning to show that the effective diffusion coeffi-
cient 1(69) —4'(69)6°, which we will meet again in the first-order expansion,
is bounded away from zero if ¥(83) — ¢'(69)89 > 0 and ro = 0.

First Order Expansion

In order to simplify the analysis of the first order expansion problem for
(1.7), (1.8), we introduce the variable

w' := zl cos§ + zlsin 6. (4.29)
We have o0l ol Bl

w ./1:1 1‘2 .

—— = —=cosf + —=sinf

o o T o
and thus, aa—“f equals the first-order expansion of the normal velocity. More-
over,

32 1 82 1 82 1
vo_2h cosf + x2sin9—x%cos€—x%sin9,

002 062 062
from which we conclude that the first-order expansion of the mean curvature
is given by

1 e 0%w! 1 9
k=——+ —5(—5 +tw O(e).
We can ignore the first order expansion of the tangential velocity, since the
surface gradient of 6° vanishes and thus v - V4 = O(€?).
Using these relations for normal velocity and mean curvature, we derive
the following equations for the first-order terms

8751_ LCO 8251+( +i0)8711)1+ﬁd7}%(]
ot (RO2 a0z VTRV 9t TR a4t
50 dR® &w!
P a e TY) = 0 (430

811)1 1/}0—50 0 3211)1 50
o (RO)Q"(%2 +ul)—colp+ 50t = 0. (431)
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The analysis of this first-order expansion (4.30), (4.31) can be carried in
the space
Voer = {(6",w") | 6" € C(0, T Hy, ([0, 27T])) NC([0,T]; Lyer ([0, 2]))

NCH(0,T; Hyr([0,27])),  w' € C(0,T; Hp ([0, 27)))

NC([0, T); Hper ([0, 27])) 0 CH(0, T Ly ([0, 2])) 3.
Since the proof of existence and uniqueness can be carried out in an anal-
ogous way to the analysis of the first order expansion in the film case, we
only state the corresponding result:

Theorem 4.8. Let (65, wy) € L2,([0,2n]) x H}([0,2n]), and let (6°, R?) €

C1([0,T1)? be the unique solution of (4.26), (4 27) with positive initial values
and rg > 0. Moreover, let ¥(6°(t)) — 6°(t)u®(t) > a, be satisfied for some
a >0 and all t € [0,T]. Then (4.30), (4.31) has a unique weak solution

(o', wh) € Vper, which depends continuously on the initial value.

Theorem 4.8 guarantees the existence and uniqueness of the adatom
density and of the transformed variable w!, it remains to reconstruct the
first-order expansion x! of the surface parametrlzatlon from w'. From (4.25)
and the definition of w! we have

1 1 1 Oz} Oz} 1
] sinf — :CZCOSQ):x10089+$281n0+751 60— =w

00 26' 00 Ocos

We can integrate with respect to 6 to obtain
0
x1sinf — zd cosh = / whdC.
0

We can use this relation together with the defintion of w! to compute the
first-order expansion of the parametrization as

cosf sinf 1(9 t)
x!(0,1) = < sinff —cosf ) ( Sy wh(¢, t)d¢ )

Linear Stability of Radially Symmetric Equilibria

We can now investigate the linear stability of a radially symmetric equilib-
rium, the linearized model around which is given by

961 Lcy 5251 50 ow!
95 Ley 9! w - _ 4.32
o " TPt H oo
1 0 _ 50,0 52,1 0
O O ) —a(p+ S8 = 0. (433)

ot (RY)2 " 962 RO
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By completely analogous reasoning to the film case we can derive an estimate

of the form
dE!

dt

where E' is the first-order expansion of the energy, given by

E\t) = /0 7 lco((sl)?+ (%f)g—(wlﬁl do.

Thus, we again obtain exponential decay of E'. Since the smallest eigenvalue

of the operator w — —%27%’ in L2..([0,2n]) is equal to 1, we obtain that

/0% [(‘98“;)2 - (w1)2] do > 0.

Equality would imply that w' is a linear combination of the functions sin @
and cos 6, and consequently that 1 and a1 are constant, which is impossible
for the first-order expansion unless x! = 0. Hence, the decay of E' implies
that 6' and u' converge to zero, and thus, linear stability of the radial

(t) < —cEYt), Vte(0,T),

equilibrium.

Nonlinear Dynamics of Star-shaped Crystals

In order to gain some insight into the nonlinear dynamics in the crystal case,
we consider a star-shaped crystal in the plane, i.e.,

X(t) = eu(@,t) (COS 0, sin (9), 0 S [07 27T],

with a periodic function u. Moreover, we assume that the deposition can be
written as
r = rpqd(cosf,sinf),

with a nonnegative, periodic scalar function 7,,4. The normal velocity V'
and the mean curvature x can be expressed as

e" ou 1 0%u 2
V=0m "o <892 —@ ) (4.34)
where
Q=114 (24 2 (4.35)
= 50 ) .
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The model (1.7), (1.8) can be rewritten in terms of v and an adatom
density ¢ being a function 6 as

05, 10unds 0 (Letop
Ot Q Ot 90 00 00 Q 09
5 0%

ou

(R TS YA » Tt _
ou 1 0%u
U VR FAVS (i - 4
bet o — (¥ —due (Q2 502 > pHQ 0, (4.37)
in (0,27) x (0,7). The associated surface energy is given by
2
E(u,0) := E(T,0) = P(6)e"Q db. (4.38)
0
At constant mass o
m(u,d) = 0e"Q do,
0

there exists a global energy minimizer of radial shape and constant adatom
density due to Theorem 3.6, which we shall denote by the constant (i, d).

The lowest order expansion around a radial shape (u’ constant) and
constant adatom density 6° is given by (4.26), (4.27) with u® = log RP.
Besides the exponential terms e“, the model (4.36), (4.37) has a similar
structure to the film case (2.9), (2.10). Therefore it is not surprising that
the proof of local existence close to spatially homogeneous adatom densities
and radial shapes (i.e. flat graphs u) can be carried out in an analogous
way as the proof of Theorem 4.4. The additional exponential terms do not
appear in the linearization and their derivatives can be handled in a straight-
forward way due to the strong regularity we use. Around equilibrium (4, ju)
and vanishing deposition 7,..q = 0, global bounds can be derived as in the
film case in Theorem 4.5 and hence, we can derive the following existence
result:

Theorem 4.9. Let (60, u)) € R and let (8°,¢"") be a solution of (4.26),
(4.27) satisfying ¥(8°(t)) — °()u°(t) > a, for some a > 0 and all t € [0, T).
Moreover, let D = (0,2n), r% , € C([0,t]), and let € > 0 be arbitrary. Then
there exists T > 0 and a constant Cy > 0 such that for all initial values
(60,u0) € Hp, (D) x H2..(D) and right-hand sides

per

rrad € C([0,T); Hyer(D)) N C([0, T); Hpoy (D))

per
such that

luo — ugll 2 + 1160 — 601l + lIrraa — Traall < Co
there exists a locally unique solution (u,d) € Wpyer of (4.36), (4.37) with

initial value (ug, dp).
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If, in addition, (u,83) = (4,9) and 0, = 0, then the existence is global
in time with uniform bounds in T.

Opposed to existence and uniqueness, the characterization of long time
behaviour is different to the film case, since the structure of equilibria differs
due to & # 0. As a consequence we cannot derive exponential decay from
the energy alone, but instead we have to consider the Lagrangian

L(u,5;\) = E(u, 5) + A(m(u, d) —myp),

with scalar parameter A\. Note that at equilibrium we have

2w
0= StabiNn = [+ e o,
00 0
at least for each constant 1 and hence, the equilibrium Lagrange parameter
is given by A = —i = —¢/(). Since the mass is conserved during the
evolution, we obtain

dt . dt -

—L(u(t),0(t); \) = —E(u(t),o(t)).

CLu(0),6(0); A) = S B(ult),5(1))

Thus, we can alternatively use the Lagrangian L for the decay estimate, and
as we shall prove in the following, L can be estimated from below close to

equilibrium:

Lemma 4.10. Let (4, 5) be the minimizer of E at fized mass m = myg, being
constant according to Theorem 3.6. Then there exists a constant C1 > 0 such
that

21 ~
L(u,6,A) — L(a,g, 5\) > Cl/O <(5 — 5)2 + (u— a)Q + (% _ ZZ)?> do

for all (u,8) € HY, (D) x H}.(D) with ||u— @l g2 + [|6 — S|l 2 sufficiently
small.

per

Proof. We start by computing second derivatives of L at equilibrium

82 e 2m . o ) 890 2
Sal@ i) = [ wd) L e <<,o +(5) ) i
82 . 2m . R
G L8N ) =[G+ Dygnet dp

82 R 2m . R

gz L@ (mm) = | W (8)ne db
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Since A = —/i, the mixed derivative m L(@,6; \) vanishes and hence, if
¥(8) + Ao = ¥(8) — fid is positive, we can find a constant Cy such that

L//(A 85\ 2 °n 890 ? 2
0

Thus, L is locally strictly convex around (1, 3), which implies the assertion.
O

Now we are in position to derive an exponential decay result for the
adatom density and the parametrization u locally around equilibrium:

Theorem 4.11. Let r = 0 and let (§,u) € C(Ry; HY(D)) N C(Ry; H3(D))
be a solution of (2.9), (2.10) on D = (0,2m) satisfying § > 0 and

Y(6(x,t)) — d(z, t)u(z,t) > a, V(z,t) € D x Ry (4.39)
for some a > 0. Then there exist constants cg > 0 and c; > 0 such that
Lu(t), 8(t), \) < L(, 5, \) + L(u(0), 5(0), \)e ™0t (4.40)
and
/:W <(5 02+ (u—1a)+ (% - ?;)2> df < cre . (4.41)

Proof. A similar calculation to the proof of Theorem 4.6 yields

dt . 2 eBu /gy \ 2 T Le ™ (Op 2
dtL( u(t),o(t),\) = —b/o ) <8t> d@—/o 0 (89) de.

By inserting (4.37), using the uniform estimates for v and @), and analogous
reasoning as in the proof of Theorem 4.6, we derive an estimate of the form

7 L(u(),5(0). %) < ~C /027r [(%)2 + <§f;; - QQ)Q_ df.

The second term can be estimated via

2T /52y, ) 2 B 27 92u ,0 .
| Ge-e) w - [(892) 20|
2m 0 (0u ou 9
/0 [_39<e+3(69)>+Q

2

27
= Q do > 03/ ((8) + A6)e"Q db,
0

0

where we have used that () > 1 and the uniform bounds for u and §. Hence,
dt < .
2 Lu(®):8(t), ) < —coL(u(t), 6(t), A),

which implies the exponential decay (4.40). Finally we conclude (4.41) by
inserting Lemma 4.10. O

v
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5 Numerical Simulation

In the following we discuss the numerical simulation of the model (1.7), (1.8)
in the film case.

5.1 Space Discretization

Starting point of our approach is the weak formulation (2.13) and (2.14),
to which we apply a finite element discretization in space. For this sake
we assume that D is a rectangular domain and choose a triangular grid
Th, covering D and satisfying usual regularity conditions. Moreover, we use
standard linear finite elements, i.e., functions in the discrete space

Wh = { u € Cper(D) | ulr is affinely linear,V T € T, }.

The semidiscretization of (2.13) and (2.14) consists in looking for functions
(6", uh) € C1(0, T; W)? satisfying

os" h Pl v o, Vul ouh oul
v L . i

/D[at s T V(@t“O)”at“”] =
= / {7‘3 —vul- I‘12:| v dx(5.1)

D
oul w Vu - Vw Vul -V (wu)
U W h _ sh ok

J 15 g TG ) ot
=0(5.2)
for all (¢, w) € Whand allt € (0,T), where u" = ' (6"), Q" = /1 + |[Vul|2,

and P" = (Q")?I — Vu" @ Vul.
This system is supplemented by initial values

Sht=0)=060,  ult=0)=ul, (5.3)
where ug € Wh and 68 € W" are discrete approximations of the initial
values ug and d, e.g., the H'-projections to the subspace W".

5.2 Time Discretization

Now we turn our attention to the time discretization of (1.7), (1.8), Since
the adatom surface diffusion model consists of second-order equations, an
explicit time discretization seems unfavourable due to severe stability restric-
tions on the time step. On the other hand, a fully implicit discretization
leads to strongly nonlinear equations in each time step, which may be dif-
ficult to solve. We therefore construct a semi-implicit scheme, which only
needs the solution of linear equations in each time step,
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Semi-implicit schemes for the original surface diffusion model have been
introduced in [6], and analyzed in [18]. The approach for surface diffu-
sion can serve as a guide line for the time discretization of some terms in
(5.1), (5.2). For the additional nonlinear terms we propose to use a semi-
discretization yielding symmetry of the discretized problem. If we decom-
pose the time interval into [0,7) = Ug(tg, tx—1) with tx = k7 = %T, then
we compute the values ul! = u”(t;) and 6 = 6"(t;) from the semi-discrete
time step

PIVsr -V Vul
D0} o QI 4 L —E kLl + o6k .V (Drulp) + pDrulp| dx
PV (cFop — ) -V
_/ L—*k (<0 h'uk) L4 dx—l—/ [Tg—VuZ-rlz] pdx  (5.4)
D Qy D
Vul, - Vw Vul - V(wél )
bDTuh1 + (6P —E——  ckgp —k ML pwct sl dx
\V/ h . \v4 k(sh _,h
—— [ | I et -] ax (59)
D k

h _ ., h
with Dyull == S ph =’ (6%) and ¢* > 0 being a constant such that

¢ > max (5] (x)).

In the case of the quadratic surface free energy (3.2) we can choose ¥ =

and thus 75,}; = “Z for all k.

5.3 Structure of Discretized Problems

The system (5.4), (5.5) can be rewritten as a linear system for the nodal
values (A,U) of (6,’;+1,u],;+1,). This yields

M1+ K -7 'L A\ _(F (5.6)
C()LT T71M2+K2 U - G /) ’

The matrices My and My are mass matrices, K; and Ky are stiffness ma-
trices, and L is the only non-symmetric matrix, corresponding to the dis-
cretization of the sum of a first-order and a zero-order term.

We now multiply the first equation by —7cg and exchange the order of
equations and variables in (5.6) to obtain the equivalent linear system

T71M2 + K> C()LT U . G (5 7)
coL —Co(M1 + TKl) A o —coTF ) ’

We can now further introduce a dual variable P and equivalently rewrite
the system (with the notation A = 77 'Mj + Kz and B = ¢o(M; + 7K1))
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A 0 C()LT U G
0 B -B A | = 0 . (5.8)
oL —B 0 P —coTF

The expanded problem (5.8) is the first-order optimality condition of the
linearly constrained quadratic optimization problem

1
Lorav £ LATBA —6¢TU & min (5.9)
2 2 UA

subject to LU — BA = —¢gTF, (5.10)

and due to convexity, the optimization problem and the first-order opti-
mality condition are equivalent. Since the objective function is bounded,
coercive, and strictly convex, and since the admissible set is bounded and
nonempty (which is easy to see by setting U = 0 and solving for W), we
obtain:

Theorem 5.1. There exists a unique solution of the fully discrete problem
(5.4), (5.5), respectively of the equivalent linear system (5.6).

The well-posedness result for the discrete problem provides no informa-
tion about the conditioning of the linear system (5.6). For d = 1, the system
size is even for fine discretization sizes small enough that direct solvers can
be used to obtain the solution with reasonable efficiency. For finer dis-
cretizations of surfaces (d = 2) it may be advantageous to use an iterative
solver, in particular if the time step is not too large and thus, the previous
time step may provide a good initial value for the iteration. Since (5.6) re-
spectively the symmetrized form (5.7) is indefinite, one cannot use standard
iterations and preconditioners for second-order elliptic partial differential
equations, but more general Krylov-subspace iterations such as GMRES or
QMR (cf. [42]). As a simple approach for the preconditioning one can use
block-diagonal matrices such as

P— ( 7'711\7[2 +K2 0 )
0 *Co(Ml +7‘K1)

with standard preconditioners Mi and IA{Z' for the mass and stiffness matrices.
In our numerical tests, this yields reasonable results, but a more detailed
investigation of suitable preconditioning strategies is definitely needed in
future research, with the possible aim of performing large-scale simulations
of thin films with nanoscale surface modulations.

5.4 Results

We now present some simulation results obtained with the scheme discussed
above. We start with planar curves, i.e., d = 1, and use the domain D =
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Time 002, y-1 Tme =004, 1

Time 0.6, -1

Time 01,71 Time =015, 1

Time 02,1

Figure 5: Evolution for v =1, §° = 0.2, «® = 0.5 + 0.5 sin(7z).
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Figure 6: Evolution for v = 10, §° = 0.2, u°
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Figure 7: Evolution for v = 100, §° = 0.2, u® = 0.5 + 0.5 sin(7z).

(—=1,1). In this case we illustrate the results by plotting the curve shape as
a solid line and the adatom density as a dotted graph over the surface.
The first example uses an initial value far away from equilibrium given
by
u’(z) = 0.5 + 0.5sin(7z), Y =0.2. (5.11)

We study the evolution towards equilibrium for different values of v in the
surface free energy ¢ () = 1+ %52. The further parameters used are b = 0.5,
L = 1. In Figures 5, 6, and 7 we show the results for the values v =1, v = 10,
and v = 100 at the time steps ¢ = 0.02,0.04,0.06,0.1,0.15, 0.2, computed
with a time step 7 = 0.002. One observes that for increasing v, the adatom
densities are decreasing towards zero, for v = 100 there are hardly free
adatoms and the evolution is very close to the one obtained with the kinetic
surface diffusion model (2.15), (2.16). In all three cases, the evolution of
the free boundary shape I' is very similar, while the decay of the adatom
density is clearly much faster for large values of ~.

The long-time behaviour is illustrated in Figures 8 and 9. Figure 8
shows semilogarithmic plots of the adatom mass and the squared norm
fr( t §(t)? dS vs. time. One observes that both decay to zero exponentially in
time, a behaviour we observe in all experiments without deposition flux, thus
confirming Theorem 4.6. Figure 9 shows semilogarithmic plots of the differ-
ence of the surface energy to the equilibrium value, i.e. fF(t) P(d(t)) dS —2,
and of the mean square roughness [}, (u(t) — u(t))? dx, where u(t) is the
mean value of u(t). One observes that also these two measures decay to
zero exponentially in time, a behaviour that was also observed in the other
numerical experiments.
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Figure 8: Semilogarithmic plot of the adatom mass fr( p0 (t) dS and of the
squared norm fF(t) §(t)% dS vs. time t (for v = 1 and v = 10).

Energy . Mean Square Roughness

—v10 — 10
— — 1
107

Figure 9: Semilogarithmic plot of the energy difference fF(t) »(0(t)) dS — 2

and of the squared norm [}, (u(t) — u(t))? dx vs. time ¢ (for v = 1 and
v = 10).
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Figure 10: Evolution for v = 10, 6 = 0, u® = 0.1, r3 = 1 +sin(rz), b = 0.1.

The second experiment in the one-dimensional case corresponds to a
typical situation appearing in practice: The initial value is a flat curve at
equilibrium (and no free adatoms), and we start a heterogeneous deposition
in vertical direction for time ¢t > 0, determined by the deposition rate rg3 =
1 + sin(7z). The results for two different values of the kinetic coefficient b
are illustrated in Figures 11 (b =0.1) and 12 (b = 1). One observes that for
a small kinetic coefficient, the shape of the film surface follows the sinusoidal
shape of the deposition rate, while for larger kinetic coefficient, the surface
stays much closer to a flat shape, which numerically confirms the stabilizing
effect of the kinetic term on the surface shape as conjectured in [26]. Figure
10 shows the evolution for a large value of -, where the evolution is very
close to the kinetic surface diffusion model. The computations illustrated in
Figures 10 -12 were performed with a time step 7 = 0.001.

A general observation, which applies to all of the numerical experiments,
is that adatom densities are usually higher where the mean curvature is
negative, while the adatom density seems to attain its minimum over the
surface where the mean curvature attains it maximum.

We also carried out a variety of two-dimensional simulations yielding
qualitatively similar results as the one-dimensional films shown above. For
this sake we only provide the results of two simulations here, which illustrate
a peculiar multi-dimensional effect, namely a possibly different directional
behaviour due to different scales appearing in the initial surface. For this
simulation we use the parameters L = 0.1, p =1, b=0.1, vy =10, r = 0,
the time step 7 = 5 % 1074, and the computational domain D = (—1,1)2.
The initial value for the adatom density is given by 6° = 0.1, the one for the
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Figure 11: Evolution for v = 10, §°

=0,u’ =0.1, 73 =1 +sin(mzx), b= 1.
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Figure 12: Evolution for v = 10, (6°,u") = (0,0.1), r3 = 1+sin(7z), b = 0.1.
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Figure 13: Evolution for initial value u® = 0.5 + 0.3sin(7z) + 0.2sin(my),
80 =0.1.

surface height by
u® = 0.5 + 0.3 sin(7rz) + 0.2 sin(7y).

The resulting evolution is illustrated in Figure 13 at six different time
steps. The plots show the graph of the surface height combined with color
plots of the adatom densities on the surfaces. One observes again that
adatom densities are lower in convex regions of the surface than in concave
regions, but there is no unique trend around saddle points, where nonlocal
effects may play a larger role. During the evolution, the surface becomes
flat and the adatom density decreases to zero, which confirms the expected
trend to equilibrium. Since the initial values has roughly the same scales in
the z- and y-direction, the speed of the equilibration is roughly the same in
both direction.

The situation changes by using a different initial value for the surface
height,

u® = 0.5 + 0.3 sin(7rz) + 0.2sin(37y),

where smaller scales appear in the y-direction. From the plots of the evolving
surface and adatom densities in Figure 14 (now at even smaller time steps)
one observes that the equilibration is much faster for the smaller scales, and
after a certain time the surface morphology and adatom density show almost
no variation in the y-direction. In a larger time scale, the surface tends to a
flat shape and the adatom density decreases to zero like in a one-dimensional
evolution.
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Figure 14: Evolution for initial value u = 0.5 + 0.3 sin(mz) + 0.2sin(3my),
80 =0.1.

6 Conclusions

We have investigated a recently proposed model for surface diffusion includ-
ing free adatoms by analytical and numerical methods. From the analysis of
the equilibrium problem and the structure of the energy functional it turns
out that there are two distinct regimes, namely a stable one close to flat
or spherical surfaces with small adatom densities and an unstable one for
rough surfaces and large adatom densities. Moreover, we found that at equi-
librium, the adatom density vanishes in the film case, but not for a closed
curve or surface.

In the stable regime, we were able to obtain local existence results for the
dynamics by surface diffusion, and we derived local expansions around flat
and spherical surfaces, which provide a further insight into the cross-diffusion
structure of the model. One observes that the first-order expansion has a
backward-diffusion term if the condition (4.12), which can be interpreted as
a smallness condition on the adatom density, is violated. On the other hand,
we obtain existence close to flat and spherical shapes and linear stability of
equilibria. Moreover, for smooth solutions the energy and adatom density
decay exponentially. Hence, the different behaviour in two regimes appears
in the dynamics, too. A more detailed investigation of the unstable regime
and stabilizing effects like curvature regularization in the dynamics is left
open as a challenging topic for future research.

Finally, we also provided numerical simulations based on finite element
discretizations and semi-implicit time stepping. The detailed numerical
analysis of the algorithm as well as numerical methods for more compli-
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cated situations is beyond the scope of this paper, but provides an important
subject for future investigations.
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