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Abstract

We examine the general regularization model which is based on
total-variation for the structural part and a Hilbert-space norm for
the oscillatory part. This framework generalizes the ROF and OSV
models and opens way for new regularizations methods, that have not
been considered yet. We provide a straightforward numerical imple-
mentation, following Chambolle’s projection algorithm. In order for
such schemes to be practical, a systematic method for automatic pa-
rameter selection is imperative. The ROF method for selecting the
weight parameter according to the noise variance is reformulated in a
Hilbert space sense. Moreover, we generalize a recent study of GSZ
where the weight parameter is selected such that the denoised result is
close to optimal, in the SNR sense. A broader definition of SNR, which
is frequency weighted, is formulated in the context of inner products.
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A necessary condition for maximal SNR is provided. Lower and upper
bounds on the SNR performance of ROF and GSZ type strategies are
established, under quite general assumptions.
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1 Introduction

Regularization of images by variational methods has shown to achieve im-
pressive results and is today an increasing field of interest in image processing.
In this paper we are concerned with the classical denoising problem of image
degraded by additive white Gaussian noise. We assume that the input image
f is composed of the original image s and additive uncorrelated noise n of
variance σ2:

f = s + n. (1)

The aim is to find a decomposition u, v such that u approximates the original
signal s and v is the residual part of f :

f = u + v. (2)

Our regularization is based on finding u that minimizes the following energy

E(u, f) =

∫

Ω

|Du|+ λ

2
‖f − u‖2H, (3)

where the left term on the right-hand-side is the total-variation energy and
the right term is the square norm of a Hilbert spaceH. The specific definition
of the spaces appears in Section 2.

In the following we explain the basic concept of variational denoising
and review the recent main contributions. Classically, there are two basic
measures, often referred to as energy terms, that are to be jointly minimized:

E(u, f) = Esmooth(u) + λEfidelity(u, f). (4)

Esmooth is a smoothing term which rewards smooth signals and penalizes
oscillatory ones. Efidelity accounts for fidelity, or closeness, to the input image
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f . Most of the research in the 90’s was focused on the smoothness term.
A main contribution made by ROF [30] was to consider the total-variation
energy, which does not penalize sharp edges over any other monotone signals,
thus allowing piecewise smooth solutions, which considerably reduces image
blurring in the denoising process. Similar results were obtained at the time by
a closely related PDE method of nonlinear diffusion processes [29]. However,
the method was not related to a norm, and in the original paper was not
convex. Many variations of such smoothness terms followed. The fidelity
term, though, was mostly based on the L2 norm.

Following Meyer’s work [22] the attention to the role of the fidelity term
has increased. In [22], the author has analyzed the Mathematical properties
of the ROF model [30]. He has suggested the use of other functional spaces
which would suit more the oscillating patterns of an image (and which would
thus capture the noise more efficiently). This has led to new image decom-
position and denoising algorithms. The first work in this direction was [32],
followed by [27, 3, 4, 31, 14, 25]. [22] has also raised new theoretical issues
[1, 26, 24, 21].

Also, other types for fidelity terms for different noise models were sug-
gested [23, 10].

Another important matter is the way the solution of (3) is computed. In
the standard method, one derives the associated Euler-Lagrange equations,
embeds them into a dynamical scheme which is iterated to steady-state. A
more accurate way to compute the ROF solution is to use dual formulations
[11, 7]. Recently, Chambolle has proposed a projection algorithm based on
duality to solve the ROF problem [8]. In [4] the authors have proposed a
modification of the projection algorithm to solve the OSV problem [27]. In
this paper, we will generalize Chambolle’s projection algorithm to a large
class of functionals.

For a general overview of PDE-based restoration methods, we refer the
reader to [2, 6].

We focus our attention on finding the parameter λ, an important compo-
nent of the basic regularization equation (4). By minimizing both terms of
(4) we seek a compromise between a non-oscillatory solution and one which is
“close enough” to the original image. Any minimization of one of the terms
by itself leads to degenerate solutions which are not interesting (a constant
or the input noisy image). The appropriate compromise then highly depends
on λ, the weight parameter between these two energies. When it is too low,
the restored image is over-smoothed. When it is too high, u still contains
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too much noise. Finding the right value of λ is therefore an important part
of solving the denoising problem.

This aspect of the problem was often disregarded, and the parameter was
chosen manually by trial and error. Aiming at achieving automatic denois-
ing algorithms, systematic methods for choosing λ are required. The most
famous algorithm for choosing λ is the ROF constrained optimization formu-
lation. We give a generalization to this method for the broader minimization
problem:

inf
u

∫

Ω

|Du| subject to ‖f − u‖2H = |Ω|ρ2
H, (5)

where ρ2
H is the normalized square H-norm (“H-variance”) of the noise. A

generalization of Chambolle’s projection algorithm is used to compute the
solution. λ is being iteratively updated such that the H-norm of v = f − u
equals that of the noise. To this end, we need to estimate theH-norm of white
Gaussian noise from its standard deviation σ. Notice that the constrained
problem has recently been addressed in [4] in the case of Meyer’s G norm. The
closely related problem of criteria for the stopping time of nonlinear diffusions
was examined by [28] and to some extent by [33]. Physical considerations
for solving the stopping time problem for the visco-plastic fluid model were
suggested in [17].

One should also mention the approach developed in [13]: in this work,
the authors solve the problem

inf
u
‖f − u‖2H subject to

∫

Ω

|Du| = τ, (6)

which is similar to (5). They argue that this formulation leads to less stair-
case effect. The attention is restricted to H = L2. Moreover, one needs to
estimate τ - the total variation of the noise-free image, which is probably
more difficult than estimating the noise variance.

The underlying assumption of ROF [30] is that the denoising process
works well, therefore what is filtered is mostly noise: v ≈ n. A natural
condition is then to impose var(v) = var(n) = σ2. When the image is partly
textured, though, parts of the textures are also filtered out and v contains
both noise and texture. Imposing the above condition in these cases often
causes oversmoothing of textures. The criteria of [28] and [33] rely on similar
assumptions and “confuse” texture with noise, as shown in [18]. GSZ [18, 20]
addressed this problem recently. Their method was to base the selection of
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λ on the Signal to Noise Ratio (SNR) criterion. The optimal solution was
defined as the one that maximizes the SNR. A necessary condition for optimal
SNR was formulated. This condition was then estimated, reaching quite close
results to the optimal solution (less than 0.1db difference on average, for a
collection of natural images). This method can work also on textured images,
when the denoising is not very good. Under some general assumptions related
to the denoising process and the non-correlation of signal and noise, GSZ
provide bounds for the TV − L2 model. We generalize these results, both
with respect to the maximum SNR estimations and with respect to the SNR
performance bounds.

The plan of the paper is as follows: We first introduce notations in Sec-
tion 2. We propose a generalization of Chambolle’s projection algorithm to
solve (3) in Section 3. We can then generalize Chambolle’s approach [8] for
solving the constrained problem (5) in Section 4. This provides us with a
new automatic restoration algorithm based on the variance of the noise. We
propose another automatic restoration algorithm based on SNR like optimum
condition in Section 5. This improves the numerical results of Section 4. In
Section 6 we provide theoretical estimates on the SNR performance of the
methods. Experimental results comparing the two selection criteria for λ are
presented in Section 7. We conclude the paper with some final remarks in
Section 8.

2 Notations

In this section we introduce the main definitions and mathematical spaces
that will be used in the paper.

2.1 L2 inner product

2.1.1 Definition

In this paper, we consider only the discrete case (for the sake of clarity).
The image is a two dimension vector of size N × N . We denote by X the
Euclidean space R

N×N . The space X will be endowed with the L2 inner
product:

〈u, v〉L2 =
∑

1≤i,j≤N

ui,jvi,j (7)
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and the norm
‖u‖L2 =

√

〈u, u〉L2 (8)

We will often consider the following subspace of X:

X0 = {x ∈ X /
∑

i,j

xi,j = 0} (9)

2.1.2 Discrete Fourier transform

We recall that the DFT of a given discrete image (f(m,n)) (0 ≤ m ≤ N − 1
and 0 ≤ n ≤ N − 1) is given by (0 ≤ p ≤ N − 1 and 0 ≤ q ≤ N − 1):

F(f)(p, q) = F (p, q) =
N−1
∑

m=0

N−1
∑

n=0

f(m,n)e−j(2π/N)pme−j(2π/N)qn (10)

and the inverse transform is:

f(m,n) =
1

N2

N−1
∑

p=0

N−1
∑

q=0

F (p, q)ej(2π/N)pmej(2π/N)qn (11)

Moreover, we also have ‖F(f)‖2L2 = N2‖f‖2L2 and 〈F(f),F(g)〉L2 =
N2〈f, g〉L2 .

We have ∆f(m,n) = f(m + 1, n) + f(m− 1, n) + f(m,n + 1) + f(m,n−
1)− 4f(m,n). Standard computations lead to:

F(∆f)(p, q) = 2

(

cos

(

2π

N
p

)

+ cos

(

2π

N
q

)

− 2

)

F(f)(p, q) (12)

We deduce that, if f has zero mean, then for (p, q) 6= (0, 0)

F(∆−1f)(p, q) =
1

2
(

cos
(

2π
N

p
)

+ cos
(

2π
N

q
)

− 2
)F(f)(p, q) (13)

These basic results will prove useful when we will consider H−1 in sub-
section 2.3.2.

6



2.1.3 H Hilbert space

In what follows, we will consider a general family of Hilbert spaces. We
consider an operator K such that:

1. K is a linear symmetric operator.

2. ker(K)
⋂

X0 = {0} where we recall that ker(K) = {x ∈ X / K(x) =
0} and that X0 is defined by (9)

3. X0 ⊂ dom(K) where dom(K) = {x ∈ X / ‖K(x)‖L2 < +∞}.

If f and g are in X0, then let us define:

〈f, g〉H = 〈f,Kg〉L2 (14)

This defines a inner product on X0 = {x ∈ X /
∑

i,j xi,j = 0}.

Examples:

1. When K = Id, then H = L2.

2. When K = −∆, then H = H (see subsection 2.3.1).

3. When K = −∆−1, then H = H−1 (see subsection 2.3.2).

2.2 Total variation regularization

Up to now, we have only focused on the data term. Here we get interested
in the regularization term.

2.2.1 Definition

To define a discrete total variation, we introduce a discrete version of the
gradient operator. ∇u is given by: (∇u)i,j = ((∇u)1

i,j, (∇u)2
i,j) with

(∇u)1
i,j =

{

ui+1,j − ui,j if i < N
0 if i = N

(15)

and

(∇u)2
i,j =

{

ui,j+1 − ui,j if j < N
0 if j = N

(16)
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The discrete total variation of u is then defined by:

J(u) =
∑

1≤i,j≤N

|(∇u)i,j| (17)

We also introduce a discrete version of the divergence operator. We define
it by analogy with the continuous setting by div = −∇∗ where ∇∗ is the
adjoint of ∇: that is, for every p ∈ X × X and u ∈ X, 〈−div p, u〉L2 =
〈p,∇u〉L2 . It is easy to check that:

(div (p))i,j =







p1
i,j − p1

i−1,j if 1 < i < N

p1
i,j if i=1

−p1
i−1,j if i=N

(18)

+







p2
i,j − p2

i,j−1 if 1 < j < N

p2
i,j if j=1

−p2
i,j−1 if j=N

By analogy with the continuous setting, we define a discrete Laplacian
operator by setting ∆u = div (∇u). From now on, we will use these discrete
operators.

2.2.2 G space:

We are now in position to introduce the discrete version of Meyer’s space G
[22, 3, 1].

Definition 1

G = {x ∈ X / ∃g ∈ X ×X such that x = div (g)} (19)

and if x ∈ G:

‖x‖G = inf {‖g‖∞ / x = div (g), (20)

g = (g1, g2) ∈ X ×X, |gi,j| =
√

(g1
i,j)

2 + (g2
i,j)

2
}

where ‖g‖∞ = maxi,j |gi,j|.
Moreover, we will denote:

Gµ = {x ∈ G / ‖x‖G ≤ µ} (21)
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Remark: The following result is proved in [3]:

Proposition 1 The space G identifies with the following subspace: X0 =
{v ∈ X /

∑

i,j vi,j = 0}.

2.2.3 Convex analysis

We recall that the Legendre-Fenchel transform of J is [15, 8]:

J∗(v) = sup
u∈X

(〈u, v〉L2 − J(u)) (22)

Since J defined by (17) is homogeneous of degree one (i.e. J(λu) = λJ(u)
∀u and λ > 0), it is then standard (see [15]) that J∗ is the indicator function
of some closed convex set, which turns out to be the set G1 defined by (21):

J∗(v) = χG1
(v) =

{

0 if v ∈ G1

+∞ otherwise
(23)

This result is the key to Chambolle’s projection algorithm [8], and it had
first been noticed in [9].

We close this section by giving examples of classical Hilbert spaces which
are in the class of H.

2.3 H and H−1 inner product

2.3.1 H space

We use the following norm:

‖∇u‖L2 =

√

∑

1≤i,j≤N

|∇ui,j|2 (24)

We can now introduce the H norm:

‖u‖H = ‖∇u‖L2 (25)

This is a norm on the space X0 =
{

u ∈ X,
∑

i,j ui,j = 0
}

.

It is associated with the inner product:

〈f, g〉H = 〈f,−∆g〉L2 (26)
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2.3.2 H−1 space

We consider the polar semi-norm associated with (25):

‖v‖H−1 = sup
‖u‖H=1

〈v, u〉L2 = sup
‖∇u‖L2=1

〈v, u〉L2 (27)

This is a discrete version of the H−1 norm.
The following result is proved in [4]:

‖f‖H−1 =
√

〈−f, ∆−1f〉L2 (28)

Using Parseval identity, one sees that:

‖f‖2H−1 =
1

N2
〈−F(f),F(∆−1f)〉L2

=
1

N2

∑

(p,q) 6=(0,0)

1

2
(

2− cos
(

2π
N

p
)

− cos
(

2π
N

q
)) (F(f)(p, q))2 (29)

We can thus define a inner product on H−1 by setting:

〈f, g〉H−1 = (−f, ∆−1g)L2 (30)

Frequency understanding of H−1

1. Using (29), one sees that the H−1 norm differs from the L2 norm by
the fact that the frequencies are weighted: therefore, H−1 owes much
more importance to the low frequencies. This is the reason why an
oscillating pattern has a small H−1 norm (as shown in [22] in a more
general framework). See also Figure 1 for an intuitive idea of H−1

filtering in 1 dimension.

2. The H−1 inner product is easily computed thanks to the discrete Fourier
transform.

Now that we have presented the different notations, we are in position to
introduce our model and a method to solve it.
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Figure 1: Frequency weight of the H−1 norm in one dimension. The exact
weight function is 1

2(1−cos(2πp/N))
, which can be approximated, using Taylor

expansion, by 1
(2πp/N)2

. On the left both functions are plotted in linear scale.
As the difference is quite small, a log scale plot is shown on the right. It
is apparent that the approximation is quite accurate for the low frequency
range. For this graph we used N = 64.

3 A projection algorithm

In this section, we are interested in solving the following problem.

inf
u

(

J(u) +
λ

2
‖f − u‖2H

)

(31)

All the results of this section have already been proved in the caseH = L2

in [8], and we will draw our inspiration from this paper.

Proposition 2 Problem (31) admits a unique solution û.

Proof. This is a very standard result [9]. The existence comes from the
convexity of the functional, and the uniqueness from the fact that ker(K)

⋂

ker(J) =
{0}. �

Proposition 3 If û is the solution of problem (31), then v̂ = f − û is the
solution of the dual problem:

inf
v

(

‖v − f‖2H +
1

λ
J∗(λKv)

)

(32)
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Proof. We first recall that ‖f − u‖2H = 〈f − u,K(f − u)〉L2 . If û is a
minimizer of (31), then:

0 ∈ λK (û− f) + ∂J(û) (33)

i.e.:
λK (f − û) ∈ ∂J(û) (34)

Hence
û ∈ ∂J∗ (λK (f − û)) (35)

We then set ŵ = K (f − û), and we get:

0 ∈ K−1ŵ − f + ∂J∗ (λŵ) (36)

We then deduce that ŵ is the minimizer of:

inf
w

(

∥

∥K−1w
∥

∥

2

H − 2 〈f, w〉L2 +
1

λ
J∗ (λw)

)

(37)

Since 〈f, w〉L2 = 〈f,K−1w〉H, we have:

∥

∥K−1w
∥

∥

2

H − 2 〈f, w〉L2 =
∥

∥K−1w − f
∥

∥

2

H − ‖f‖
2
H (38)

Thus ŵ is the minimizer of:

inf
w

(

∥

∥K−1w − f
∥

∥

2

H +
1

λ
J∗ (λw)

)

(39)

We now set v̂ = K−1(ŵ) = f − û. we therefore get that v̂ is a minimizer of
(32). �

Since J∗ is given by (23), we deduce that v̂ = PH
K−1G1/λ

(f), where PH
K−1G1/λ

(f)

is the orthogonal projection of f over K−1G1/λ with respect to the H inner
product. Hence, the solution û of problem (31) is simply given by:

û = f − PH
K−1G1/λ

(f) (40)

A possible algorithm to compute û is therefore to compute PH
K−1G1/λ

(f).

We now describe our method to compute this projection (this is just an
adaptation of Chambolle’s method [8]). Computing PH

K−1G1/λ
(f) amounts to

finding:

min

{

‖1
λ

K−1div (p)− f‖2H : p / |pi,j|2 − 1 ≤ 0 ∀i, j = 1, . . . , N

}

(41)
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The Karush-Kuhn-Tucker [12] conditions yield the existence of Lagrange
multipliers αi,j ≥ 0 associated to each constraint in problem (41), such that
we have for each i, j:

−
(

∇
(

1

λ
K−1div (p)− f

))

i,j

+ αi,j = 0 (42)

with either αi,j > 0 and |pi,j| = 1, or αi,j = 0 and |pi,j| < 1. In any case, we
get:

αi,j =

∣

∣

∣

∣

∣

(

∇
(

1

λ
K−1div (p)− f

))

i,j

∣

∣

∣

∣

∣

(43)

We then propose the same kind of semi-implicit gradient descent scheme
as in [8]:

p0 = 0 (44)

and

pn+1
i,j =

pn
i,j + τ(∇(K−1div (pn)− λf))i,j

1 + τ |(∇(K−1div (pn)− λf))i,j|
(45)

We can now show the following result.

Theorem 1 If τ ≤ 1
8‖K−1‖L2

, then 1
λ
K−1div pn → v̂ as n → ∞, and f −

1
λ
K−1div pn → û as n→∞.

Proof. It is very similar to the proof of Theorem 3.1 in [8]. The main
difference is that here we work with the H norm instead of the L2 norm. We
denote by η = pn+1−pn

τ
. We have:

∥

∥

∥

∥

K−1pn+1 − f

λ

∥

∥

∥

∥

2

H
−
∥

∥

∥

∥

K−1pn − f

λ

∥

∥

∥

∥

2

H

= 2τ

〈

K−1div η,K−1div pn − f

λ

〉

H
+ τ 2

∥

∥K−1div η
∥

∥

2

H

= 2τ

〈

div η,K−1div pn − f

λ

〉

L2

+ τ 2
(

−K−1div η, div η
)

L2

= −2τ

〈

η,∇
(

K−1div pn − f

λ

〉)

L2

+ τ 2
〈

−K−1div η, div η
〉

L2

We want to show that for τ small enough, the preceding quantity is non
positive. Let us denote by k = ‖K−1‖L2‖‖div ‖2L2 . We then get:

13



∥

∥

∥

∥

K−1pn+1 +
f

λ

∥

∥

∥

∥

2

H
−
∥

∥

∥

∥

K−1pn +
f

λ

∥

∥

∥

∥

2

H

≤ −τ

[

2

〈

η,−∇
(

K−1div pn +
f

λ

)〉

L2

− kτ‖η‖L2

]

(46)

The rest of the proof is technical : one shows that (46) is non positive if
τ ≤ 1

k
(we refer the reader to [8] for further details).

There remains just to precise k = ‖K−1‖L2‖‖div ‖2L2 . It is easy to check
that ‖div ‖2L2 = 8, and thus k = 8‖K−1‖L2 . �

We have therefore shown how to solve problem (31) when we know the
correct value of the Lagrange multiplier λ. We now focus on how to auto-
matically tune λ in the case of image denoising.

4 The Constrained Problem

The idea of minimizing the total variation for image denoising, suggested in
[30], assumes that the observed image f is the addition of an image with little
oscillations (typically piecewise smooth) s and a random Gaussian noise n,
of estimated variance σ2. It is then suggested to recover the original image
by trying to solve the problem:

min
u

{

J(u) / ‖u− f‖2L2 = N2σ2
}

(47)

where N2 is the size of the image. The equivalent problem we are interested
in when restoring an image with our model (31) is then:

min
u

{

J(u) / ‖u− f‖2H = N2(ρ(H, N, σ))2
}

(48)

where Nρ(H, N, σ) is theH norm of an image (of size N2) of a white Gaussian
noise with standard deviation σ. We give an estimation of Nρ(H, N, σ) in
the following subsection.

4.1 H norm of a white Gaussian noise

We will need the following lemma:
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Lemma 1 If f ∈ H⋂H∗, then

(‖f‖H)∗ = ‖f‖H∗ (49)

where H∗ is the Hilbert space whose inner product is defined by 〈u, v〉H∗ =
〈u,K−1v〉 and (‖f‖H)∗ is the Legendre-Fenchel transform (see (22)) of ‖f‖H.

Proof. Let us denote by L(u) = 1
2
‖u‖2H. Then we have:

L∗(v) = sup
u∈X

(〈u, v〉L2 − F (u))

= sup
u∈X

(

〈u, v〉L2 − 1

2
〈u,Ku〉L2

)

= sup
u∈X

(

〈K−1Ku, v〉L2 − 1

2
〈K−1Ku,Ku〉L2

)

= sup
u∈X

(

〈Ku, v〉H∗ − 1

2
‖Ku‖2H∗

)

= sup
u∈X

(

−1

2
‖Ku− v‖2H∗ +

1

2
‖v‖2H∗

)

= sup
u∈Im(K−1)

(

−1

2
‖Ku− v‖2H∗ +

1

2
‖v‖2H∗

)

=
1

2
‖v‖2H∗

�

For the sake of clarity, we will assume periodic boundary conditions in the
rest of this subsection. We assume that n is an image of white Gaussian noise;
i.e. for all (i, j), ni,j follows a Gaussian probability density function: p(x) =

1√
2πσ2

exp
(

−x2

2σ2

)

where σ2 is the variance of the noise. We recall that if Z has

a probability density function pZ , than we denote its expectancy by E(Z) =
∫

zpZ(z) dz. The following proposition is a straightforward generalization of
a result proved in [4]:

Proposition 4

E(‖n‖2H) = CHE(‖n‖2L2) = CHN2σ2 (50)

with CH = ‖PL2

Im(K)(δ)‖2H, where δ0,0 = 1 and δi,j = 0 otherwise.

We recall that Im(K) = {y ∈ X such that ∃x ∈ X such that y = Kx}, and
that PL2

Im(K)(δ) is the orthogonal projection of δ over Im(K) with respect to

the L2 inner product.
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Remarks:

1. When H = L2, then CL2 = 1.

2. When H = H−1, then it is shown in [4] that:

CH−1 =
1

N2

∑

(p,q) 6=(0,0)

1

2
(

2− cos
(

2π
N

p
)

− cos
(

2π
N

q
)) (51)

3. When H = H, then CH = 2.

Moreover, it is also shown in [4] that V ar(‖n‖2H−1) << E(‖n‖2H−1). In
the rest of the paper, we will therefore make the following approximation:

‖n‖2H−1 = CH−1‖n‖2L2 (52)

And more generally, we will assume that:

‖n‖2H = CH‖n‖2L2 (53)

Proof of Proposition 4: The proof is similar to the one of Proposition
3.5 in [4], but it is more technical in this general framework. We split the
proof into two steps:
Step 1: We begin by computing E(‖n‖2H). We consider the functional:

inf
u∈Im(K)

F (u) (54)

where F (u) = 1
2
‖u‖2H∗−〈n, u〉L2 (we recall that ‖u‖H∗ is defined in Lemma 1).

F is convex and lsc (lower semi continuous). Hence (see [16] for instance)
there exists u solving problem (54). Moreover, u is characterized by the fact
that:

〈K−1u, h〉L2 = 〈n, h〉L2 ∀h in Im(K) . (55)

We denote by δ the image such that δ0,0 = 1, and δi,j = 0 otherwise.
We denote by W the solution of the problem: infu∈Im(K)

(

1
2
‖u‖2H∗ − 〈δu〉L2

)

, and thus we have 〈K−1W,h〉L2 = 〈δ, h〉L2 for all h in Im(K). We introduce
a discrete convolution: f ∗ g(x, y) =

∑

i,j fi,jgx−i,y−j. It is easy to check that
δ ∗ f = f ∗ δ = f for all f (in fact, W is the Green function associated to
problem (54)).
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Let us now consider u = n ∗ W ; i.e. u =
∑

i,j ui,j, with ui,j(x, y) =
ni,jWx−i,y−j. u is the solution of problem(54). If h belongs to Im(K), then
(using the fact that the convolution commutes with any linear operator)
〈K−1u, h〉L2 = 〈n ∗ K−1W,∇h〉L2 = 〈K−1W, ñ ∗ h〉L2 = 〈δ, ñ ∗ h〉L2 = 〈n ∗
δ, h〉L2 = 〈n, h〉L2 (we have used the fact that 〈n ∗ a, b〉L2 = 〈a, ñ ∗ b〉L2 where
ñi,j = −ni,j).

We notice that K−1u = n ∗K−1W . Hence:
‖u‖2H∗ = 〈n ∗W,n ∗K−1W 〉L2 = (n, n ∗W 〉L2 =

∑

k,l nk,l n ∗ Wk,l , i.e.

‖u‖2H∗ =
∑

k,l nk,l

∑

i,j ni,jWk−i,l−j =
∑

i,j,k,l ni,jnk,lWk−i,l−j. And thus:

E
(

‖u‖2H∗

)

= E

(

∑

i,j,k,l

Wk−i,l−jni,jnk,l

)

=
∑

i,j,k,l

Wk−i,l−jE (ni,jnk,l)

As the ni,j are independent, we have E (ni,jnk,l) = E(ni,j)E(nk,l) whenever
(i, j) 6= (k, l). Moreover, E(ni,j) = 0, and E(n2

i,j) = σ2.
Hence: E (‖u‖2H∗) = σ2

∑

i,j Wi−i,j−j. We thus get:

E
(

‖u‖2H∗

)

= N2σ2W0,0 (56)

and from Lemma 1 , we know that ‖n‖H = ‖u‖H∗ .
Step 2: We now want to compute E(‖n‖2L2). We have: ‖n‖2L2 =

∑

i,j(ni,j)
2.

Hence E(‖n‖2L2) =
∑

i,j E ((ni,j)
2). And we get: E(‖n‖2L2) = N2σ2. We then

get the result of Proposition 4 with CH = W0,0 = ‖PL2

Im(K)(δ)‖2H (thanks to

(55) and Lemma 1), where PL2

Im(K)(δ) is the orthogonal projection of δ over

Im(K) with respect to the L2 inner product. �

4.2 Solving the constrained problem

The problem we are therefore interested in when restoring an image with our
model (31) is:

min
u

{

J(u) / ‖u− f‖2H = CHN2σ2
}

(57)

where CH is the constant given in Proposition 4. Since σ is less difficult to
estimate than λ in (31), it is of practical interest to know how to solve (57)
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directly. The task is to find λ > 0 such that ‖PH
K−1G1/λ

(f)‖2H = CHN2σ2. For

s > 0, let us set
g(s) = ‖PH

K−1G1/s
(f)‖H (58)

The following lemma states the main properties of g (we denote by f̄ the
mean of f).

Lemma 2 The function g(s) maps [0, +∞) onto [0, ‖f − f̄‖H]. It is non-
increasing, while the function s 7→ sg(s) is non-decreasing.

Proof. The proof is very close to the one of Lemma 4.1 in [8]. The main
difference relies in the use of the H inner product instead of the L2 inner
product. Let us set s ≤ t. We denote by v = PH

K−1G1/s
(f) = g(s) and by

w = PH
K−1G1/t

(f) = g(t). It is easy to see that g(s) ≥ g(t) [8, 3].

Since K−1G1/s is a convex set [5], we have:

〈f − v, x− v〉H ≤ 0 (59)

for every x in K−1G1/s. We also have for every y in K−1G1/t:

〈f − w, y − w〉H ≤ 0 (60)

We then denote by θ = s/t. We choose x = w/θ in (59) and y = θv in (60).
We thus have:

〈f − v, w − θv〉H ≤ 0 and 〈f − w, θv − w〉H ≤ 0 (61)

Hence
〈θv − w, v − w〉H ≤ 0 (62)

i.e.
θg(s)2 − (1 + θ)〈v, w〉H + g(t)2 ≤ 0 (63)

Using the Cauchy Schwartz inequality, we get:

(g(t)− θg(s))(g(t)− g(s)) ≤ 0 (64)

Since g(s) ≥ g(t), we deduce that g(t) ≥ θg(s), i.e. tg(t) ≥ sg(s). �

Thanks to Lemma 2 we can propose the following algorithm, in order to
solve (57) (similar to the one proposed in [8] to solve (47)). We assume√

CHNσ is between 0 and ‖f − f̄‖H. We need to find a value λ̃ for which
g(λ̃) =

√
CHNσ.
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Algorithm:

1. Initialization: Choose any arbitrary λ0 > 0, and compute

v0 = PH
K−1G1/λ0

(f) (65)

with the algorithm described in the previous subsection, as well as
g0 = g(λ0) = ‖v0‖H.

2. Iterations: Given λn and gn, then let λn+1 = gn√
CHNσ

λn and compute

vn+1 = PH
K−1G1/λn+1

(f) (66)

as well as gn+1 = g(λn+1) = ‖vn+1‖H.

From Lemma 2, it is easy to deduce the following result (the proof is
exactly the same as the one of Theorem 4.2 in [8]).

Theorem 2 As n → +∞, we have gn →
√

CHNσ while un = f − vn con-
verges to the unique solution of (57).

This closes the generalization of Chambolle’s results [8] to our new model.
We now turn our attention to a particular case when these new general results
lead to a new automatic denoising algorithm.

4.3 Application to the Osher-Sole-Vese algorithm

In the specific case when K = −∆−1, i.e. when H = H−1, then our model
(31) is the Osher-Sole-Vese model [27].

inf
u

(

J(u) +
λ

2
‖f − u‖2H−1

)

(67)

In [27], the authors write the associated Euler-Lagrange equations, and
then compute the solution by solving a fourth order PDE.

Our algorithm (44)-(45) reduces in that case to the one that has been
proposed in [4] to solve (67). We can precise Proposition 1:

Proposition 5 If τ ≤ 1
64

, then f − λ∆div pn → û (solution of (67)) as
n→∞.
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In fact, we have checked numerically that the algorithm converges as long
as τ < 1

32
(which is twice the theoretical bound, and which has already been

noticed in the case H = L2 in [8]).
Up to now, there had not been proposed any method to solve problem

(57) in the case H = H−1, although it has been noticed in [4] that the Osher-
Sole-Vese is a very good denoising model. This issue is now addressed by
algorithm (65)-(66) (remembering that CH is given by (51)).

In practice, we have checked numerically that we can considerably in-
crease the convergence speed of the algorithm by choosing λ0 = 1 and by
updating λ each 20 iterations.

Numerical examples: We give some numerical examples on Figures 2
to 4.

In practice, we have checked that using the right σ leads to a too strong
denoising: the denoised image is then oversmoothed. In fact, as it is also the
case with the ROF model [30], the value of λ computed from σ leads to a
residual which has the same H norm as the original noise (see for instance
[13] where the authors address this problem by imposing the value of the
total variation of the restored image instead of the norm of the noise). Un-
fortunately, as always, the denoising model is not perfect: therefore, before
getting rid of all the noise, our algorithm also removes some of the textures
and edges. Visually, we prefer a less denoised image with more details. This
question will be addressed in the following section. Anticipating on these
results, we will see that a good numerical choice is to use σ2/2 instead of σ2.

In the next section, we derive a different algorithm for automatic denois-
ing.
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Original image Noisy image (σ = 45)

Restored image (u) Noise component (v)
(with ρ2 = CH−1σ2)

Restored image (u) Noise component (v)
(with ρ2 = CH−1σ2/2)

Figure 2: Automatic restoration of a synthetic image
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Original image Noisy image (σ = 20)

Restored image (u) Noise component (v)
(with ρ2 = CH−1σ2)

Restored image (u) Noise component (v)
(with ρ2 = CH−1σ2/2)

Figure 3: Automatic restoration of a zebra image
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Original image Noisy image (σ = 20)

Restored image (u) Noise component (v)
(with ρ2 = CH−1σ2)

Restored image (u) Noise component (v)
(with ρ2 = CH−1σ2/2)

Figure 4: Automatic restoration of Barbara
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5 SNR-based Parameter Selection

5.1 Definitions

In this section we use a slightly different definition of the inner-product and
norm. We also treat these quantities as continuous functions with respect
to the parameter λ. Therefore, different notations are used. We omit the
dependency on λ for brevity. We define I(·, ·) to be the normalized, zero-
mean inner-product :

I(p, q) .
=

1

|Ω| < p− p̄, q − q̄ >H, (68)

and consequently we define N (·) to be the normalized, zero-mean square of
a norm:

N (p)
.
= I(p, p) =

1

|Ω|‖p− p̄‖2H. (69)

The above measures become the standard notions of empirical covariance
and variance, respectively, for H = L2. We will refer to N for short as
“norm” and not “the square of the normalized norm”. Note that in the
discrete setting of this paper |Ω| = N2.

Our problem can be written as

inf
u,v

(

J(u) +
λ

2
N (v)

)

, subject to f = u + v. (70)

We prefer to specifically write v in the minimization problem, though it is
implied by u and f , as it turns out to have a significant part in our analysis
below.

The H Signal-to-Noise Ratio (SNRH) of the recovered signal u is defined
as

SNRH(u)
.
= 10 log

N (s)

N (u− s)
= 10 log

N (s)

N (n− v)
, (71)

where log
.
= log10. We will usually omit the H superscript. The (square)

norm of the noise is
N (n) = ρ2. (72)

For H = L2 we have ρ2 = σ2. The initial SNR of the input signal, denoted
by SNR0, where no processing is carried out (u = f , v = 0), is according to
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(71), (72) and (1):

SNR0
.
= SNR(f) = 10 log

N (s)

N (n)
= 10 log

N (s)

ρ2
. (73)

ForH = L2 we reach the standard SNR definition: SNR0 = 10 log(var(s)/σ2),
where var denotes the variance.

Let us define the optimal SNR of a certain process applied to an input
image f as:

SNRopt
.
= max

λ
SNR(uλ) (74)

where u = uλ attains the minimal energy of (70) with weight parameter λ
for a given f . We denote by (uopt, vopt) the decomposition pair (u, v) that
reaches SNRopt, and define Nopt

.
= N (vopt).

5.2 Condition for optimal SNR

We will now develop a necessary condition for the optimal SNR. Imposing
a specific value for the norm of v, N (v) = P , in the constrained problem
amounts to choosing λ in (70). This was proved by Chambolle-Lions [9] in the
case H = L2 and could be generalized to our framework by using Proposition
2 and Lemma 2. We therefore regard SNR as a function SNR(N (v)) and
assume that it is smooth. A necessary condition for the maximum in the
range N (v) ∈ (0,N (f)) is:

∂SNR

∂N (v)
= 0. (75)

Rewriting N (n − v) as N (n) + N (v) − 2I(n, v), and using (75) and (71),
yields

∂I(n, v)

∂N (v)
=

1

2
. (76)

The meaning of this condition may not appear at first glance to be very
clear. We therefore resort to our intuition: let us think of an evolutionary
process with scale parameter N (v). We begin with N 0(v) = 0 and increment
the norm of v by a small amount dN (v), so that in the next step N 1(v) =
dN (v). The residual part of f , v, contains now both part of the noise and
part of the signal. As long as in each step the noise is mostly filtered, that is
∂I(n,v)
∂N (v)

> 1
2
, then one should keep on with the process and SNR will increase.

When we reach the condition of (76), noise and signal are equally filtered and
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one should therefore stop. If filtering is continued, more signal than noise is
filtered (in norm sense) and SNR decreases.

There is also a possibility that the maximum is at the boundaries: If
SNR is dropping from the beginning of the process we have ∂I(n,v)

∂N (v)
|N (v)=0 <

1
2

and SNRopt = SNR0. The other extreme case is when SNR increases
monotonically and is maximized when N (v) = N (f) (the trivial constant
solution u = f̄). We will see later (Proposition 8) that this can only happen
when SNR0 is negative or, equivalently, when N (s) < ρ2.

In light of these considerations, provided that one can estimate I(n, v),
our basic numerical algorithm should be as follows:

1. Set I0(n, v) = 0, N 0(v) = 0, i = 1.

2. N i(v)← N i−1(v) + dN (v). Compute I i(n, v).

3. If Ii(n,v)−Ii−1(n,v)
dN (v)

≤ 1
2

then stop.

4. i← i + 1. Goto step 2.

In the next section we suggest a method to approximate the inner product
term.

10
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−10
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(n

,v
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dλ

ρ2

4ρ2

16ρ2

64ρ2

Figure 5: Precomputed term ∂I(n, v)/∂λ as a function of λ (log scale).
Graphs depict plots for different proportion of ρ2 - 1 : 4 : 16 : 64, from upper
curve to lower curve, respectively.
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5.3 Estimating I(n, v)

The term I(n, v) is unknown, as we do not know the noise, and therefore
should be estimated. We are showing below a representation of denoising
by a family of curves which connects the norm of the noise, λ and I(n, v)
of pure noise. This can be regarded as some sort of nonlinear statistics of
noise with respect to a specific energy functional. It appears that I(n, v) as
a function of λ is almost independent from the underlying image and can be
estimated with quite a good accuracy.

First, we need to compute the “statistics” by processing a patch of pure
noise and measuring I(n, v) with respect to λ. This is done a single time
for each noise norm ρ2 and can be regarded as a look-up-table (see Fig.
5). For each processed image the behavior of λ with respect to N (v) is
measured. Combining the information, it is possible to approximate how
I(n, v) behaves with respect to N (v). The connection is done through the
chain-rule for differentiation:

∂I(n,v)
∂N (v)

= ∂I(n,v)
∂λ

∂λ
∂N (v)

≈ ∂I(n,v)
∂λ
|f=patch

∂λ
∂N (v)

|f=s+n.
(77)

In the next section we provide performance bounds, based on SNR anal-
ysis, for the constrained problem presented in Section 4 and for the optimal
parameter, which was estimated in Sections 5. Experimental results compar-
ing the suggested methods are shown in Section 7.

6 SNR Performance Bounds

Let us denote uz as the solution of (70) for f = z. For example, us is the
solution where f = s.

For the purpose of this analysis, two assumptions are made with respect
to s, n and the regularization process. They were tested numerically for the
cases H = L2 and H = H−1 for different signals s and white Gaussian noise
n.

First we have an orthogonality assumption of s and n which is taken with
respect to the regularization:

I(us, n) = 0, I(un, s) = 0, ∀λ ≥ 0. (78)
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We further assume the process applied to f = s + n does not amplify or
sharpen either s or n. This can be formulated in terms of inner product as
follows:

I(us+n, s) ≤ I(f, s), I(us+n, n) ≤ I(f, n), ∀λ ≥ 0. (79)

We are investigating the possibility to characterize the appropriate spaces of
s and n such that (78) and (79) are followed. In this paper this question is
left open and we resort to the following definition:

Definition 2 ((s, n) pair) An (s, n) pair consists of two uncorrelated sig-
nals s and n which obey conditions (78) and (79).

Theorem 3 For any (s, n) pair the inner product matrix of U = (f, s, n, u, v)T

has only non-negative elements.

For proof see the appendix. Theorem 3 implies that the denoising process
has smoothing properties and consequently, there is no negative correlation
between any two elements of U . This basic theorem will be later used to
establish several bounds in our performance analysis.

The constrained problem of Section 4 can be formulated in our context
as imposing

N (v) = ρ2. (80)

We define
SNRρ2

.
= SNR(u)|N (v)=ρ2 . (81)

We denote by (uρ2 , vρ2) the (u, v) pair that obeys (80) and minimizes (70).
We will now analyze this method for selecting u in terms of SNR.

Proposition 6 (SNR lower bound) Imposing (80), for any (s, n) pair SNRρ2

is bounded from below by

SNRρ2 ≥ SNR0 − 3dB, (82)

where we use the customary notation 3dB for 10 log10(2).
Proof. From Theorem 3 we have I(n, v) ≥ 0, therefore,

SNRρ2 = 10 log N (s)
N (n−v)

≥ 10 log N (s)
N (n)+N (v))

= 10 log N (s)
2ρ2

= SNR0 − 3dB.
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�

The lower bound of proposition 6 is reached only in the very rare and
extreme case where I(n, v) = 0. This implies that only parts of the signal
were filtered out and no denoising was performed.

Proposition 7 (SNR upper bound) Imposing (80), then there does not
exist an upper bound 0 < M <∞, where SNRρ2 ≤ SNR0 + M , that is valid
for any given (s, n) pair.

Proof. To prove this we need to show only a single case where the SNR
cannot be bounded. Let us assume N (s) = hρ2, 0 < h < 1. Then SNR0 =
10 log h. As signal and noise are not correlated we have N (f) = N (s) +
N (n) = (1 + h)ρ2. We can write N (f) also as N (u + v) = N (u) +N (v) +
2I(u, v). ¿From (80), N (v) = ρ2, and from Theorem 3, I(u, v) ≥ 0, therefore
N (u) ≤ hρ2. Since I(u, s) ≥ 0 (Theorem 3) we get N (u − s) ≤ 2hρ2. This
yields SNRρ2 ≥ 10 log 1

2
and

SNRρ2 − SNR0 ≥ 10 log
1

2h
.

Thus, for any M we can choose a sufficiently small h where the bound does
not hold. �

Definition 3 (Regular SNR) We define the function SNR(N (v)) as reg-
ular if (76) is a sufficient condition for optimality or if the optimum is at the
boundaries.

In Figs. 8, 10 and 12 one can observe that this assumption is valid for both
examples of synthetic and natural images (see SNR plot as a function of
N (v)/ρ2).

Proposition 8 (Range of optimal SNR) If SNR is regular, then for any
(s, n) pair 0 ≤ Nopt ≤ 2ρ2.

Proof. Let us first show the relation I(n, v) ≤ ρ2: I(n, f) = I(n, n+s) =
N (n) + I(n, s) = ρ2, using (78). On the other hand I(n, f) = I(n, u + v) =
I(n, u) + I(n, v). The relation is validated by using I(n, u) ≥ 0 (Theorem
3).
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Figure 6: Visualization of Theorem 4: Upper bound of SNRopt − SNR0 as
a function of Nopt/ρ

2. For Nopt → ρ2 the bound approaches +∞.

We reach the upper bound by the following inequalities:

ρ2 ≥ I(n, v)|v=vopt =

∫ Nopt

0

∂I(n, v)

∂N (v)
dN (v) ≥

∫ Nopt

0

1

2
dN (v) =

1

2
Nopt.

The inequality on the right is based on that ∂I(n,v)
∂N (v)

≥ 1
2

for N (v) ∈ (0,Nopt).

The lower bound Nopt = 0 is reached whenever ∂I(n,v)
∂N (v)

|N (v)=0 < 1
2
. �

Theorem 4 (Bound on optimal SNR) If SNR is regular, then for any
(s, n) pair and Nopt ∈ {[0, ρ2), (ρ2, 2ρ2]},

0 ≤ SNRopt−SNR0 ≤
{

−10 log(1 +Nopt/ρ
2 − 2

√

Nopt/ρ2), 0 ≤ Nopt < ρ2

−10 log(Nopt/ρ
2 − 1), ρ2 < Nopt ≤ 2ρ2

(83)

Proof. By the SNR definition, (71), and expanding the norm expression,
we have

SNRopt − SNR0 = 10 log

(

ρ2

ρ2 +Nopt − 2I(n, vopt)

)

. (84)

For the lower bound we use the relation shown in Proposition 8: I(n, vopt) ≥
1
2
Nopt. For the upper bound we use two upper bounds on I(n, vopt) and take
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their minimum. The first one, I(n, vopt) ≤ ρ
√

Nopt, is the Cauchy-Schwartz
inequality. The second relation, I(n, vopt) ≤ ρ2, is outlined in Proposition 8.

�

A plot of the upper bound of the optimal SNR with respect to Nopt/ρ
2 is

depicted in Fig. 6.
In practice, the flow is not performed by directly increasing N (v), but

by decreasing the value of λ. Therefore, it is instructive to check the vary of
N (v), as well as the other energies, with respect to a vary in λ. In the next
proposition we show that as λ decreases the total energy EJ

.
= Eu + λ

2
Ev

strictly decreases, Eu(u)
.
= J(u) decreases and Ev(v)

.
= N (v) increases.

Proposition 9 (Energy change as a function of λ) The energy parts of
Eq. (70) vary as a function of λ as follows:

∂EJ

∂λ
> 0,

∂Ev

∂λ
≤ 0,

∂Eu

∂λ
≥ 0. (85)

The proof is a consequence of Lemma 2.
We have given a mathematical analysis of our approach and shown per-

formance bounds with respect to the H-SNR criterion. In the next section
we illustrate the proposed methods with numerical examples.

7 Experimental Comparison of the Methods

Image SNR0 SNRopt SNRρ2 SNRest

Synthetic 24.97 27.60 25.19 27.52
Lena 28.25 29.64 28.13 29.60
Cameraman 38.90 40.34 38.75 40.34

Average
difference
from SNRopt 1.82 0.00 1.84 0.04

Table 1: Denoising results in terms of SNRH−1

of the examples presented in
Figures 7, 9 and 11. SNRρ2 is the result of imposing N (v) = ρ2 (Section 4).
SNRest is the result of our estimation of the optimal parameter (Section 5).
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Figure 7: Denoising of a synthetic image. From left to right. Top row:
original s, input image f . Second row: u, v of constrained problem N (v) =
ρ2. Bottom row: u, v of SNR based selection. Noise standard deviation is
σ = 45.
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We have tested our algorithms for automatic parameter selection on both
synthetic and natural images. To each original image white Gaussian noise
of standard deviation σ was added (σ = 45, 20, 20 for Figs. 7, 9, 11, re-
spectively). We display the result of imposing N (v) = ρ2 and our estimated
optimal denoising result (in the H-SNR sense).

In Fig. 7 a synthetic image with a large square and stripes is processed.
The stripes are better preserved with the estimated optimal approach. In
Fig. 8 plots of SNRH−1

, SNRL2

and estimated and real ∂I(n, v)/∂N (v)
are shown as a function of N (v)/ρ2. As seen also visually, the result of
imposing N (v) = ρ2 is not very close to the optimal parameter choice. This
phenomenon is observed also in the case of natural images (Figs. 10 and
12). A better choice of imposing a specific value for N (v) is about 1

2
ρ2. See

the examples in Section 4. In Fig. 8 one can observe that the behavior of
SNRH−1

is similar to that of the classical SNRL2

. Specifically, the maximum
is obtained in similar values of N (v). At the bottom of Fig. 8 it is shown
that the estimated value of ∂I(n, v)/∂N (v) is quite similar to the real value.
We plot the 1

2
mark (dash-dot line), that indicates optimal SNR (see Eq.

(76)). This behavior is similar to our experience with H = L2 (see [18]).
Similar results are obtained with a part of Lena image, Figs. 9, 10, and

with the Cameraman image, Figs. 11, 12.
Table 1 summarizes the performance results, in terms of SNRH−1

, of the
processed images.
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Figure 8: Denoising of synthetic image - SNR and covariance plots. Top:
SNRH−1

as a function of N (v) with plots of the optimal, constrained
and SNR-based selections (”Ours”). Middle row: a plot of the standard
SNRL2

, which behaves quite similarly to SNRH−1

. Bottom row: estimated
∂I(n, v)/∂N (v) vs. the ground truth.
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Figure 9: Denoising part of Lena image. From left to right. Top row: original
s, input image f . Second row: u, v of constrained problem N (v) = ρ2.
Bottom row: u, v of SNR based selection. Noise standard deviation is σ = 20.
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Figure 10: Denoising part of Lena image - SNR and covariance plots. Top:
SNRH−1

as a function of N (v) with plots of the optimal, constrained and
SNR-based selections (”Ours”). Bottom: estimated ∂I(n, v)/∂N (v) vs. the
ground truth.
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Figure 11: Denoising Cameraman image. From left to right. Top: original s,
input image f . Bottom: u of constrained problem N (v) = ρ2, u of our SNR
based selection. Noise standard deviation is σ = 20.
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Figure 12: Denoising Cameraman image - SNR and covariance plots. Top:
SNRH−1

as a function of N (v) with plots of the optimal, constrained and
SNR-based selections (”Ours”). Bottom: estimated ∂I(n, v)/∂N (v) vs. the
ground truth.
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8 Conclusion

In this paper, we have generalized the ROF [30] restoration model into a
BV -Hilbert space restoration model. Based on Chambolle’s work [8], and
using some results of [4], we have been able to propose projection algorithms
to solve our new problem, as well as the constrained problem. We have
mathematically proved the convergence of the corresponding algorithms. In
particular, this gives a way to automatically denoise an image by using the
OSV model [27]. We have also been able to extend the work of [18] to our new
framework. This has given us another algorithm to automatically denoise an
image, based this time on SNR like optimum criterion.

For the constrained problem, our experiments show that imposing the
norm of the residual to be equal to the norm of the noise (as in the ROF
model) gives too strong denoising. A better choice, which fits most images, is
to choose half of the norm. This gives a fast and efficient automatic denoising.
The latter method is more computationally intensive but gives higher quality
results, which are very close to the optimal that could be obtained.

In a future work, we intend to propose other H-Hilbert spaces, different
than the ones considered in this paper. Choosing a well-suited kernel could
lead us to new and better adaptive frequency denoising algorithms. Another
direction we want to explore is spatial adaptivity as it was recently done in
[19].
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APPENDIX

A Proof of Theorem 3

Since I(q, r) = I(r, q), the matrix is symmetric. The diagonal is the norm of
each element, which is non negative. Therefore we have to check the inner
product of the 10 elements of the upper right triangle. We consider below all
10 possible signal pairs and show that their inner product is non-negative.
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I(s, n), I(f, s), I(f, n)

Since s and n are not correlated, we have I(s, n) = 0, I(f, s) = I(s+n, s) =
N (s) ≥ 0, I(f, n) = I(s + n, n) = N (n) ≥ 0.

I(u, v), I(f, u), I(f, v)

Once we prove I(u, v) ≥ 0, then we readily have I(f, u) = I(u + v, u) =
N (u) + I(u, v) ≥ 0 and I(f, v) = I(u + v, v) = N (v) + I(u, v) ≥ 0.

We follow the proof of Meyer [22]. As the (u, v) decomposition minimizes
the energy of Eq. (70), we can write for any function h ∈ BV and scalar
ε > 0 the following inequality:

J(u− εh) + λN (v + εh) ≥ J(u) + λN (v). (86)

Replacing N (v + εh) by N (v) + ε2N (h) + 2εI(v, h) we get

2λεI(v, h) ≥ (J(u)− J(u− εh))− λε2N (h).

Replacing h by u and dividing both sides by ε we get

2λI(v, u) ≥ 1

ε
(J(u)− J(u(1− ε)))− λεN (u).

In the limit as ε → 0, the right term on the right-hand-side vanishes. Since
J is a semi-norm and ε < 1, 1

ε
(J(u)− J(u(1− ε))) = J(u) which is non-

negative.

I(s, u), I(n, u)

Let us first examine an equivalent minimization problem to minimizing (70).
Since v = s + n− u, then u that minimizes EJ is

u = argminu{J(u) + λN (s + n− u)}
= argminu{J(u) + λ(N (s) +N (n) +N (u)

+2I(s, n)− 2I(s, u)− 2I(n, u))}.

We can disregard expressions that do not involve u and, therefore, the equiv-
alent energy functional to be minimized is:

ÊJ(u) = J(u) + λ(N (u)− 2I(s, u)− 2I(n, u)), (87)
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where u = argminu{ÊJ(u)}. Since I(s, u) + I(n, u) = I(f, u) ≥ 0 at least
one of the terms I(s, u) or I(n, u) must be non-negative. We will now show,
by contradiction, that it is not possible that the other term be negative. Let
us assume, without loss of generality, that I(s, us+n) ≥ 0 and I(n, us+n) < 0.
We denote the optimal (minimal) energy of (87) with f = s+n as Ê∗

J |f=s+n.
The energy can be written as

Ê∗
J |f=s+n = ÊJ |f=s+n(us+n)

= J(us+n) + λ(N (us+n)− 2I(s, us+n)− 2I(n, us+n)).
(88)

On the other hand, according to condition (78), I(us, n) = 0 and we have

ÊJ |f=s+n(us) = J(us) + λ(N (us)− 2I(s, us))

= Ê∗
J |f=s ≤ ÊJ |f=s(u

s+n) = J(us+n) + λ(N (us+n)− 2I(s, us+n)).

In the above final expression, adding the term −λ2I(n, us+n) we obtain the
right hand side of expression (88). Since we assume I(n, us+n) < 0, we get
the following contradiction

ÊJ |f=s+n(us) < Ê∗
J |f=s+n.

Similarly, the opposite case I(n, us+n) ≥ 0 and I(s, us+n) < 0 is not possible.

I(s, v), I(n, v)

This follows directly from condition (79) as I(f, s) = I(u, s) + I(v, s) and
I(f, n) = I(u, n) + I(v, n).

B Detailed Algorithms

We give below the detailed algorithm that was sketched in Section 5.2 for
SNR-based parameter selection. Explanations about parameters and a few
remarks appear hereafter.

Main

1. Parameters: szp,Np, λ
0, λr.

2. Set v0 = 0, i = 0.
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3. Read precomputed table ∂I(n, v)/∂λ.

4. Loop

(a) i← i + 1, λi ← λi−1λr .

(b) Compute ui by Eq. (70) with λi (use p of previous iteration as
initial approximation for the projection)

(c) vi ← f − ui.

(d) DEI i ← DEI i
pre · (λi−λi−1)/(N (vi)−N (vi−1)). [DEI stands for

Derivative of Estimated Inner product ]

(e) until (DEI i < 1
2

(or (i = Np))

5. Return ui−1

Compute ∂I(n,v)
∂λ

Precomputing a discrete estimation of ∂I(n,v)
∂λ

for a give ρ2.

1. Parameters: ρ2, Np, szp, λ0, λr.

2. f ← noise patch. EI0 ← 0. [EI stands for Estimated Inner product ]

3. Loop (i← 1; i++; i ≤ Np)

(a) λi ← λi−1λr.

(b) Compute ui, vi as in Main.

(c) EI i ←< vi, f >.

(d) DEI i
pre ← (EI i − EI i−1)/(λi − λi−1)

4. Return vector DEIpre

Remarks

• Parameters (in brackets are values used for processing natural images):

1. szp - size of patch (80× 80 pixels). It should be noted that in H
space where ρ2 of noise with variance σ2 depends on the image size
(as in the H−1 case), a more accurate precomputation would be
on a patch which is the same size of the image. Our experiments
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have shown that the difference in the estimation results are very
little, and the above fixed size patch is good enough for medium
size images.

2. Np - number of precomputed points, that is different λ values or
time-points for indirect method (30). The main loop should do at
most Np iterations.

3. λ0 - initial λ (1), λr - ratio of successive λ (0.9).

It is important to note that this parameters mainly control the step
resolution and no tuning is needed for different images. We used the
same values, in brackets, for our experiments on natural images.

• In the specific implementation presented here, where the λ values of the
Main phase are exactly as in the Precomputing phase, one can actually
omit the multiplication and division by (λi− λi−1) in the computation
of DEI and DEIpre (we kept it to be consistent with our formulation).
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